JPH0757986A - Aligner - Google Patents

Aligner

Info

Publication number
JPH0757986A
JPH0757986A JP5161588A JP16158893A JPH0757986A JP H0757986 A JPH0757986 A JP H0757986A JP 5161588 A JP5161588 A JP 5161588A JP 16158893 A JP16158893 A JP 16158893A JP H0757986 A JPH0757986 A JP H0757986A
Authority
JP
Japan
Prior art keywords
optical system
projection optical
exposure
image
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5161588A
Other languages
Japanese (ja)
Other versions
JP3348467B2 (en
Inventor
Masaji Tanaka
正司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16158893A priority Critical patent/JP3348467B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to KR1019940015475A priority patent/KR100319216B1/en
Publication of JPH0757986A publication Critical patent/JPH0757986A/en
Priority to US08/453,538 priority patent/US5729331A/en
Priority to US08/587,346 priority patent/US6157497A/en
Priority to US09/173,530 priority patent/US6351305B1/en
Priority to US09/722,278 priority patent/US6480262B1/en
Priority to US09/722,515 priority patent/US6509954B1/en
Priority to US09/722,516 priority patent/US6556278B1/en
Application granted granted Critical
Publication of JP3348467B2 publication Critical patent/JP3348467B2/en
Priority to US10/382,874 priority patent/US6795169B2/en
Priority to US10/920,294 priority patent/US7023527B2/en
Priority to US11/101,553 priority patent/US7088425B2/en
Priority to US11/471,658 priority patent/US7372543B2/en
Priority to US11/797,605 priority patent/US7372544B2/en
Priority to US12/078,863 priority patent/US7956984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide an aligner which can transfer a circuit pattern With good focus performance without sacrifice of throughput even in the case of a large exposure region. CONSTITUTION:The aligner for projecting the image of a first object 8 onto a second object 9 while shifting them comprises first and second projection optical systems 2a, 2b for forming the equimultiple erecting image of the first object onto the second object. The first and second projection optical systems are constituted, at least the image side thereof, of a telecentric system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、第1の物体と第2の物
体とを移動させつつ露光を行なう走査型の投影露光装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type projection exposure apparatus which performs exposure while moving a first object and a second object.

【0002】[0002]

【従来の技術】近年、ワープロ、パソコン、テレビ等の
表示素子として、液晶表示パネルが多用されるようにな
った。液晶表示パネルは、ガラス基板上に透明薄膜電極
をフォトリソグラフィの手法で所望の形状にパターンニ
ングして作られる。このリソグラフィのための装置とし
て、マスク上に形成された原画パターンを投影光学系を
介してガラス基板上のフォトレジスト層に露光するミラ
ープロジェクションタイプのアライナーが使われてい
る。このようなアライナーとしては、例えば図14(a),
(b) に示すものが知られている。図14(a) は、従来の
アライナーの構成を示す斜視図であり、図14(b) は、
アライナーの投影光学系のレンズ断面図である。
2. Description of the Related Art In recent years, liquid crystal display panels have been widely used as display elements for word processors, personal computers, televisions and the like. A liquid crystal display panel is manufactured by patterning a transparent thin film electrode on a glass substrate into a desired shape by a photolithography technique. As a device for this lithography, a mirror projection type aligner is used which exposes an original pattern formed on a mask onto a photoresist layer on a glass substrate through a projection optical system. An example of such an aligner is shown in FIG.
The one shown in (b) is known. FIG. 14 (a) is a perspective view showing the structure of a conventional aligner, and FIG. 14 (b) is
It is a lens sectional view of the projection optical system of the aligner.

【0003】図14(a) において、図示なき照明光学系
によりマスク71cが円弧状の照野72aにて照明され
る。この照野72aの像72bは、図14(b) に示す如
く、台形ミラー73の反射面73aにて光路が90°偏
向され、凹面鏡74及び凸面鏡75を介して、再び凹面
鏡74にて反射される。凹面鏡74からの光は、台形ミ
ラー73の反射面73bにて光路が90°偏向され、プ
レート76上にマスク71cの像を形成する。そして、
このアライナーにおいては、プレート76とマスク71
cとを走査露光する、即ち図中X方向に沿って移動させ
つつ露光を行なうことで、マスク71c上の回路パター
ンをプレート76上に転写していた。
In FIG. 14 (a), the mask 71c is illuminated by an arc-shaped illumination field 72a by an illumination optical system (not shown). As shown in FIG. 14 (b), the image 72b of the illumination field 72a has its optical path deflected 90 ° by the reflecting surface 73a of the trapezoidal mirror 73, and is reflected again by the concave mirror 74 via the concave mirror 74 and the convex mirror 75. It The light from the concave mirror 74 has its optical path deflected by 90 ° at the reflecting surface 73b of the trapezoidal mirror 73, and forms an image of the mask 71c on the plate 76. And
In this aligner, the plate 76 and the mask 71
The circuit pattern on the mask 71c is transferred onto the plate 76 by scanning and exposing c and c, that is, by performing exposure while moving in the X direction in the figure.

【0004】最近、液晶表示パネルの大型化が望まれて
いる。それに伴い、上述の如きアライナーにおいても、
露光領域の拡大が望まれている。
Recently, it has been desired to increase the size of the liquid crystal display panel. Along with that, even in the aligner as described above,
It is desired to expand the exposure area.

【0005】[0005]

【発明が解決しようとする課題】上述の如き投影露光装
置において、露光領域を拡大させるためには、露光領域
を分割して露光していた。具体的には、図14(a) に示
す如く、プレート76上を領域76a,76b,76
c,76dに4分割して、まず、マスク71aと領域7
6aとを走査露光して、領域76a上にマスク71aの
回路パターンを転写する。次に、マスク71aをマスク
71bに交換すると共に、投影光学系の露光領域と領域
76bとが重なるように、プレート76を図中XY平面
内でステップ的に移動させる。そして、マスク71bと
プレート76とを走査露光して、マスク71bの回路パ
ターンを領域76b上に転写する。以下同様に、マスク
71c、71dの回路パターンをそれぞれ領域76c、
76dに転写していた。
In the projection exposure apparatus as described above, in order to enlarge the exposure area, the exposure area is divided and exposed. Specifically, as shown in FIG. 14 (a), the plate 76 is provided with regions 76a, 76b, 76.
First, the mask 71a and the area 7 are divided into four parts, c and 76d.
6a and 6a are exposed by scanning to transfer the circuit pattern of the mask 71a onto the area 76a. Next, the mask 71a is replaced with the mask 71b, and the plate 76 is moved stepwise in the XY plane in the drawing so that the exposure area of the projection optical system and the area 76b overlap. Then, the mask 71b and the plate 76 are scanned and exposed to transfer the circuit pattern of the mask 71b onto the region 76b. Similarly, the circuit patterns of the masks 71c and 71d are set to the regions 76c and
It was transferred to 76d.

【0006】このように、分割して露光を行なう場合に
は、多数回の露光を行なうため、スループット(単位時
間当たり露光できる基板の量)の低下を招いていた。さ
らに、分割露光の場合には、隣合う露光領域間の継ぎ精
度を高める必要がある。このため、投影露光装置におい
ては、投影光学系の倍率誤差を0に近づける必要がある
と共に、アライメント精度の大幅な向上が要求され、装
置のコスト高を招くという問題点がある。
As described above, in the case of performing the divided exposure, since the exposure is performed many times, the throughput (the amount of the substrate that can be exposed per unit time) is lowered. Further, in the case of divided exposure, it is necessary to increase the joining accuracy between adjacent exposure areas. Therefore, in the projection exposure apparatus, it is necessary to bring the magnification error of the projection optical system close to 0, and it is required to greatly improve the alignment accuracy, which causes a problem of increasing the cost of the apparatus.

【0007】また、大きな露光領域を一括して転写する
ために、投影光学系の大型化を図ることが考えられる。
しかしながら、投影光学系の大型化を図るためには、大
型な光学素子を非常に高精度に製作する必要があり、製
作コストの増大と装置の大型化とを招く問題点がある。
また、投影光学系の大型化により収差も増大する問題点
がある。
Further, in order to collectively transfer a large exposure area, it is conceivable to increase the size of the projection optical system.
However, in order to increase the size of the projection optical system, it is necessary to manufacture a large-sized optical element with extremely high accuracy, which causes problems such as an increase in manufacturing cost and an increase in size of the apparatus.
In addition, there is a problem in that aberration increases as the projection optical system becomes larger.

【0008】そこで、本発明は、露光領域が大きな場合
でも、スループットを低下させずに、良好な結像性能の
もとで回路パターンを転写できる露光装置を提供するこ
とを目的とする。
Therefore, it is an object of the present invention to provide an exposure apparatus capable of transferring a circuit pattern with good imaging performance without lowering the throughput even when the exposure area is large.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明による露光装置は、以下の構成を有する。例
えば図1に示す如く、第1の物体と第2の物体とを移動
させつつ第1の物体の像を第2の物体上へ投影露光する
露光装置は、第1の物体の等倍の正立像を第2の物体上
に形成する第1及び第2の投影光学系を有する。そし
て、第1及び第2の投影光学系は、少なくとも像側がテ
レセントリックで構成される。
In order to achieve the above object, an exposure apparatus according to the present invention has the following configuration. For example, as shown in FIG. 1, an exposure apparatus that projects and exposes an image of the first object onto a second object while moving the first object and the second object is an equal magnification of the first object. It has first and second projection optical systems for forming a standing image on a second object. The first and second projection optical systems are telecentric on at least the image side.

【0010】ここで、本発明において、正立像とは、上
下左右の横倍率が正となる像のことを指す。
Here, in the present invention, the erect image refers to an image in which the lateral magnification in the vertical and horizontal directions is positive.

【0011】[0011]

【作用】上述の如き本発明による露光装置においては、
複数の投影光学系を組み合わせる構成であるため、個々
の投影光学系の露光領域を大きくすることなく、大きな
露光領域を得ることができる。従って、投影光学系が小
型化されるため、高精度な投影光学系を容易に製造する
ことができる。また、投影光学系を構成する各光学部材
が小型であるため、絶対的な収差量の発生が減少する。
従って、良好な光学性能のもとで走査露光が実現でき
る。
In the exposure apparatus according to the present invention as described above,
Since a plurality of projection optical systems are combined, a large exposure area can be obtained without increasing the exposure area of each projection optical system. Therefore, since the projection optical system is downsized, a highly accurate projection optical system can be easily manufactured. In addition, since each optical member forming the projection optical system is small, the amount of absolute aberration is reduced.
Therefore, scanning exposure can be realized with good optical performance.

【0012】また、本発明による露光装置では、大きな
露光領域を一回の露光で得ることができるため、スルー
プットが高い利点がある。
Further, in the exposure apparatus according to the present invention, since a large exposure area can be obtained by one exposure, there is an advantage of high throughput.

【0013】[0013]

【実施例】以下、図面を参照して本発明による実施例を
説明する。図1は、本発明による露光装置の斜視図であ
る。なお、図1では、所定の回路パターンが設けられた
マスク8と、ガラス基板上にレジストが塗布されたプレ
ート9とが搬送される方向(走査方向)をX軸、マスク
8の平面内でX軸と直交する方向をY軸、マスク8の法
線方向をZ軸とした座標系をとっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of an exposure apparatus according to the present invention. In FIG. 1, the direction (scanning direction) in which the mask 8 provided with a predetermined circuit pattern and the plate 9 on which the resist is applied on the glass substrate is conveyed is the X axis, and X is in the plane of the mask 8. The coordinate system has a Y axis as a direction orthogonal to the axis and a Z axis as a normal direction of the mask 8.

【0014】図1において、照明光学系10による露光
光は、図中XY平面内のマスク8を均一に照明する。こ
の照明光学系10としては、例えば図2に示す如き構成
のものが好適である。図2は、図1に示す照明光学系1
0の具体的な構成の一例を示す図である。図2におい
て、楕円鏡102の内部には、例えばg線(435nm) 、あ
るいはi線(365nm) の露光光を供給する水銀ランプ等の
光源が設けられており、この光源からの露光光は、楕円
鏡102により集光され、ライトガイド103の入射端
に光源像を形成する。ライトガイド103は、その射出
端103a、103bに均一な光強度分布の2次光源面
を形成する。尚、ライトガイド103は、ランダムに束
ねられた光ファイバーで構成されることが望ましい。
In FIG. 1, the exposure light from the illumination optical system 10 uniformly illuminates the mask 8 in the XY plane in the figure. As the illumination optical system 10, for example, one having a configuration as shown in FIG. 2 is suitable. FIG. 2 shows the illumination optical system 1 shown in FIG.
It is a figure which shows an example of the specific structure of 0. In FIG. 2, a light source such as a mercury lamp that supplies exposure light of g-line (435 nm) or i-line (365 nm) is provided inside the elliptic mirror 102, and the exposure light from this light source is It is condensed by the elliptical mirror 102 and forms a light source image at the incident end of the light guide 103. The light guide 103 forms a secondary light source surface having a uniform light intensity distribution at its exit ends 103a and 103b. The light guide 103 is preferably composed of randomly bundled optical fibers.

【0015】ライトガイド103から射出した光束は、
リレーレンズ104a、104bをそれぞれ介して、フ
ライアイレンズ105bに達する。これらのフライアイ
レンズ105a、105bの射出面側には、複数の2次
光源が形成される。複数の2次光源からの光は、2次光
源形成位置に前側焦点が位置するように設けられたコン
デンサレンズ106a、106bを介して、矩形状の開
口部107a、107bを有する視野絞り107を均一
に照明する。視野絞り107を介した露光光は、それぞ
れレンズ108a、108bを介して、ミラー109
a、109bによって光路が90°偏向され、レンズ1
10a、110bに達する。ここで、レンズ108a、
110aとレンズ108b、110bとは、視野絞り1
08とマスク8とを共役にするリレー光学系であり、レ
ンズ110a、110bを介した露光光は、視野絞り1
08の開口部108a、108bの像である照明領域1
11a、111bを形成する。
The luminous flux emitted from the light guide 103 is
The fly-eye lens 105b is reached via the relay lenses 104a and 104b. A plurality of secondary light sources are formed on the exit surface side of these fly-eye lenses 105a and 105b. Light from a plurality of secondary light sources is uniformly distributed through a field stop 107 having rectangular openings 107a and 107b via condenser lenses 106a and 106b provided so that the front focal points are located at the secondary light source formation positions. To illuminate. The exposure light that has passed through the field stop 107 passes through lenses 108a and 108b, respectively, and a mirror 109
The optical path is deflected by 90 ° by a and 109b, and the lens 1
Reach 10a, 110b. Here, the lens 108a,
110a and lenses 108b and 110b are the field stop 1
08 is a relay optical system in which the mask 08 and the mask 8 are conjugated, and the exposure light transmitted through the lenses 110a and 110b is the field stop 1
Illumination region 1 which is an image of the apertures 108a and 108b of 08
11a and 111b are formed.

【0016】尚、視野絞り108の開口部108a,1
08bの形状は、矩形状に限ることはない。この照明領
域の形状としては、投影光学系の視野の形状に可能な限
り相似であることが望ましい。また、図2においては、
説明を簡単にするために、照明領域111c〜111g
を形成する照明光学系は、その光軸のみを示している。
なお、図2では図示省略されているが、ライトガイド1
03の射出端は、照明領域の数に対応して設けられてお
り、これらの照明領域111c〜111gには、図示省
略したライトガイド103の射出端からの露光光が供給
される。
The apertures 108a, 1 of the field stop 108 are provided.
The shape of 08b is not limited to a rectangular shape. It is desirable that the shape of this illumination region be as similar as possible to the shape of the visual field of the projection optical system. In addition, in FIG.
In order to simplify the explanation, the illumination areas 111c to 111g
The illuminating optical system that forms the optical axis shows only its optical axis.
Although not shown in FIG. 2, the light guide 1
The emission ends of 03 are provided corresponding to the number of illumination regions, and the exposure light from the emission end of the light guide 103 (not shown) is supplied to these illumination regions 111c to 111g.

【0017】また、図2に示すように、1つの光源では
光量不足になる場合、図3に示すような構成を適用して
も良い。図3は、照明光学系の変形例の要部を模式的に
示す図であって、水銀ランプ等の光源201a〜201
cからの露光光は、楕円鏡202a〜202cにより集
光され、光源像を形成する。そして、この光源像形成位
置に入射端が位置するようにライトガイド203が設け
られており、ライトガイド203を介した露光光は、複
数の射出端203a〜203eに均一な光強度分布の2
次光源面を形成する。このライトガイド203も図2の
ライトガイド103と同じく光ファイバーをランダムに
束ねて構成されることが望ましい。射出端203a〜2
03eからマスク8に至るまでの光路は、図2に示す照
明光学系と同じであるため、ここでは説明を省略する。
Further, as shown in FIG. 2, when the light amount is insufficient with one light source, the structure shown in FIG. 3 may be applied. FIG. 3 is a diagram schematically showing a main part of a modified example of the illumination optical system, and includes light sources 201a to 201 such as a mercury lamp.
The exposure light from c is condensed by the elliptical mirrors 202a to 202c to form a light source image. The light guide 203 is provided so that the incident end is located at the light source image forming position, and the exposure light passing through the light guide 203 has a uniform light intensity distribution at the plurality of exit ends 203a to 203e.
The next light source surface is formed. It is desirable that the light guide 203 is also configured by randomly bundling optical fibers, like the light guide 103 of FIG. Injection ends 203a-2
Since the optical path from 03e to the mask 8 is the same as that of the illumination optical system shown in FIG. 2, description thereof is omitted here.

【0018】なお、上述の如き複数の照明領域111a
〜111gを形成する複数の照明光学系の代わりに、走
査方向(X方向)と直交する方向(Y方向)に延びた一
つの矩形状の領域でマスク8を照明する照明光学系を適
用しても良い。このような光学系としては、Y方向に延
びた棒状の光源を用いたものが考えられる。さて、マス
ク8の下方には、複数の投影光学系2a〜2gが配置さ
れている。以下、図4を参照して投影光学系2a〜2g
について説明する。なお、投影光学系2a〜2gは、そ
れぞれ同じ構成を有するため、説明を簡単にするために
投影光学系2aのみについて述べる。
The plurality of illumination areas 111a as described above are used.
In place of the plurality of illumination optical systems forming 111 g, an illumination optical system that illuminates the mask 8 with one rectangular region extending in the direction (Y direction) orthogonal to the scanning direction (X direction) is applied. Is also good. As such an optical system, a system using a rod-shaped light source extending in the Y direction can be considered. A plurality of projection optical systems 2a to 2g are arranged below the mask 8. Hereinafter, referring to FIG. 4, the projection optical systems 2a to 2g
Will be described. Since the projection optical systems 2a to 2g have the same configuration, only the projection optical system 2a will be described in order to simplify the description.

【0019】図4は、投影光学系2aのレンズ構成図で
あり、この投影光学系2aは、2組のダイソン型光学系
を組み合わせた構成である。図4において、投影光学系
2aは、第1部分光学系21〜24と、視野絞り25
と、第2部分光学系26〜29とから構成されており、
これらの第1及び第2部分光学系は、それぞれダイソン
型光学系を変形したものである。
FIG. 4 is a lens configuration diagram of the projection optical system 2a. This projection optical system 2a has a configuration in which two sets of Dyson type optical systems are combined. In FIG. 4, the projection optical system 2a includes a first partial optical system 21 to 24 and a field stop 25.
And the second partial optical systems 26 to 29,
Each of these first and second partial optical systems is a modification of the Dyson type optical system.

【0020】第1部分光学系は、マスク8面に対して4
5°の傾斜で配置された反射面を持つ直角プリズム21
と、マスク8の面内方向に沿った光軸を有し、凸面を直
角プリズム21の反対側に向けた平凸レンズ成分22
と、全体としてメニスカス形状であって凹面を平凸レン
ズ成分22側に向けた反射面を有するレンズ成分23
と、直角プリズム21の反射面と直交しかつマスク8面
に対して45°の傾斜で配置された反射面を持つ直角プ
リズム24とを有する。
The first partial optical system is 4 with respect to the mask 8 surface.
Right angle prism 21 having a reflecting surface arranged at an inclination of 5 °
And a plano-convex lens component 22 having an optical axis along the in-plane direction of the mask 8 and having a convex surface directed to the opposite side of the right-angle prism 21.
And a lens component 23 which has a meniscus shape as a whole and has a reflecting surface with the concave surface facing the plano-convex lens component 22 side.
And a right-angle prism 24 having a reflection surface which is orthogonal to the reflection surface of the right-angle prism 21 and is arranged at an inclination of 45 ° with respect to the mask 8 surface.

【0021】そして、マスク8を介した照明光学系から
の光は、直角プリズム21によって光路が90°偏向さ
れ、直角プリズム21に接合された平凸レンズ成分22
に入射する。このレンズ成分22には、平凸レンズ成分
22とは異なる硝材にて構成されたレンズ成分23が接
合されており、直角プリズム21からの光は、レンズ成
分22、23の接合面22aにて屈折し、反射膜が蒸着
された反射面23aに達する。反射面23aで反射され
た光は、接合面22aで屈折され、レンズ成分22に接
合された直角プリズム24に達する。レンズ成分22か
らの光は、直角プリズム24により光路が90°偏向さ
れて、この直角プリズム24の射出面側に、マスク8の
1次像を形成する。ここで、第1部分光学系21〜24
が形成するマスク8の1次像は、X方向(光軸方向)の
横倍率が正であり、かつY方向の横倍率が負となる等倍
像である。
The light path from the illumination optical system via the mask 8 is deflected by 90 ° by the right-angle prism 21, and the plano-convex lens component 22 joined to the right-angle prism 21.
Incident on. A lens component 23 made of a glass material different from that of the plano-convex lens component 22 is cemented to the lens component 22, and light from the right-angle prism 21 is refracted at a cemented surface 22a of the lens components 22 and 23. , Reaches the reflection surface 23a on which the reflection film is deposited. The light reflected by the reflecting surface 23 a is refracted by the cemented surface 22 a and reaches the rectangular prism 24 cemented to the lens component 22. The light path from the lens component 22 is deflected by 90 ° by the right-angle prism 24, and a primary image of the mask 8 is formed on the exit surface side of the right-angle prism 24. Here, the first partial optical systems 21 to 24
The primary image of the mask 8 formed by is a unity-magnification image in which the lateral magnification in the X direction (optical axis direction) is positive and the lateral magnification in the Y direction is negative.

【0022】1次像からの光は、第2部分光学系26〜
29を介して、マスク8の2次像をプレート9上に形成
する。なお、第2部分光学系の構成は、第1部分光学系
と同一であるため説明を省略する。この第2部分光学系
26〜29は、第1部分光学系と同じく、X方向が正か
つY方向が負となる横倍率の等倍像を形成する。よっ
て、プレート9上に形成される2次像は、マスク8の等
倍の正立像(上下左右方向の横倍率が正となる像)とな
る。ここで、投影光学系2a(第1及び第2部分光学
系)は、両側テレセントリック光学系である。
The light from the primary image is transmitted through the second partial optical system 26-
A secondary image of the mask 8 is formed on the plate 9 via 29. The configuration of the second partial optical system is the same as that of the first partial optical system, and thus the description thereof is omitted. Like the first partial optical system, the second partial optical systems 26 to 29 form a lateral magnification unity-magnification image in which the X direction is positive and the Y direction is negative. Therefore, the secondary image formed on the plate 9 is an erect image of the mask 8 at an equal magnification (an image in which the lateral magnification in the vertical and horizontal directions is positive). Here, the projection optical system 2a (first and second partial optical systems) is a double-sided telecentric optical system.

【0023】なお、上述の第1及び第2部分光学系は、
反射面23a,28aが共に同じ向きとなるように構成
されている。これにより、投影光学系全体の小型化を図
ることができる。本実施例による第1及び第2部分光学
系は、平凸レンズ成分22,27と、反射面23a,2
8aとの間の光路中を硝材で埋める構成となっている。
これにより、平凸レンズ成分22,27と反射面23
a,28aとの偏心が生じない利点がある。
The first and second partial optical systems described above are
The reflecting surfaces 23a and 28a are configured to have the same orientation. This makes it possible to reduce the size of the entire projection optical system. The first and second partial optical systems according to the present embodiment include plano-convex lens components 22 and 27 and reflecting surfaces 23a and 2a.
The optical path between 8a and 8a is filled with a glass material.
Thereby, the plano-convex lens components 22 and 27 and the reflecting surface 23
There is an advantage that eccentricity with a and 28a does not occur.

【0024】また、図5に示すように、第1及び第2部
分光学系は、平凸レンズ成分22,27と反射面23
a,28aとの間を空気とする、いわゆるダイソン型光
学系そのものの構成でも良い。なお、このようなダイソ
ン型光学系に関しては、J.O.S.A.vol.49 (1959年発行)
のP713〜P716に詳述されている。さて、本実施例におい
ては、第1部分光学系が形成する1次像の位置に、視野
絞り25を配置している。視野絞り25は、例えば図6
(a) に示す如き台形状の開口部を有する。この視野絞り
25により、プレート9上の露光領域が台形状に規定さ
れる。ここで、図6(b) に破線で示すように、本実施例
におけるダイソン型光学系において、レンズ成分22、
23、27、28の断面(YZ平面)形状が円形である
ため、取り得る最大の視野の領域がほぼ半円形状とな
る。このとき、視野絞り25にて規定される台形状の視
野領域8aは、一対の平行辺のうちの短辺が半円状の領
域(最大の視野の領域)の円弧側を向くことが好まし
い。これにより、ダイソン型光学系の取り得る最大の視
野領域に対して、視野領域の走査方向(X方向)の幅を
最大とすることができ、走査速度を向上させることが可
能となる。
Further, as shown in FIG. 5, the first and second partial optical systems include plano-convex lens components 22 and 27 and a reflecting surface 23.
A so-called Dyson type optical system itself, in which air is provided between a and 28a, may be used. Regarding such Dyson type optical system, JOSA vol.49 (issued in 1959)
P713 to P716. By the way, in this embodiment, the field stop 25 is arranged at the position of the primary image formed by the first partial optical system. The field stop 25 is, for example, as shown in FIG.
It has a trapezoidal opening as shown in (a). The field stop 25 defines a trapezoidal exposure area on the plate 9. Here, as shown by the broken line in FIG. 6B, in the Dyson type optical system in the present embodiment, the lens component 22,
Since the cross-sections (YZ plane) of 23, 27, and 28 are circular, the area of the maximum possible field of view is substantially semicircular. At this time, it is preferable that the trapezoidal field area 8a defined by the field diaphragm 25 faces the arc side of the area where the short side of the pair of parallel sides is semicircular (the area of the maximum field of view). This makes it possible to maximize the width of the visual field area in the scanning direction (X direction) with respect to the maximum visual field area that can be taken by the Dyson type optical system, and to improve the scanning speed.

【0025】また、視野絞り25としては、図6(c) に
示すように、六角形状の開口部を有する構成であっても
良い。このとき、図6(d) に示す如く、六角形状の開口
部の大きさは、図中破線で示される最大視野領域の範囲
内となる。なお、図6(b) 及び図6(d) に破線にて示す
最大視野領域は、第1及び第2部分光学系をケラれなく
通過する軸外光束のうち、最も外側を通過する光束がマ
スク8上で通過する点を囲む領域である。
The field stop 25 may have a hexagonal opening as shown in FIG. 6 (c). At this time, as shown in FIG. 6D, the size of the hexagonal opening is within the range of the maximum visual field indicated by the broken line in the figure. In the maximum field of view shown by the broken lines in FIGS. 6B and 6D, among the off-axis light fluxes that pass through the first and second partial optical systems without vignetting, the light flux that passes the outermost one is It is a region surrounding points that pass on the mask 8.

【0026】図1に戻って、投影光学系2a〜2gの配
置について説明する。図1においては、投影光学系2a
〜2gは、投影光学系内の視野絞りによって規定される
視野領域8a〜8gを有している。これらの視野領域8
a〜8gの像は、プレート9上の露光領域9a〜9g上
に等倍の正立像として形成される。ここで、投影光学系
2a〜2dは、視野領域8a〜8dが図中Y方向に沿っ
て配列されるように設けられている。また、投影光学系
2e〜2gは、図中X方向で視野領域8a〜8dとは異
なる位置に、視野領域8e〜8gがY方向に沿って配列
されるように設けられている。このとき、投影光学系2
a〜2dと、投影光学系2e〜2gとは、それぞれが有
する直角プリズム同士が極近傍に位置するように設けら
れる。なお、X方向において、視野領域8a〜8dと視
野領域8e〜8gとの間隔を広げるように投影光学系2
a〜2gを配置しても構わないが、このときには、走査
露光を行なうための走査量(マスク8とプレート9の移
動量)が増し、スループットの低下を招くため好ましく
ない。
Returning to FIG. 1, the arrangement of the projection optical systems 2a to 2g will be described. In FIG. 1, the projection optical system 2a
.About.2g have visual field regions 8a to 8g defined by the visual field stop in the projection optical system. These visual field areas 8
The images a to 8g are formed on the exposure regions 9a to 9g on the plate 9 as erect images of the same size. Here, the projection optical systems 2a to 2d are provided so that the visual field regions 8a to 8d are arranged along the Y direction in the drawing. The projection optical systems 2e to 2g are provided at positions different from the visual field regions 8a to 8d in the X direction in the figure so that the visual field regions 8e to 8g are arranged along the Y direction. At this time, the projection optical system 2
The a to 2d and the projection optical systems 2e to 2g are provided such that the right-angle prisms of the a to 2d are located very close to each other. In addition, in the X direction, the projection optical system 2 is arranged so as to widen the distance between the visual field regions 8a to 8d and the visual field regions 8e to 8g.
Although a to 2 g may be arranged, in this case, the scanning amount (moving amount of the mask 8 and the plate 9) for performing scanning exposure increases, which causes a decrease in throughput, which is not preferable.

【0027】プレート9上には、投影光学系2a〜2d
によって、図中Y方向に沿って配列された露光領域9a
〜9dが形成され、投影光学系2e〜2gによって、露
光領域9a〜9dとは異なる位置にY方向に沿って配列
された露光領域9e〜9gが形成される。これらの露光
領域9a〜9gは、視野領域8a〜8dの等倍の正立像
である。
On the plate 9, projection optical systems 2a to 2d are provided.
The exposure areas 9a arranged along the Y direction in the figure.
9d to 9d are formed, and the projection optical systems 2e to 2g form exposure regions 9e to 9g arranged along the Y direction at positions different from the exposure regions 9a to 9d. These exposure regions 9a to 9g are erect images of the field regions 8a to 8d at the same magnification.

【0028】ここで、マスク8は図示なきマスクステー
ジ上に載置されており、プレート9は、プレートステー
ジ60上に載置されている。ここで、マスクステージと
プレートステージとは、図中X方向に同期して移動す
る。これにより、プレート9上には、照明光学系10に
より照明されたマスク8の像が逐次転写され、所謂走査
露光が行なわれる。マスク8の移動により、視野領域8
a〜8gによるマスク8の全面の走査が完了すると、プ
レート9上の全面に渡ってマスク8の像が転写される。
The mask 8 is placed on a mask stage (not shown), and the plate 9 is placed on a plate stage 60. Here, the mask stage and the plate stage move synchronously in the X direction in the figure. As a result, the images of the mask 8 illuminated by the illumination optical system 10 are sequentially transferred onto the plate 9, and so-called scanning exposure is performed. By moving the mask 8, the visual field area 8
When the scanning of the entire surface of the mask 8 with a to 8 g is completed, the image of the mask 8 is transferred over the entire surface of the plate 9.

【0029】プレートステージ60上には、Y軸に沿っ
た反射面を有する反射部材61と、X軸に沿った反射面
を有する反射部材62とが設けられている。また、露光
装置本体側には、干渉計として、例えばHe−Ne(633
nm) 等のレーザ光を供給するレーザ光源63、レーザ光
源63からのレーザ光をX方向測定用のレーザ光とY方
向測定用のレーザ光とに分割するビームスプリッタ6
4、ビームスプリッタ64からのレーザ光を反射部材6
1へ投射するためのプリズム65及びビームスプリッタ
64からのレーザ光を反射部材62上の2点へ投射する
ためのプリズム66、67が設けられている。これによ
り、ステージのX方向の位置、Y方向の位置及びXY平
面内での回転を検出することができる。なお、図1にお
いては、反射部材61、62にて反射されたレーザ光と
参照用レーザ光とを干渉させた後に検出する検出系につ
いて図示省略している。
A reflecting member 61 having a reflecting surface along the Y axis and a reflecting member 62 having a reflecting surface along the X axis are provided on the plate stage 60. Further, on the exposure apparatus main body side, as an interferometer, for example, He-Ne (633
a laser light source 63 for supplying laser light such as (nm) and a beam splitter 6 for splitting the laser light from the laser light source 63 into laser light for X-direction measurement and laser light for Y-direction measurement.
4. Reflecting member 6 for reflecting the laser light from beam splitter 64
There are provided a prism 65 for projecting light onto the No. 1 and prisms 66 and 67 for projecting laser light from the beam splitter 64 onto two points on the reflecting member 62. Thereby, the position of the stage in the X direction, the position in the Y direction, and the rotation in the XY plane can be detected. Note that, in FIG. 1, a detection system for detecting after the laser light reflected by the reflecting members 61 and 62 and the reference laser light are interfered with each other is not shown.

【0030】次に、図7を参照して本実施例による視野
領域の配置について説明する。図7は、投影光学系2a
〜2gによる視野領域8a〜8gと、マスク8との平面
的な位置関係を示す図である。図7において、マスク8
上には、回路パターンPAが形成されており、この回路
パターンPAの領域を囲むように遮光部LSAが設けら
れている。図2に示される照明光学系は、図中破線にて
囲まれる照明領域111a〜111gを均一に照明す
る。この照明領域111a〜111g内には、前述の視
野領域8a〜8gが配列されている。これらの視野領域
8a〜8gは、投影光学系2a〜2g内の視野絞りによ
り、その形状がほぼ台形状となる。ここで、視野領域8
a〜8dの上辺(一対の平行な辺のうちの短辺)と、視
野領域8e〜8gの上辺(一対の平行な辺のうちの短
辺)とが対向するように配列されている。ここで、遮光
部LSAに沿った視野領域8a及び8dの形状は、遮光
部LSA側の斜辺(一対の平行な辺以外の辺)が回路パ
ターンPAの領域の縁と一致するように規定される。な
お、視野領域8a及び8dがマスク8の遮光部LSAと
重なるような形状でも良い。
Next, the arrangement of the visual field areas according to this embodiment will be described with reference to FIG. FIG. 7 shows the projection optical system 2a.
It is a figure which shows the planar positional relationship between the visual field area | region 8a-8g by -2g, and the mask 8. In FIG. 7, the mask 8
The circuit pattern PA is formed on the upper side, and the light shielding portion LSA is provided so as to surround the area of the circuit pattern PA. The illumination optical system shown in FIG. 2 uniformly illuminates illumination areas 111a to 111g surrounded by broken lines in the figure. The above-described visual field regions 8a to 8g are arranged in the illumination regions 111a to 111g. These visual field regions 8a to 8g have a substantially trapezoidal shape due to the visual field stop in the projection optical systems 2a to 2g. Here, the visual field area 8
The upper sides of a to 8d (the short sides of the pair of parallel sides) and the upper sides of the visual field regions 8e to 8g (the short sides of the pair of parallel sides) are arranged so as to face each other. Here, the shapes of the visual field regions 8a and 8d along the light shielding portion LSA are defined such that the oblique sides (sides other than the pair of parallel sides) on the light shielding portion LSA side coincide with the edges of the area of the circuit pattern PA. . It should be noted that the field areas 8a and 8d may be shaped so as to overlap the light shielding portion LSA of the mask 8.

【0031】本実施例においては、投影光学系2a〜2
gが両側テレセントリック光学系であるため、XY平面
内において、投影光学系2a〜2gが占める領域が、そ
れぞれ視野領域8a〜8gの占める領域よりも大きくな
る。従って、視野領域8a〜8dの配列は、それぞれの
領域8a〜8dの間で間隔を持つように構成せざるを得
ない。この場合、視野領域8a〜8dのみを用いて走査
露光を行なうならば、視野領域8a〜8dの間のマスク
8上の領域をプレート9上に投影転写することができな
い。そこで、本実施例においては、視野領域8a〜8d
の間の領域について走査露光を行なうために、投影光学
系2e〜2gによって視野領域8e〜8gを設けるよう
に構成している。
In this embodiment, the projection optical systems 2a-2
Since g is a double-sided telecentric optical system, the areas occupied by the projection optical systems 2a to 2g in the XY plane are larger than the areas occupied by the visual field areas 8a to 8g, respectively. Therefore, the visual field regions 8a to 8d must be arranged such that there is a space between the respective regions 8a to 8d. In this case, if scanning exposure is performed using only the visual field regions 8a to 8d, the region on the mask 8 between the visual field regions 8a to 8d cannot be projected and transferred onto the plate 9. Therefore, in this embodiment, the visual field regions 8a to 8d are provided.
In order to perform scanning exposure for the area between the two, the projection optical systems 2e to 2g are provided to provide the visual field areas 8e to 8g.

【0032】このとき、走査方向(X方向)に沿った視
野領域8a〜8g(または露光領域9a〜9g)の幅の
総和が、どのY方向の位置においても常に一定となるこ
とが望ましい。以下、図8を参照して説明する。図8
(a),(b) は、プレート9上のY方向に関する露光量の分
布を示すものであり、縦軸に露光量E、横軸にプレート
9のY方向の位置をとっている。図8(a)において、プ
レート9上には、台形状の露光領域9a〜9gのそれぞ
れに対応する露光量分布90a〜90gが得られる。こ
こで、走査露光するにあたって、露光領域9a〜9gの
X方向の幅の和が一定となるように規定されているた
め、露光領域9a〜9gの重なる領域に関しては常に同
じ露光量となる。例えば、露光領域9aに対応する露光
量分布90aと、露光領域9eに対応する露光量分布9
0eとの重なる領域に関しては、露光領域9aのX方向
の幅と露光領域9eのX方向の幅との和が一定であるた
め、この重なる領域の露光量の和は、重ならない領域の
露光量と同じ露光量となる。従って、プレート9上に
は、全面にわたって均一な露光量分布91が得られるこ
とになる。なお、上述の説明では、露光領域が台形状で
ある場合について説明しているが、均一な露光量分布を
得るための露光領域の組合せは、台形状に限られない。
例えば、図6(c) に示す如き視野絞り25によって、六
角形状の露光領域が複数形成される場合、各露光領域の
走査方向の幅が常に一定となるように、各露光領域を規
定する。これにより、プレート9上の全面にわたって均
一な露光量分布を得ることができる。
At this time, it is desirable that the total sum of the widths of the visual field regions 8a to 8g (or the exposure regions 9a to 9g) along the scanning direction (X direction) is always constant at any position in the Y direction. This will be described below with reference to FIG. Figure 8
(a) and (b) show the distribution of the exposure amount in the Y direction on the plate 9, where the vertical axis represents the exposure amount E and the horizontal axis represents the position of the plate 9 in the Y direction. In FIG. 8A, exposure amount distributions 90a to 90g corresponding to the trapezoidal exposure regions 9a to 9g are obtained on the plate 9. Here, in scanning exposure, since the sum of the widths of the exposure regions 9a to 9g in the X direction is defined to be constant, the exposure amount is always the same in the overlapping regions of the exposure regions 9a to 9g. For example, the exposure amount distribution 90a corresponding to the exposure region 9a and the exposure amount distribution 9 corresponding to the exposure region 9e
Regarding the area overlapping with 0e, the sum of the width of the exposure area 9a in the X direction and the width of the exposure area 9e in the X direction is constant, and therefore the sum of the exposure amounts of the overlapping areas is the exposure amount of the non-overlapping areas. The same exposure amount as. Therefore, on the plate 9, a uniform exposure amount distribution 91 is obtained over the entire surface. In the above description, the case where the exposure region has a trapezoidal shape has been described, but the combination of exposure regions for obtaining a uniform exposure amount distribution is not limited to the trapezoidal shape.
For example, when a plurality of hexagonal exposure areas are formed by the field stop 25 as shown in FIG. 6C, each exposure area is defined so that the width of each exposure area in the scanning direction is always constant. As a result, a uniform exposure dose distribution can be obtained over the entire surface of the plate 9.

【0033】次に、図9を参照して、本実施例における
投影光学系の望ましき配置関係について説明する。図9
は、投影光学系の配置を説明するための平面図であり、
投影光学系D1,D2,D3 をマスク8側(物体側)から見
た状態を示す。図9において、投影光学系D1 は、平凸
レンズ成分L1 と凹面鏡M1 とから構成され、投影光学
系D2 は、平凸レンズ成分L2 と凹面鏡M2 とから構成
され、投影光学系D3は、平凸レンズ成分L3 と凹面鏡
3 とから構成される。ここで、各投影光学系D1,D2,
3 の構成は、共に同じである。なお、図9では、説明
を簡単にするために、各投影光学系D1,D2,D3 の光路
は、物体から凹面鏡(反射鏡)M1,M2,M3 へ向かう光
路のみを示し、光路をZ方向に偏向させる直角プリズム
は図示省略している。
Next, with reference to FIG. 9, a desired arrangement relationship of the projection optical system in the present embodiment will be described. Figure 9
Is a plan view for explaining the arrangement of the projection optical system,
The projection optical systems D 1 , D 2 , and D 3 are viewed from the mask 8 side (object side). In FIG. 9, the projection optical system D 1 is composed of a plano-convex lens component L 1 and a concave mirror M 1, and the projection optical system D 2 is composed of a plano-convex lens component L 2 and a concave mirror M 2. 3 comprises a plano-convex lens component L 3 and a concave mirror M 3 . Here, each projection optical system D 1 , D 2 ,
The configurations of D 3 are the same. In FIG. 9, for the sake of simplicity, the optical paths of the projection optical systems D 1 , D 2 , and D 3 are only the optical paths from the object to the concave mirrors (reflecting mirrors) M 1 , M 2 , and M 3 . A right-angle prism for deflecting the optical path in the Z direction is not shown.

【0034】さて、投影光学系D1 の取り得る最大の視
野領域のY方向の幅をφF1、投影光学系D2 の取り得る
最大の視野領域のY方向の幅をφF2、投影光学系D3
取り得る最大の視野領域のY方向の幅をφF3とする。こ
れらの視野領域のY方向の幅φF1〜φF3は、それぞれ図
6(b),(d) に破線で示す最大視野領域の半径方向の長さ
に対応する。
Now, the width in the Y direction of the maximum visual field area that the projection optical system D 1 can take is φ F1 , and the maximum width of the visual field area that the projection optical system D 2 can take in the Y direction is φ F2 . The width in the Y direction of the maximum viewable area of D 3 is φ F3 . The widths φ F1 to φ F3 in the Y direction of these visual field regions correspond to the radial lengths of the maximum visual field region shown by the broken lines in FIGS. 6B and 6D, respectively.

【0035】このとき、Y方向に隣接して配置された投
影光学系D1,D3 の光軸間距離をKとすると、
At this time, if the distance between the optical axes of the projection optical systems D 1 and D 3 arranged adjacent in the Y direction is K,

【0036】[0036]

【数1】 φF1/2+φF2+φF3/2>K …(1) を満足することが望ましい。ここで、φF1=φF2=φF3
=φF (ただし、φF :各投影光学系の取り得る最大の
視野領域のY方向の幅)とすると、上記(1)式は、以
下の如く書換えることができる。
[Equation 1] φ F1 / 2 + φ F2 + φ F3 / 2> K It is desirable to satisfy (1). Where φ F1 = φ F2 = φ F3
= Φ F (where φ F is the maximum width of the visual field in each projection optical system in the Y direction), the above equation (1) can be rewritten as follows.

【0037】[0037]

【数2】 2φF >K …(2) すなわち、各投影光学系の取り得る最大の視野領域のY
方向の幅は、各投影光学系のY方向における光軸間距離
の半分以上であることが望ましい。ここで、各投影光学
系の配置が上記(1)式または(2)式の範囲から外れ
る場合には、各視野領域がY方向で重ならない恐れがあ
るため好ましくない。
2 φ F > K (2) That is, Y of the maximum field of view that can be taken by each projection optical system.
The width in the direction is preferably half or more of the distance between the optical axes in the Y direction of each projection optical system. Here, if the arrangement of the projection optical systems is out of the range of the formula (1) or the formula (2), it is not preferable because the visual field regions may not overlap in the Y direction.

【0038】また、平凸レンズ成分L1 〜L3 の直径
(Y方向の長さ)をφL1〜φL3、凹面鏡M1 〜M3 の直
径(Y方向の長さ)をφM1〜φM3とし、これらの直径の
なかで大きい方の直径(即ち、投影光学系D1,D2,D3
の外径の最大値)をφD1〜φD3とする。ここで、各投影
光学系D1,D2,D3 の構成が共に同じであるため、
Further, the diameters (lengths in the Y direction) of the plano-convex lens components L 1 to L 3 are φ L1 to φ L3 , and the diameters (lengths in the Y direction) of the concave mirrors M 1 to M 3 are φ M1 to φ M3. And the larger one of these diameters (that is, the projection optical systems D 1 , D 2 , D 3
The maximum outside diameter of) is φ D1 to φ D3 . Since the projection optical systems D 1 , D 2 , and D 3 have the same configuration,

【0039】[0039]

【数3】 φL1=φL2=φL3、 φM1=φM2=φM3、 φD1=φD2=φD3=φD 、 がそれぞれ成立する。このとき、各投影光学系の取り得
る最大の視野領域のY方向の幅をφF とすると、
[Formula 3] φ L1 = φ L2 = φ L3 , φ M1 = φ M2 = φ M3 , φ D1 = φ D2 = φ D3 = φ D , respectively. At this time, if the width in the Y direction of the maximum viewable area of each projection optical system is φ F ,

【0040】[0040]

【数4】 φF >φD /2 …(4) を満足することが望ましい。ここで、各投影光学系D1
〜D3 が上記(4)式を満足しない、即ち、各投影光学
系の取り得る最大の視野領域のY方向の幅φF が各投影
光学系の外径の最大値φD の半分以上でない場合には、
Y方向に隣接して配置された投影光学系D1,D3 が互い
に干渉する恐れがあるため好ましくない。尚、投影光学
系の外径の最大値が光路を90°偏向させる直角プリズ
ムにより定まるときには、上記外径の最大値φD を直角
プリズムのY方向の長さとすれば良い。また、上記
(1)式〜(4)式の関係は、ダイソン型光学系に限る
ことなく、オフナー型光学系にも適用できる。
## EQU4 ## It is desirable to satisfy φ F > φ D / 2 (4). Here, each projection optical system D 1
˜D 3 does not satisfy the above equation (4), that is, the width φ F of the maximum viewable area of each projection optical system in the Y direction is not more than half the maximum value φ D of the outer diameter of each projection optical system. in case of,
The projection optical systems D 1 and D 3 arranged adjacent to each other in the Y direction may interfere with each other, which is not preferable. When the maximum value of the outer diameter of the projection optical system is determined by the rectangular prism that deflects the optical path by 90 °, the maximum value φ D of the outer diameter may be the length of the rectangular prism in the Y direction. Further, the relationships of the above expressions (1) to (4) are applicable not only to the Dyson type optical system but also to the Offner type optical system.

【0041】さて、上述の実施例では、投影光学系とし
て2組の光学系を組み合わせているが、その代わりに、
図10及び図11に示す光学系を適用しても良い。図1
0は、ダイソン型光学系の直角プリズムの代わりに、ダ
ハ面を持つ直角ダハプリズム34を適用したものであ
る。図10において、直角プリズム31、平凸レンズ成
分32及び反射面33aを持つレンズ成分33は、それ
ぞれ図4に示す直角プリズム21、平凸レンズ成分22
及びレンズ成分33と同一の機能を有するため、ここで
は説明を省略する。2組の直角プリズムを有するダイソ
ン型光学系では、光軸に沿った方向の横倍率が正とな
り、かつ光軸直交方向(物体面及び像面に沿った方向)
の横倍率が負となる像を形成する。図10の如き直角ダ
ハプリズム34を有するダイソン型光学系では、ダハ面
によって、物体面及び像面内での光軸直交方向(紙面垂
直方向)の像向きが逆転するため、光軸に沿った方向
(X方向)及び物体面及び像面内での光軸直交方向(Y
方向)の横倍率が共に正となる正立像を形成できる。
In the above embodiment, two sets of optical systems are combined as the projection optical system, but instead of this,
The optical system shown in FIGS. 10 and 11 may be applied. Figure 1
0 is a right-angled roof prism 34 having a roof surface, instead of the right-angled prism of the Dyson type optical system. 10, the right-angle prism 31, the plano-convex lens component 32, and the lens component 33 having the reflecting surface 33a are the right-angle prism 21 and the plano-convex lens component 22 shown in FIG. 4, respectively.
Since it has the same function as the lens component 33, the description thereof is omitted here. In the Dyson type optical system having two sets of right angle prisms, the lateral magnification in the direction along the optical axis is positive and the direction orthogonal to the optical axis (direction along the object plane and the image plane)
Forms an image with a negative lateral magnification of. In the Dyson type optical system having the right-angled roof prism 34 as shown in FIG. 10, the roof surface inverts the image direction in the direction orthogonal to the optical axis (the direction perpendicular to the paper surface) in the object plane and the image plane, so that the direction along the optical axis is reversed. (X direction) and the direction orthogonal to the optical axis in the object plane and image plane (Y
It is possible to form an erect image in which the lateral magnification in both directions is positive.

【0042】図11は、光路を折り返すための反射面を
設けたダイソン型光学系の一例のレンズ構成図である。
図11において、マスク8からの光は、光の入射方向
(Z軸方向)に対して45°に斜設された半反射面41
aによって、光路が90°偏向されて、平凸レンズ成分
42に入射する。なお、図11に示す平凸レンズ成分4
2及び平凸レンズ成分42に接合されるレンズ成分43
は、それぞれ図4の平凸レンズ成分22及びレンズ成分
23と同一の機能を有する。
FIG. 11 is a lens configuration diagram of an example of a Dyson type optical system provided with a reflecting surface for turning back the optical path.
In FIG. 11, the light from the mask 8 is a semi-reflecting surface 41 that is obliquely provided at 45 ° with respect to the light incident direction (Z-axis direction).
The optical path is deflected by 90 ° by a and enters the plano-convex lens component 42. The plano-convex lens component 4 shown in FIG.
2 and the lens component 43 cemented to the plano-convex lens component 42
Have the same functions as the plano-convex lens component 22 and the lens component 23 of FIG. 4, respectively.

【0043】そして、平凸レンズ成分42に入射した光
は、反射面43aにて反射され、再び平凸レンズ成分4
2を介して、平凸レンズ成分42の射出側にマスク8の
1次像を形成する。この1次像形成位置には、反射面4
1bが設けられている。ここで、半反射面41aと反射
面41bとは、反射部材41に設けられている。そし
て、反射面41b上の1次像からの光は、もとの光路を
逆進して、平凸レンズ成分42及びレンズ成分43を介
した後、半反射面41aを透過する。半反射面41aの
透過方向には、光線の入射方向(透過方向)に対して1
12.5°で斜設された反射面44aと、この反射面4
4aに対して45°で斜設された反射面44bとを有す
る反射部材44が設けられている。ここで、反射面44
a,44bがペンタプリズムの機能を有するため、この
反射部材44に入射した光は、反射面44a,44bで
の反射により、光路が90°偏向される。
The light incident on the plano-convex lens component 42 is reflected by the reflecting surface 43a, and the plano-convex lens component 4 again.
A primary image of the mask 8 is formed on the exit side of the plano-convex lens component 42 via 2. At this primary image forming position, the reflecting surface 4
1b is provided. Here, the semi-reflective surface 41 a and the reflective surface 41 b are provided on the reflective member 41. Then, the light from the primary image on the reflecting surface 41b travels backward in the original optical path, passes through the plano-convex lens component 42 and the lens component 43, and then passes through the semi-reflecting surface 41a. The transmission direction of the semi-reflective surface 41a is 1 with respect to the incident direction (transmission direction) of the light beam.
The reflecting surface 44a obliquely installed at 12.5 ° and the reflecting surface 4
A reflecting member 44 having a reflecting surface 44b obliquely provided at 45 ° with respect to 4a is provided. Here, the reflective surface 44
Since a and 44b have the function of a pentaprism, the light incident on the reflection member 44 is reflected by the reflection surfaces 44a and 44b so that the optical path is deflected by 90 °.

【0044】反射面44a,44bで反射された光は、
反射部材44の射出側にマスク8の2次像を形成する。
ここで、この2次像は、等倍の正立像となる。なお、図
11においては、マスク8から反射面41bまでの光路
長と、反射面41bからプレート9までの光路長とが等
しくなるように構成している。ここで、図11に示す投
影光学系においては、反射面41bの形状が視野絞りの
形状となる。例えば、YZ平面内で短辺が紙面上側とな
る台形状の反射面41bである場合には、視野領域及び
露光領域は、XY平面で紙面右側に短辺が位置する台形
状の領域となる。なお、図11の投影光学系において、
平凸レンズ成分42及びレンズ成分43の光軸近傍を通
過する光束は、反射面41bに達しないため結像に寄与
しない。しかしながら、半反射面41aから反射面43
aへ向かう光路と反射面41bから反射面43aへ向か
う光路とが混じることを避けるため、平凸レンズ成分4
2及びレンズ成分43の光軸上及びその近傍を通過する
光束を用いることは少ない。従って、図11のように、
平凸レンズ成分42及びレンズ成分43の光軸近傍を通
過する光束が遮光されていても、実用上何ら差し支えは
ない。
The light reflected by the reflecting surfaces 44a and 44b is
A secondary image of the mask 8 is formed on the exit side of the reflecting member 44.
Here, this secondary image becomes an erect image of equal size. In FIG. 11, the optical path length from the mask 8 to the reflecting surface 41b is equal to the optical path length from the reflecting surface 41b to the plate 9. Here, in the projection optical system shown in FIG. 11, the shape of the reflecting surface 41b is the shape of the field stop. For example, when the trapezoidal reflection surface 41b has the short side on the upper side of the paper in the YZ plane, the field-of-view area and the exposure area are trapezoidal areas where the short side is located on the right side of the paper on the XY plane. In addition, in the projection optical system of FIG.
The light flux passing near the optical axes of the plano-convex lens component 42 and the lens component 43 does not reach the reflection surface 41b and therefore does not contribute to image formation. However, from the semi-reflective surface 41a to the reflective surface 43
The plano-convex lens component 4 is included in order to avoid mixing of the optical path going to a and the optical path going from the reflecting surface 41b to the reflecting surface 43a.
It is rare to use a light flux that passes on the optical axis of 2 and the lens component 43 and in the vicinity thereof. Therefore, as shown in FIG.
Even if the light fluxes passing near the optical axes of the plano-convex lens component 42 and the lens component 43 are blocked, there is no practical problem.

【0045】なお、図10及び図11に示す投影光学系
において、物体側と像側とを逆転させる構成であっても
良いことはいうまでもない。上述の如き図11に示す投
影光学系では、ペンタプリズムと同様の機能を持つ2つ
の反射面44a,44bを適用していたが、その代わり
に、図12に示す如く、光路折り返し用の反射面を2枚
の反射面で構成しても良い。図12において、図11の
投影光学系と異なる箇所は、Y方向(紙面垂直方向)に
沿った稜線を持つダハ面を構成する2つの反射面51
b,51cを光路折り返し用の反射面41bの代わりに
設け、プレート9の面に対して45に斜設された反射面
54aを2つの反射面44a,44bの代わりに設けた
点である。なお、図12において、平凸レンズ成分52
及び反射面53aを持つレンズ成分53は、それぞれ図
11の平凸レンズ成分42及びレンズ成分43と同一の
機能を有する。
Needless to say, the projection optical system shown in FIGS. 10 and 11 may have a structure in which the object side and the image side are reversed. In the projection optical system shown in FIG. 11 as described above, the two reflecting surfaces 44a and 44b having the same function as the pentaprism are applied, but instead, as shown in FIG. May be composed of two reflecting surfaces. 12 is different from the projection optical system in FIG. 11 in that two reflecting surfaces 51 that form a roof surface having a ridge line along the Y direction (direction perpendicular to the paper surface).
b and 51c are provided in place of the reflecting surface 41b for folding the optical path, and a reflecting surface 54a obliquely provided at 45 with respect to the surface of the plate 9 is provided in place of the two reflecting surfaces 44a and 44b. In FIG. 12, the plano-convex lens component 52
The lens component 53 having the reflection surface 53a has the same function as the plano-convex lens component 42 and the lens component 43 of FIG.

【0046】図12において、マスク8からの光は、半
反射面51aにて光路が90°偏向され、平凸レンズ成
分52及びレンズ成分53を介して反射面51b,51
cに達し、マスク8の1次像を形成する。この1次像
は、反射面51b,51cによりその上下が逆転され、
再び平凸レンズ成分52及びレンズ成分53を介して、
半反射面51aを透過する。半反射面51aを透過した
光は、反射面54aにて光路が90°偏向され、反射部
材54から射出し、マスク8の2次像を形成する。ここ
で、この2次像は、等倍の正立像となる。
In FIG. 12, the light from the mask 8 has its optical path deflected by 90 ° on the semi-reflecting surface 51a, and passes through the plano-convex lens component 52 and the lens component 53 to the reflecting surfaces 51b, 51.
c, the primary image of the mask 8 is formed. This primary image is turned upside down by the reflecting surfaces 51b and 51c,
Again via the plano-convex lens component 52 and lens component 53,
The light passes through the semi-reflective surface 51a. The light passing through the semi-reflective surface 51a has its optical path deflected by 90 ° at the reflective surface 54a and exits from the reflective member 54 to form a secondary image of the mask 8. Here, this secondary image becomes an erect image of equal size.

【0047】また、上記実施例では、等倍の正立像を得
る投影光学系として、平凸レンズ成分と凹面鏡とを持つ
ダイソン型光学系を適用しているが、投影光学系として
はダイソン型光学系に限られることはない。例えば、図
13に示すように、凹面鏡、凸面鏡及び凹面鏡が順に配
列されたオフナー型光学系を適用することもできる。図
13は、第1及び第2部分光学系として図14(b) に示
すオフナー型光学系を適用したものであり、説明を簡単
にするために、図14(b) に示す部材と同一の機能を有
する部材には、同じ符号を付してある。なお、図13に
おいて、第1部分光学系が形成するマスク8の1次像形
成位置には、円弧形状の開口部を有する視野絞り25が
設けられている。このような2組のオフナー型光学系に
よっても、両側(物体側及び像側)がテレセントリック
であり、物体の等倍の正立像を形成する投影光学系を得
ることができる。
Further, in the above embodiment, the Dyson type optical system having the plano-convex lens component and the concave mirror is applied as the projection optical system for obtaining the erect image of the same magnification, but the projection optical system is the Dyson type optical system. It is not limited to. For example, as shown in FIG. 13, an Offner type optical system in which a concave mirror, a convex mirror, and a concave mirror are sequentially arranged can be applied. FIG. 13 is an application of the Offner type optical system shown in FIG. 14 (b) as the first and second partial optical systems, and in order to simplify the explanation, it is the same as the member shown in FIG. 14 (b). Members having a function are given the same reference numerals. In FIG. 13, a field diaphragm 25 having an arc-shaped opening is provided at the primary image forming position of the mask 8 formed by the first partial optical system. Even with such two sets of Offner type optical systems, both sides (the object side and the image side) are telecentric, and it is possible to obtain a projection optical system that forms an erect image of the same size of the object.

【0048】以上から、等倍の正立像を得る投影光学系
としては、種々の構成を取り得ることが分かる。なお、
図10に示す如き中間像(1次像)を形成しない投影光
学系や、図12に示す如き中間像形成位置に視野絞りを
配置できない光学系においては、照明光学系による照明
領域の形状を所望の視野領域の形状と相似となるように
すれば良い。例えば、図2の照明光学系の視野絞り10
7の開口部107a,107bの形状を台形状とすれ
ば、台形状の照明領域を得ることができる。
From the above, it is understood that various configurations can be adopted as the projection optical system for obtaining an erect image of equal magnification. In addition,
In a projection optical system that does not form an intermediate image (primary image) as shown in FIG. 10 or an optical system in which a field stop cannot be arranged at the intermediate image forming position as shown in FIG. 12, the shape of the illumination area by the illumination optical system is desired. It may be similar to the shape of the field of view area. For example, the field stop 10 of the illumination optical system shown in FIG.
If the openings 107a and 107b of No. 7 have a trapezoidal shape, a trapezoidal illumination area can be obtained.

【0049】このように、本実施例による露光装置によ
れば、複数の投影光学系によって、走査方向と直交する
幅が広い露光領域を形成しているため、個々の投影光学
系を大型化することなく、露光領域の大画面化に対応で
きる。ここで、本実施例では、投影光学系の大型化を招
かないため、比例拡大による収差の増大を防止できる利
点がある。
As described above, according to the exposure apparatus of the present embodiment, since a plurality of projection optical systems form an exposure area having a wide width orthogonal to the scanning direction, each projection optical system is enlarged. Without increasing the size of the exposure area. Here, in this embodiment, since the projection optical system is not increased in size, there is an advantage that an increase in aberration due to proportional enlargement can be prevented.

【0050】また、本実施例では、画面を継ぐことな
く、一回の露光で大画面の露光が実行できるため、スル
ープットの向上が図れる利点や画面の継ぎ目が無くなる
利点がある。
Further, in the present embodiment, since exposure of a large screen can be executed by one exposure without connecting screens, there is an advantage that throughput can be improved and a screen joint can be eliminated.

【0051】[0051]

【発明の効果】以上のように本発明によれば、露光領域
が大きな場合でも、スループットを低下させずに、回路
パターンを転写できる露光装置が提供できる。
As described above, according to the present invention, it is possible to provide an exposure apparatus capable of transferring a circuit pattern without lowering the throughput even when the exposure area is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of an embodiment of the present invention.

【図2】本発明による露光装置に適用される照明光学系
の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of an illumination optical system applied to the exposure apparatus according to the present invention.

【図3】照明光学系の変形例を模式的に示す図である。FIG. 3 is a diagram schematically showing a modified example of the illumination optical system.

【図4】本発明による露光装置に適用される投影光学系
のレンズ構成図である。
FIG. 4 is a lens configuration diagram of a projection optical system applied to the exposure apparatus according to the present invention.

【図5】投影光学系の変形例を示すレンズ構成図であ
る。
FIG. 5 is a lens configuration diagram showing a modified example of the projection optical system.

【図6】視野絞りの形状の説明するための平面図であ
る。
FIG. 6 is a plan view for explaining the shape of a field stop.

【図7】投影光学系による視野領域とマスクとの平面的
な位置関係を示す図である。
FIG. 7 is a diagram showing a planar positional relationship between a field area and a mask by a projection optical system.

【図8】プレート上の露光量分布を示す図である。FIG. 8 is a diagram showing an exposure dose distribution on a plate.

【図9】複数の投影光学系の配置関係を説明するための
平面図である。
FIG. 9 is a plan view for explaining an arrangement relationship between a plurality of projection optical systems.

【図10】投影光学系の変形例を示すレンズ構成図であ
る。
FIG. 10 is a lens configuration diagram showing a modified example of the projection optical system.

【図11】投影光学系の変形例を示すレンズ構成図であ
る。
FIG. 11 is a lens configuration diagram showing a modified example of the projection optical system.

【図12】投影光学系の変形例を示すレンズ構成図であ
る。
FIG. 12 is a lens configuration diagram showing a modified example of the projection optical system.

【図13】投影光学系としてオフナー型光学系を適用し
た場合のレンズ構成図である。
FIG. 13 is a lens configuration diagram when an Offner type optical system is applied as a projection optical system.

【図14】従来の露光装置の一例を示す斜視図である。FIG. 14 is a perspective view showing an example of a conventional exposure apparatus.

【符号の説明】[Explanation of symbols]

2a〜2g…投影光学系、 8…マスク、 9…プレー
ト、10…照明光学系、
2a to 2g ... Projection optical system, 8 ... Mask, 9 ... Plate, 10 ... Illumination optical system,

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】第1の物体と第2の物体とを移動させつつ
前記第1の物体の像を前記第2の物体上へ投影露光する
露光装置において、 前記第1の物体の等倍の正立像を前記第2の物体上に形
成する第1及び第2の投影光学系を有し、 前記第1及び第2の投影光学系は、少なくとも像側がテ
レセントリックで構成されることを特徴とする露光装
置。
1. An exposure apparatus for projecting and exposing an image of the first object onto the second object while moving the first object and the second object, the exposure apparatus having a magnification equal to that of the first object. It has the 1st and 2nd projection optical system which forms an erect image on the said 2nd object, The said 1st and 2nd projection optical system is comprised at least in an image side by telecentricity, It is characterized by the above-mentioned. Exposure equipment.
【請求項2】前記第1及び第2の投影光学系は、光の入
射側に凹面を向けたレンズ面と、同じく光の入射側に凹
面を向けた反射面とを有するダイソン型光学系であるこ
とを特徴とする請求項1記載の露光装置。
2. The first and second projection optical systems are Dyson type optical systems having a lens surface having a concave surface facing the light incident side and a reflecting surface having a concave surface facing the light incident side. The exposure apparatus according to claim 1, wherein the exposure apparatus is provided.
【請求項3】前記第1及び第2の投影光学系は、第1部
分光学系と第2部分光学系とを有し、前記第2部分光学
系は、前記第1部分光学系が形成する物体の1次像から
の光によって2次像を形成することを特徴とする請求項
1記載の露光装置。
3. The first and second projection optical systems have a first partial optical system and a second partial optical system, and the second partial optical system is formed by the first partial optical system. The exposure apparatus according to claim 1, wherein a secondary image is formed by light from the primary image of the object.
【請求項4】前記第1及び第2部分光学系は、それぞれ
光の入射側に凹面を向けた第1及び第2の反射面を有
し、該第1及び第2の反射面は、同一方向に凹面を向け
るように配置されることを特徴とする請求項3記載の露
光装置。
4. The first and second partial optical systems have first and second reflecting surfaces with concave surfaces facing the light incident side, respectively, and the first and second reflecting surfaces are the same. The exposure apparatus according to claim 3, wherein the exposure apparatus is arranged so that a concave surface faces the direction.
【請求項5】前記第1部分光学系による前記1次像が形
成される位置には、視野絞りが配置されることを特徴と
する請求項3記載の露光装置。
5. The exposure apparatus according to claim 3, wherein a field stop is arranged at a position where the primary image is formed by the first partial optical system.
【請求項6】前記視野絞りは、略台形状の開口部を有
し、該開口部によって定まる露光領域の移動方向におけ
る長さの和は、前記移動方向と直交する方向において常
に等しくなる如く規定されることを特徴とする請求項5
記載の露光装置。
6. The field stop has an opening having a substantially trapezoidal shape, and the sum of the lengths in the moving direction of an exposure area defined by the opening is defined to be always equal in the direction orthogonal to the moving direction. 6. The method according to claim 5, wherein
The exposure apparatus described.
JP16158893A 1993-06-30 1993-06-30 Exposure apparatus and method Expired - Lifetime JP3348467B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP16158893A JP3348467B2 (en) 1993-06-30 1993-06-30 Exposure apparatus and method
KR1019940015475A KR100319216B1 (en) 1993-06-30 1994-06-30 Exposure device
US08/453,538 US5729331A (en) 1993-06-30 1995-05-30 Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US08/587,346 US6157497A (en) 1993-06-30 1996-01-16 Exposure apparatus
US09/173,530 US6351305B1 (en) 1993-06-30 1998-10-15 Exposure apparatus and exposure method for transferring pattern onto a substrate
US09/722,278 US6480262B1 (en) 1993-06-30 2000-11-28 Illumination optical apparatus for illuminating a mask, method of manufacturing and using same, and field stop used therein
US09/722,515 US6509954B1 (en) 1993-06-30 2000-11-28 Aperture stop having central aperture region defined by a circular ARC and peripheral region with decreased width, and exposure apparatus and method
US09/722,516 US6556278B1 (en) 1993-06-30 2000-11-28 Exposure/imaging apparatus and method in which imaging characteristics of a projection optical system are adjusted
US10/382,874 US6795169B2 (en) 1993-06-30 2003-03-07 Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US10/920,294 US7023527B2 (en) 1993-06-30 2004-08-18 Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US11/101,553 US7088425B2 (en) 1993-06-30 2005-04-08 Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US11/471,658 US7372543B2 (en) 1993-06-30 2006-06-21 Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US11/797,605 US7372544B2 (en) 1993-06-30 2007-05-04 Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US12/078,863 US7956984B2 (en) 1993-06-30 2008-04-07 Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16158893A JP3348467B2 (en) 1993-06-30 1993-06-30 Exposure apparatus and method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000369737A Division JP3348721B2 (en) 2000-12-05 2000-12-05 Lighting device and method
JP2000369736A Division JP2001201688A (en) 2000-12-05 2000-12-05 Exposure device, exposing method, illuminator and illuminating method

Publications (2)

Publication Number Publication Date
JPH0757986A true JPH0757986A (en) 1995-03-03
JP3348467B2 JP3348467B2 (en) 2002-11-20

Family

ID=15737989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16158893A Expired - Lifetime JP3348467B2 (en) 1993-06-30 1993-06-30 Exposure apparatus and method

Country Status (1)

Country Link
JP (1) JP3348467B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135165A (en) * 1993-11-11 1995-05-23 Nikon Corp Scanning aligner
JPH07183212A (en) * 1993-11-11 1995-07-21 Nikon Corp Scanning aligner and method therefor
EP0725296A2 (en) * 1995-02-02 1996-08-07 Nikon Corporation Projection exposure apparatus
EP0809814A1 (en) * 1995-02-15 1997-12-03 Ultratech Stepper Inc. Arbitrarily wide lens array with an image field to span the width of a substrate
KR980005341A (en) * 1996-06-25 1998-03-30 고노 시게오 Exposure equipment
US5894056A (en) * 1995-12-19 1999-04-13 Nikon Corporation Mask substrate, projection exposure apparatus equipped with the mask substrate, and a pattern formation method utilizing the projection exposure apparatus
US5900926A (en) * 1995-10-06 1999-05-04 Nikon Corporation Projection exposure apparatus
US5936712A (en) * 1997-02-10 1999-08-10 Nikon Corporation Exposure method and apparatus including focus control
US6049372A (en) * 1996-06-25 2000-04-11 Nikon Corporation Exposure apparatus
US6288772B1 (en) 1999-02-12 2001-09-11 Nikon Corporation Scanning exposure method and scanning type exposure apparatus
JP2001305747A (en) * 2000-02-18 2001-11-02 Nikon Corp Exposure device and exposure method
US6317196B1 (en) 1996-06-25 2001-11-13 Nikon Corporation Projection exposure apparatus
US6512573B2 (en) 1997-12-20 2003-01-28 Carl-Zeiss-Stiftung Projection exposure apparatus and exposure method
US6522386B1 (en) 1997-07-24 2003-02-18 Nikon Corporation Exposure apparatus having projection optical system with aberration correction element
US6654099B2 (en) 2000-01-27 2003-11-25 Nikon Corporation Scanning exposure apparatus, scanning exposure method and mask
US6873400B2 (en) 2000-02-02 2005-03-29 Nikon Corporation Scanning exposure method and system
WO2007066679A1 (en) * 2005-12-06 2007-06-14 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device manufacturing method
JP2007318069A (en) * 2005-12-06 2007-12-06 Nikon Corp Exposure apparatus, exposure method, device producing method, and projection optical system
JP2007329455A (en) * 2006-04-13 2007-12-20 Asml Holding Nv Optical system for improving efficiency in irradiation on patterning device
JP2008529094A (en) * 2005-02-03 2008-07-31 カール・ツァイス・エスエムティー・アーゲー Catadioptric projection objective with intermediate image
JP2008292761A (en) * 2007-05-24 2008-12-04 Canon Inc Exposure apparatus and method for manufacturing device
JP2008545153A (en) * 2005-07-01 2008-12-11 カール・ツァイス・エスエムティー・アーゲー Projection exposure apparatus having a plurality of projection objective lenses
JP2009258551A (en) * 2008-04-21 2009-11-05 Nikon Corp Lighting device, exposure device, exposure method, and device manufacturing method
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
KR20100106304A (en) 2008-01-21 2010-10-01 가부시키가이샤 니콘 Illuminating apparatus, exposure apparatus, exposure method and device manufacturing method
US7864293B2 (en) 2005-01-25 2011-01-04 Nikon Corporation Exposure apparatus, exposure method, and producing method of microdevice
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
US8159649B2 (en) 2006-02-16 2012-04-17 Nikon Corporation Exposure method, exposure apparatus, photomask and method for manufacturing photomask
JP2012220592A (en) * 2011-04-05 2012-11-12 V Technology Co Ltd Exposure device using micro lens array
JP2012242454A (en) * 2011-05-16 2012-12-10 V Technology Co Ltd Exposure equipment and shading plate
JP2013044969A (en) * 2011-08-24 2013-03-04 Canon Inc Projection optical system, exposure device and device manufacturing apparatus
US8456617B2 (en) 2007-01-25 2013-06-04 Nikon Corporation Exposure method, exposure device, and micro device manufacturing method
CN104166312A (en) * 2013-05-17 2014-11-26 上海微电子装备有限公司 Multi light source large view field spliced illumination system
JPWO2013088551A1 (en) * 2011-12-15 2015-04-27 キヤノン株式会社 Exposure apparatus and device manufacturing method
US10067325B2 (en) 2016-10-14 2018-09-04 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and article manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976018B (en) 2006-02-16 2013-01-30 株式会社尼康 Photo-mask and manufacturing method thereof

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135165A (en) * 1993-11-11 1995-05-23 Nikon Corp Scanning aligner
JPH07183212A (en) * 1993-11-11 1995-07-21 Nikon Corp Scanning aligner and method therefor
EP0725296A2 (en) * 1995-02-02 1996-08-07 Nikon Corporation Projection exposure apparatus
EP0725296A3 (en) * 1995-02-02 1997-04-23 Nippon Kogaku Kk Projection exposure apparatus
EP0809814A1 (en) * 1995-02-15 1997-12-03 Ultratech Stepper Inc. Arbitrarily wide lens array with an image field to span the width of a substrate
EP0809814A4 (en) * 1995-02-15 1998-05-06 Ultratech Stepper Inc Arbitrarily wide lens array with an image field to span the width of a substrate
US5900926A (en) * 1995-10-06 1999-05-04 Nikon Corporation Projection exposure apparatus
US5894056A (en) * 1995-12-19 1999-04-13 Nikon Corporation Mask substrate, projection exposure apparatus equipped with the mask substrate, and a pattern formation method utilizing the projection exposure apparatus
US6040096A (en) * 1995-12-19 2000-03-21 Nikon Corporation Mask substrate, projection exposure apparatus equipped with the mask substrate, and a pattern formation method utilizing the projection exposure apparatus
KR980005341A (en) * 1996-06-25 1998-03-30 고노 시게오 Exposure equipment
US6049372A (en) * 1996-06-25 2000-04-11 Nikon Corporation Exposure apparatus
US6570641B2 (en) 1996-06-25 2003-05-27 Nikon Corporation Projection exposure apparatus
US6317196B1 (en) 1996-06-25 2001-11-13 Nikon Corporation Projection exposure apparatus
US5936712A (en) * 1997-02-10 1999-08-10 Nikon Corporation Exposure method and apparatus including focus control
US6522386B1 (en) 1997-07-24 2003-02-18 Nikon Corporation Exposure apparatus having projection optical system with aberration correction element
US6512573B2 (en) 1997-12-20 2003-01-28 Carl-Zeiss-Stiftung Projection exposure apparatus and exposure method
US6288772B1 (en) 1999-02-12 2001-09-11 Nikon Corporation Scanning exposure method and scanning type exposure apparatus
US6654099B2 (en) 2000-01-27 2003-11-25 Nikon Corporation Scanning exposure apparatus, scanning exposure method and mask
US6873400B2 (en) 2000-02-02 2005-03-29 Nikon Corporation Scanning exposure method and system
JP2001305747A (en) * 2000-02-18 2001-11-02 Nikon Corp Exposure device and exposure method
JP4581262B2 (en) * 2000-02-18 2010-11-17 株式会社ニコン Exposure apparatus and exposure method
US8634060B2 (en) 2004-03-16 2014-01-21 Carl Zeiss Smt Gmbh Method for a multiple exposure, microlithography projection exposure installation and a projection system
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
US7864293B2 (en) 2005-01-25 2011-01-04 Nikon Corporation Exposure apparatus, exposure method, and producing method of microdevice
JP2008529094A (en) * 2005-02-03 2008-07-31 カール・ツァイス・エスエムティー・アーゲー Catadioptric projection objective with intermediate image
JP2012168550A (en) * 2005-07-01 2012-09-06 Carl Zeiss Smt Gmbh Projection light exposure facility provided with plural projection objective lenses
JP2008545153A (en) * 2005-07-01 2008-12-11 カール・ツァイス・エスエムティー・アーゲー Projection exposure apparatus having a plurality of projection objective lenses
EP1970944A1 (en) * 2005-12-06 2008-09-17 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device manufacturing method
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
JP2007318069A (en) * 2005-12-06 2007-12-06 Nikon Corp Exposure apparatus, exposure method, device producing method, and projection optical system
WO2007066679A1 (en) * 2005-12-06 2007-06-14 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device manufacturing method
EP1970944A4 (en) * 2005-12-06 2010-04-28 Nikon Corp Exposure apparatus, exposure method, projection optical system and device manufacturing method
US8159649B2 (en) 2006-02-16 2012-04-17 Nikon Corporation Exposure method, exposure apparatus, photomask and method for manufacturing photomask
US8654310B2 (en) 2006-02-16 2014-02-18 Nikon Corporation Exposure method, exposure apparatus, photomask and method for manufacturing photomask
JP2007329455A (en) * 2006-04-13 2007-12-20 Asml Holding Nv Optical system for improving efficiency in irradiation on patterning device
US8456617B2 (en) 2007-01-25 2013-06-04 Nikon Corporation Exposure method, exposure device, and micro device manufacturing method
JP2008292761A (en) * 2007-05-24 2008-12-04 Canon Inc Exposure apparatus and method for manufacturing device
US8520188B2 (en) 2008-01-21 2013-08-27 Nikon Corporation Illumination apparatus for efficiently gathering illumination light
KR20100106304A (en) 2008-01-21 2010-10-01 가부시키가이샤 니콘 Illuminating apparatus, exposure apparatus, exposure method and device manufacturing method
KR20190095518A (en) 2008-01-21 2019-08-14 가부시키가이샤 니콘 Illuminating apparatus, exposure apparatus, exposure method and device manufacturing method
JP2009258551A (en) * 2008-04-21 2009-11-05 Nikon Corp Lighting device, exposure device, exposure method, and device manufacturing method
JP2012220592A (en) * 2011-04-05 2012-11-12 V Technology Co Ltd Exposure device using micro lens array
JP2012242454A (en) * 2011-05-16 2012-12-10 V Technology Co Ltd Exposure equipment and shading plate
JP2013044969A (en) * 2011-08-24 2013-03-04 Canon Inc Projection optical system, exposure device and device manufacturing apparatus
US9229205B2 (en) 2011-08-24 2016-01-05 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and method of manufacturing device
JPWO2013088551A1 (en) * 2011-12-15 2015-04-27 キヤノン株式会社 Exposure apparatus and device manufacturing method
CN104166312A (en) * 2013-05-17 2014-11-26 上海微电子装备有限公司 Multi light source large view field spliced illumination system
US10067325B2 (en) 2016-10-14 2018-09-04 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and article manufacturing method
US10578846B2 (en) 2016-10-14 2020-03-03 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and article manufacturing method

Also Published As

Publication number Publication date
JP3348467B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
JP3348467B2 (en) Exposure apparatus and method
US6556278B1 (en) Exposure/imaging apparatus and method in which imaging characteristics of a projection optical system are adjusted
JP5071382B2 (en) Scanning exposure apparatus and microdevice manufacturing method
US20080165333A1 (en) Projection optical apparatus, exposure method and apparatus, photomask, and device and photomask manufacturing method
JP2007286580A (en) Scanning type exposure apparatus, method of manufacturing micro-device, mask, projection optical apparatus, and method of manufacturing mask
JP2001297975A (en) Aligner and method of exposure
KR101527234B1 (en) Projection optical apparatus, exposure method and apparatus, photomask, and device and photomask manufacturing method
TWI432914B (en) Projection optical apparatus, exposure method and apparatus, and device manufacturing method
JP3348721B2 (en) Lighting device and method
TWI426295B (en) Reflection-deflection type projection optical system, projection optical apparatus, and scanning aligner
JP3610597B2 (en) Exposure apparatus and method
JP3451721B2 (en) Projection optical apparatus, exposure apparatus having the same, and method of adjusting the same
JPH0685385B2 (en) Exposure method
JP4110606B2 (en) Scanning exposure apparatus and exposure method
JP2001201688A (en) Exposure device, exposing method, illuminator and illuminating method
JP3316710B2 (en) Exposure equipment
JP3316760B2 (en) Scanning exposure method
JP3341838B2 (en) Exposure equipment
JP2004012574A (en) Projection aligning optical system and aligner
JP2000277408A (en) Exposure system and exosing method
JP2008166650A (en) Scanning type exposure apparatus, method for manufacturing device and mask
JPH08124823A (en) Light exposure device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

EXPY Cancellation because of completion of term