JPH07183212A - Scanning aligner and method therefor - Google Patents

Scanning aligner and method therefor

Info

Publication number
JPH07183212A
JPH07183212A JP6232963A JP23296394A JPH07183212A JP H07183212 A JPH07183212 A JP H07183212A JP 6232963 A JP6232963 A JP 6232963A JP 23296394 A JP23296394 A JP 23296394A JP H07183212 A JPH07183212 A JP H07183212A
Authority
JP
Japan
Prior art keywords
substrate
projection
change
projection optical
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6232963A
Other languages
Japanese (ja)
Other versions
JP3477838B2 (en
Inventor
Masamitsu Yanagihara
政光 柳原
Susumu Mori
晋 森
Takeshi Naraki
剛 楢木
Masami Seki
昌美 関
Seiji Miyazaki
聖二 宮崎
Takeshi Narabe
毅 奈良部
Hiroshi Chiba
洋 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP23296394A priority Critical patent/JP3477838B2/en
Priority to KR1019940029510A priority patent/KR100416327B1/en
Publication of JPH07183212A publication Critical patent/JPH07183212A/en
Priority to US08/689,691 priority patent/US5625436A/en
Priority to US09/300,376 priority patent/USRE37361E1/en
Application granted granted Critical
Publication of JP3477838B2 publication Critical patent/JP3477838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To correct a transfer image deformed due to the change in the shape of substrate by the expansion or contraction of a photosensitive substrate within the title scanning exposure device for scanning a projection optical system comprising arrayed plural masks and the photosensitive substrate in the linear direction. CONSTITUTION:Parallel flat plate glasses 4a-4e are provided in an optical path between plural projection optical systems 3a-3e and a photosensitive substrate 5 arranged in the direction (Y direction) orthogonal to the scanning direction. Next, the projection magnifying power of the projection optical system is changed by a magnification control device 10 according to the expansion and contraction (change in shape) of the photosensitive substrate 5 as well as the parallel flat plate glasses are rotated by a driving device 12 so as to shift the optical axes AX1-AX5 in the X.Y direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型露光装置に関す
るものであり、特にプロセス処理によって伸縮等の変形
が生じた基板に対して良好な露光を行うことのできる走
査型露光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type exposure apparatus, and more particularly to a scanning type exposure apparatus capable of performing good exposure on a substrate which has been deformed by expansion and contraction due to process treatment. is there.

【0002】[0002]

【従来の技術】近年、パソコン、テレビ等の表示素子と
して、液晶表示基板が多用されるようになった。この液
晶表示基板は、ガラス基板上に透明薄膜電極をフォトリ
ソグラフィの手法で所望の形状にパターニングして作ら
れる。このリソグラフィのための装置として、マスク上
に形成された原画パターンを投影光学系を介してガラス
基板上のフォトレジスト層に露光する投影露光装置が用
いられている。これには、所謂ステップアンドリピート
方式やミラープロジェクション方式の露光装置がある。
2. Description of the Related Art In recent years, liquid crystal display substrates have been widely used as display elements for personal computers, televisions and the like. This liquid crystal display substrate is formed by patterning a transparent thin film electrode on a glass substrate into a desired shape by a photolithography method. As an apparatus for this lithography, there is used a projection exposure apparatus that exposes an original image pattern formed on a mask onto a photoresist layer on a glass substrate via a projection optical system. There are so-called step-and-repeat type and mirror projection type exposure apparatuses.

【0003】[0003]

【発明が解決しようとする課題】最近では液晶表示基板
の大面積化が要求されており、それに伴って上記の投影
露光装置においても露光領域の拡大が望まれている。こ
の露光領域の拡大の手段として、従来のステップアンド
リピート方式の露光装置やミラープロジェクション方式
の走査型露光装置に代えて、複数の投影光学系を備えて
走査露光を行う装置が考えられる。これは、例えば複数
の照明光学系を設けて各照明光学系から射出した光束で
マスク上の異なる領域を照明し、この異なる領域の像を
複数の投影光学系のそれぞれを介してガラス基板上の投
影領域に投影する。さらに言えば、光源から射出した光
束をフライアイレンズ等を含む光学系を介して光量を均
一化した後、視野絞りによって所望の形状に整形してマ
スクのパターン面上を照明する。このような構成の照明
光学系を複数配置し、複数の照明光学系のそれぞれから
射出された光束でマスク上の異なる小領域(照明領域)
をそれぞれ照明する。マスクを透過した光束は、それぞ
れ異なる投影光学系を介してガラス基板上の異なる投影
領域にマスクのパターン像を結像する。そして、マスク
とガラス基板とを同期して投影光学系に対して走査する
ことによって、マスク上のパターン領域の全面をガラス
基板上に転写する。
Recently, the liquid crystal display substrate is required to have a large area, and accordingly, the projection exposure apparatus is also required to have an enlarged exposure area. As a means for enlarging the exposure area, a device that performs scanning exposure with a plurality of projection optical systems is conceivable instead of the conventional step-and-repeat exposure device or mirror projection scanning exposure device. This is because, for example, a plurality of illumination optical systems are provided, and different areas on the mask are illuminated by the light beams emitted from the respective illumination optical systems, and the images of the different areas are projected on the glass substrate via each of the plurality of projection optical systems. Project to the projection area. More specifically, after the light flux emitted from the light source is made uniform in the amount of light through an optical system including a fly-eye lens or the like, it is shaped into a desired shape by a field stop to illuminate the pattern surface of the mask. A plurality of illumination optical systems having such a configuration are arranged, and different small areas (illumination areas) on the mask by the light beams emitted from each of the plurality of illumination optical systems.
Illuminate each. The light flux transmitted through the mask forms a pattern image of the mask on different projection regions on the glass substrate via different projection optical systems. Then, by synchronously scanning the mask and the glass substrate with respect to the projection optical system, the entire surface of the pattern area on the mask is transferred onto the glass substrate.

【0004】一般的に投影露光装置では、1枚のガラス
基板に対して所定のプロセス処理を施しながら何層にも
渡って原画パターンの露光を繰り返す。このプロセス処
理(特に加熱)によってガラス基板が伸縮し、初期の状
態から変形することになる。従来のステップアンドリピ
ート方式の露光装置では投影光学系は1つのみであり、
この投影光学系の投影倍率を変更するとともに、ステッ
ピング時のステージの停止位置を変更して隣接する転写
像どうしの間隔を変更することにより、ガラス基板の伸
縮を補正(倍率補正)すればよい。また、ミラープロジ
ェクション方式の露光装置では、投影光学系に対する原
板と感光基板との相対位置を走査露光中に連続的に変化
させることにより走査方向の倍率を補正し、投影光学系
の倍率を変更することにより走査方向に直交する方向の
倍率を補正すればよい。
Generally, in a projection exposure apparatus, exposure of an original image pattern is repeated over many layers while performing a predetermined process treatment on one glass substrate. This process treatment (particularly heating) causes the glass substrate to expand and contract and deform from the initial state. The conventional step-and-repeat type exposure apparatus has only one projection optical system,
The expansion / contraction of the glass substrate may be corrected (magnification correction) by changing the projection magnification of the projection optical system and changing the stop position of the stage during stepping to change the interval between the adjacent transfer images. Further, in a mirror projection type exposure apparatus, the magnification in the scanning direction is corrected by continuously changing the relative position of the original plate and the photosensitive substrate with respect to the projection optical system during scanning exposure, and the magnification of the projection optical system is changed. Therefore, the magnification in the direction orthogonal to the scanning direction may be corrected.

【0005】しかしながら、上記の如き走査型露光装置
においては複数の投影光学系を備えているため、上記の
如き従来の方法では基板の伸縮に対応することはできな
かった。本発明は上記問題点に鑑み、複数の投影光学系
を備えた露光装置であっても基板の伸縮に対して良好に
補正が可能な走査型露光装置を提供することを目的とす
る。
However, since the scanning type exposure apparatus as described above is provided with a plurality of projection optical systems, the conventional method as described above cannot cope with expansion and contraction of the substrate. SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a scanning type exposure apparatus capable of favorably correcting expansion and contraction of a substrate even with an exposure apparatus having a plurality of projection optical systems.

【0006】[0006]

【課題を解決するための手段】上記問題点解決のため本
発明では、光源からの光束を視野絞りを介して所定形状
に整形し、この視野絞りを介した光束でマスク(2)上
のパターン領域(2a)の一部分(M1〜M5)を照明
する複数の照明光学系(1a〜1e)と、複数の照明光
学系のそれぞれに対応して配置された複数の投影光学系
(3a〜3e)とを有し、複数の照明光学系によって照
明されたパターン領域の複数の一部分の像のそれぞれを
複数の投影光学系を介して基板(5)上の被投影領域
(5a)に投影するとともに、マスクと基板とを投影光
学系の投影倍率に応じた速度比で所定の方向(X方向)
に、投影光学系に対して移動することによってパターン
領域の全面を基板上に露光する走査型露光装置におい
て、予め、基板の形状の変化を求めて記憶する記憶手段
(11)と;形状の変化に応じて複数の投影光学系のう
ち少なくとも1つの投影倍率を変更する倍率変更手段
(10,20)と;投影倍率の変更に応じて、少なくと
も1つの投影光学系による一部分の像の位置を変更する
結像位置変更手段(4a〜4e,12)とを備えること
とした。
In order to solve the above problems, in the present invention, a light beam from a light source is shaped into a predetermined shape through a field stop, and the light beam passing through the field stop causes a pattern on a mask (2). A plurality of illumination optical systems (1a to 1e) for illuminating a part (M1 to M5) of the region (2a), and a plurality of projection optical systems (3a to 3e) arranged corresponding to each of the plurality of illumination optical systems. And projecting respective images of a plurality of portions of the pattern area illuminated by the plurality of illumination optical systems onto the projected area (5a) on the substrate (5) via the plurality of projection optical systems, A predetermined direction (X direction) between the mask and the substrate at a speed ratio according to the projection magnification of the projection optical system.
In a scanning type exposure apparatus that exposes the entire surface of a pattern area onto a substrate by moving with respect to a projection optical system, a storage unit (11) for obtaining and storing a change in the shape of the substrate in advance; Magnification changing means (10, 20) for changing the projection magnification of at least one of the plurality of projection optical systems according to the above; and the position of a part of the image by the at least one projection optical system according to the change of the projection magnification. Image forming position changing means (4a to 4e, 12).

【0007】また、形状の変化のうち所定の方向に直交
する方向(Y方向)の変化に応じて投影倍率を変更する
とともに直交する方向の像(P1〜P5)の位置を変更
し、形状の変化のうち移動する方向(X方向)の変化に
応じて移動する方向の像の位置を変更することとした。
さらに、形状の変化に応じてマスク(2)と基板(5)
の速度比を変更する速度比変更手段(7,14)をさら
に備えることとした。
Further, the projection magnification is changed according to the change in the direction (Y direction) orthogonal to the predetermined direction among the changes in the shape, and the positions of the images (P1 to P5) in the orthogonal directions are changed to change the shape. Among the changes, the position of the image in the moving direction is changed according to the change in the moving direction (X direction).
Further, the mask (2) and the substrate (5) are changed according to the change in shape.
It is decided to further include speed ratio changing means (7, 14) for changing the speed ratio.

【0008】複数の投影光学系(3a〜3e)は、所定
の方向に直交する方向(Y方向)に沿って、且つ隣合う
投影光学系どうし(3aと3b,3bと3c,3cと3
d,3dと3e)が所定の方向(X方向)に互いに変位
することにより、直交する方向(Y方向)に複数列(3
a,3c,3eと3b,3dの2列)配置されているこ
ととする。
The plurality of projection optical systems (3a to 3e) are adjacent to each other (3a and 3b, 3b and 3c, 3c and 3) along a direction (Y direction) orthogonal to a predetermined direction.
d, 3d and 3e) are displaced from each other in a predetermined direction (X direction), so that a plurality of columns (3
a, 3c, 3e and 3b, 3d).

【0009】また、結像位置変更手段(4a〜4e)は
複数の光軸(AX1〜AX5)それぞれの中に配置され
た同一の板厚を有する平行平板ガラスであり、複数の平
行平板ガラスはそれぞれ形状の変化に応じて光軸に対し
て異なる角度に変位することとした。或いは、結像位置
変更手段(4a〜4e)は複数の光軸(AX1〜AX
5)それぞれの中に配置された異なる板厚を有する平行
平板ガラスであり、複数の平行平板ガラスはそれぞれ形
状の変化に応じて光軸に対してほぼ同一の角度に変位す
ることとした。
Further, the image forming position changing means (4a-4e) is a parallel plate glass having the same plate thickness arranged in each of the plurality of optical axes (AX1 to AX5). It was decided to displace at different angles with respect to the optical axis according to changes in shape. Alternatively, the image forming position changing means (4a to 4e) is provided with a plurality of optical axes (AX1 to AX).
5) Parallel flat glass plates having different plate thicknesses are arranged in the respective parallel flat glass plates, and the plurality of parallel flat glass plates are displaced at substantially the same angle with respect to the optical axis according to the change in shape.

【0010】さらに基板(5)は、被投影領域(5a)
の近傍に所定の方向(X方向)に沿って配置された複数
のアライメントマーク(D,MA1〜MA5,PA1〜
PA5)を有し、また走査型露光装置は、投影光学系
(3a〜3e)に対して所定の位置関係で、アライメン
トマークの少なくとも一部を検出可能な位置に配置さ
れ、マスクおよび基板の移動中にアライメントマークを
検出するマーク検出手段(MM,PM,A1,A2)
と;マーク検出手段の検出結果に応じて投影光学系に対
するマスク又は基板の位置を補正する位置決め手段
(7,8,14,15,16)とをさらに備えることと
する。
Further, the substrate (5) has a projected area (5a).
A plurality of alignment marks (D, MA1 to MA5, PA1 to PA1) arranged along a predetermined direction (X direction) in the vicinity of
The scanning exposure apparatus has a PA 5) and is arranged at a position where at least a part of the alignment mark can be detected in a predetermined positional relationship with respect to the projection optical system (3a to 3e). Mark detection means (MM, PM, A1, A2) for detecting alignment marks inside
And; positioning means (7, 8, 14, 15, 16) for correcting the position of the mask or the substrate with respect to the projection optical system according to the detection result of the mark detecting means.

【0011】また、マーク検出手段(MM,PM,A
1,A2)によるアライメントマークの位置に応じて基
板の形状の変化を求めることとする。その他、複数の照
明光学系(1a〜1e)からの光束でマスク(2)上の
パターン領域(2a)の一部分(M1〜M5)を照明
し、照明された一部分の像を複数の投影光学系(3a〜
3e)を介して基板(5)上の被投影領域(5a)に投
影するとともに、マスクと基板とを投影光学系の投影倍
率に応じた速度比で所定の方向(X方向)に、投影光学
系に対して移動することによってマスクの全面(2a)
を基板上に露光する露光方法において、予め、基板の形
状の変化を求め、形状の変化に応じて複数の投影光学系
のうち少なくとも1つの投影倍率を変更し、投影倍率の
変更に応じて、少なくとも1つの投影光学系による一部
分の像(P1〜P5)の位置を変更することとする。
Further, mark detecting means (MM, PM, A
It is assumed that the change in the shape of the substrate is obtained according to the position of the alignment mark according to 1, A2). In addition, a part (M1 to M5) of the pattern area (2a) on the mask (2) is illuminated with light beams from the plurality of illumination optical systems (1a to 1e), and the illuminated part of the image is provided to the plurality of projection optical systems. (3a ~
3e) to the projected area (5a) on the substrate (5), and the mask and the substrate are projected in a predetermined direction (X direction) at a speed ratio according to the projection magnification of the projection optical system. The entire surface of the mask (2a) by moving with respect to the system
In the exposure method of exposing the substrate on the substrate, a change in the shape of the substrate is obtained in advance, at least one projection magnification of the plurality of projection optical systems is changed according to the change in the shape, and according to the change of the projection magnification, The positions of a part of the images (P1 to P5) formed by at least one projection optical system are changed.

【0012】この露光方法は、形状の変化のうち所定の
方向(X方向)に直交する方向(Y方向)の変化に応じ
て投影倍率を変更するとともに直交する方向の像の位置
を変更し、形状の変化のうち所定の方向の変化に応じて
所定の方向の像の位置を変更することとする。また、こ
の露光方法は、形状の変化に応じて速度比を変更するこ
とをさらに含むこととする。
According to this exposure method, the projection magnification is changed according to the change in the direction (Y direction) orthogonal to the predetermined direction (X direction) among the changes in shape, and the position of the image in the orthogonal direction is changed. The position of the image in the predetermined direction is changed according to the change in the predetermined direction among the changes in the shape. The exposure method further includes changing the speed ratio according to the change in shape.

【0013】[0013]

【作用】本発明では、基板の形状の変化に応じて複数の
投影光学系のうち少なくとも1つの投影倍率を変更する
とともに、この投影光学系による投影像の結像位置を変
更する構成としたため、基板の形状の変化に対して像を
良好に補正したマスクパターンの転写を行うことができ
る。
In the present invention, since the projection magnification of at least one of the plurality of projection optical systems is changed according to the change of the shape of the substrate, and the image formation position of the projection image by this projection optical system is changed, It is possible to transfer a mask pattern in which an image is properly corrected for a change in the shape of the substrate.

【0014】また、基板の形状の変化のうち所定の方向
に直交する方向の変化に応じて投影倍率を変更するとと
もに直交する方向の像の位置を変更し、形状の変化のう
ち移動する方向の変化に応じて移動する方向の像の位置
を変更するため、基板の形状の変化に応じた補正ができ
る。さらに、基板の形状の変化に応じてマスクと基板の
速度比を変更する速度比変更手段をさらに備えたため、
所定方向の基板の形状の変化に対して容易に補正が可能
となる。
Further, the projection magnification is changed according to the change in the direction orthogonal to the predetermined direction among the changes in the shape of the substrate, the position of the image in the orthogonal direction is changed, and the change in the direction of movement of the change in the shape is performed. Since the position of the image in the moving direction is changed according to the change, the correction can be performed according to the change in the shape of the substrate. Furthermore, since a speed ratio changing means for changing the speed ratio between the mask and the substrate according to the change in the shape of the substrate is further provided,
A change in the shape of the substrate in a predetermined direction can be easily corrected.

【0015】複数の投影光学系は、所定の方向に直交す
る方向に沿って、且つ隣合う投影光学系どうしが所定の
方向に互いに変位することにより、直交する方向に複数
列配置されているため、上記構成による基板の形状の変
化の補正が有効となる。また、結像位置変更手段は複数
の光軸それぞれの中に配置された同一の板厚を有する平
行平板ガラスであり、複数の平行平板ガラスはそれぞれ
形状の変化に応じて光軸に対して異なる角度に変位する
ため、像の位置の変更が容易となる。
The plurality of projection optical systems are arranged in a plurality of rows in the orthogonal direction by displacing the adjacent projection optical systems in the prescribed direction along the direction orthogonal to the prescribed direction. The correction of the change in the shape of the substrate by the above configuration is effective. Further, the image forming position changing means is a parallel flat plate glass having the same plate thickness arranged in each of the plurality of optical axes, and the plurality of parallel flat plate glasses are different from each other in accordance with the change in shape. Since the image is displaced at an angle, the position of the image can be easily changed.

【0016】或いは、結像位置変更手段は複数の光軸そ
れぞれの中に配置された異なる板厚を有する平行平板ガ
ラスであり、複数の平行平板ガラスはそれぞれ形状の変
化に応じて光軸に対してほぼ同一の角度に変位するた
め、像の位置の変更が容易となる。さらに基板は、被投
影領域の近傍に所定の方向に沿って配置された複数のア
ライメントマークを有し、また走査型露光装置は、投影
光学系に対して所定の位置関係で、アライメントマーク
の少なくとも一部を検出可能な位置に配置され、マスク
および基板の移動中にアライメントマークを検出するマ
ーク検出手段と;マーク検出手段の検出結果に応じて投
影光学系に対するマスク又は基板の位置を補正する位置
決め手段とをさらに備えるため、露光装置によって基板
の形状の変化を求めることが可能となる。
Alternatively, the image forming position changing means is a parallel flat plate glass having different plate thicknesses arranged in each of the plurality of optical axes, and the plurality of parallel flat plate glasses are respectively arranged with respect to the optical axis according to the change of the shape. Therefore, the position of the image can be easily changed. Further, the substrate has a plurality of alignment marks arranged in the vicinity of the projection region along a predetermined direction, and the scanning exposure apparatus has at least a predetermined alignment of the alignment marks with respect to the projection optical system. A mark detecting means which is arranged at a position where a part of the mask and the substrate can be detected and detects an alignment mark during movement of the mask and the substrate; Since the exposure apparatus further comprises means, it is possible to obtain a change in the shape of the substrate by the exposure apparatus.

【0017】また、マーク検出手段によるアライメント
マークの位置に応じて基板の形状の変化を求めるため、
基板の形状の変化を容易に求めることが可能となる。そ
の他、複数の照明光学系からの光束でマスク上のパター
ン領域の一部分を照明し、照明された一部分の像を複数
の投影光学系を介して基板上の被投影領域に投影すると
ともに、マスクと基板とを投影光学系の投影倍率に応じ
た速度比で所定の方向に、投影光学系に対して移動する
ことによってマスクの全面を基板上に露光する露光方法
において、予め、基板の形状の変化を求め、形状の変化
に応じて複数の投影光学系のうち少なくとも1つの投影
倍率を変更し、投影倍率の変更に応じて、少なくとも1
つの投影光学系による一部分の像の位置を変更するため
基板の形状の変化に対して像を良好に補正したマスクパ
ターンの転写を行うことができる。
Further, since the change in the shape of the substrate is obtained according to the position of the alignment mark by the mark detecting means,
It is possible to easily find the change in the shape of the substrate. In addition, a part of the pattern area on the mask is illuminated with light beams from a plurality of illumination optical systems, and an image of the illuminated part is projected onto a projected area on a substrate through a plurality of projection optical systems. In the exposure method of exposing the entire surface of the mask onto the substrate by moving the substrate and the substrate in a predetermined direction at a speed ratio according to the projection magnification of the projection optical system with respect to the projection optical system, the shape of the substrate is changed in advance. And changing the projection magnification of at least one of the plurality of projection optical systems according to the change of the shape, and changing at least 1 according to the change of the projection magnification.
Since the position of a part of the image is changed by the two projection optical systems, it is possible to transfer the mask pattern in which the image is properly corrected even when the shape of the substrate is changed.

【0018】この露光方法は、形状の変化のうち所定の
方向に直交する方向の変化に応じて投影倍率を変更する
とともに直交する方向の像の位置を変更し、形状の変化
のうち所定の方向の変化に応じて所定の方向の像の位置
を変更するため、基板の形状の変化に応じた補正ができ
る。また、この露光方法は、形状の変化に応じて速度比
を変更するため、所定方向の基板の形状の変化に対して
容易に補正ができる。
According to this exposure method, the projection magnification is changed in accordance with the change in the direction orthogonal to the predetermined direction among the changes in the shape, and the position of the image in the orthogonal direction is changed so that the predetermined direction is changed. Since the position of the image in the predetermined direction is changed in accordance with the change of, the correction can be made according to the change of the shape of the substrate. Further, in this exposure method, since the speed ratio is changed according to the change in the shape, it is possible to easily correct the change in the shape of the substrate in the predetermined direction.

【0019】[0019]

【実施例】図1は、本発明の実施例による走査型露光装
置の概略的な構成を示す図であり、図2は、図1に示す
露光装置の投影光学系を介した投影像の結像位置をシフ
トする制御系の構成を示すブロック図である。超高圧水
銀ランプ等の光源から射出した光束は、フライアイレン
ズ、照明視野絞り等を含む照明光学系1aによって所望
の形状に整形され、マスク2のパターン面上に視野絞り
の像を形成する。この装置には照明光学系1aと同様の
構成のものが複数配置されており、複数の照明光学系1
a〜1eのそれぞれから射出された光束はマスク2上の
異なる小領域(照明領域)M1〜M5をそれぞれ照明す
る。マスク2を透過した複数の光束は、それぞれ異なる
投影光学系3a〜3eを介して感光基板5上の異なる投
影領域P1〜P5にマスク2の照明領域M1〜M5のパ
ターン像を結像する。この場合、投影光学系3a〜3e
はいずれも等倍正立系とする。また、投影光学系3a〜
3eはそれぞれ倍率制御装置10を備えており、各投影
光学系の光学素子間の気体の圧力等を調整することによ
って投影倍率を変更する構成となっている。さらに、各
投影光学系3a〜3eと感光基板5との間の光路中には
平行平板ガラス4a〜4eがそれぞれ配置され、この平
行平板ガラス4a〜4eの光軸AX1〜AX5に対する
角度をそれぞれ変更することによって各投影光学系の光
軸をシフトさせ、感光基板5上での像の投影位置(投影
領域P1〜P5の位置)を変更する。感光基板5上の投
影領域P1〜P5は台形状であり、図3に示すようにY
方向(非走査方向)に沿って、隣合う領域どうし(例え
ば、P1とP2,P2とP3)が図のX方向(走査方
向)に所定量変位するように、且つ隣合う領域の端部ど
うし(破線で示す範囲)がY方向に重複するように(即
ち、Y方向に沿って2列に)配置される。よって、上記
複数の投影光学系3a〜3eも各投影領域P1〜P5の
配置に応じてX方向に所定量変位するとともにY方向に
重複して配置されている。また、複数の照明光学系1a
〜1eの配置は、マスク2上の照明領域が上記の投影領
域P1〜P5と同様の配置となるように配置される。そ
して、マスク2と感光基板5とを同期して、投影光学系
3a〜3eに対してX方向に走査することによって、マ
スク上のパターン領域2aの全面を感光基板上の露光領
域5aに転写する。
1 is a diagram showing a schematic structure of a scanning type exposure apparatus according to an embodiment of the present invention, and FIG. 2 is a view showing the formation of a projected image through a projection optical system of the exposure apparatus shown in FIG. It is a block diagram showing a configuration of a control system for shifting the image position. A light beam emitted from a light source such as an ultra-high pressure mercury lamp is shaped into a desired shape by an illumination optical system 1a including a fly-eye lens, an illumination field stop, etc., and an image of the field stop is formed on the pattern surface of the mask 2. In this device, a plurality of components having the same configuration as the illumination optical system 1a are arranged, and the plurality of illumination optical systems 1a are arranged.
The light fluxes emitted from a to 1e respectively illuminate different small areas (illumination areas) M1 to M5 on the mask 2. The plurality of light fluxes transmitted through the mask 2 form pattern images of the illumination areas M1 to M5 of the mask 2 on different projection areas P1 to P5 on the photosensitive substrate 5 via different projection optical systems 3a to 3e, respectively. In this case, the projection optical systems 3a to 3e
Both are assumed to be an equal-size erect system. In addition, the projection optical system 3a-
Each of 3e is provided with a magnification control device 10, and is configured to change the projection magnification by adjusting the pressure of gas between the optical elements of each projection optical system. Further, parallel plate glasses 4a to 4e are arranged in the optical paths between the projection optical systems 3a to 3e and the photosensitive substrate 5, and the angles of the parallel plate glasses 4a to 4e with respect to the optical axes AX1 to AX5 are changed. By doing so, the optical axis of each projection optical system is shifted, and the projection position of the image on the photosensitive substrate 5 (the positions of the projection areas P1 to P5) is changed. The projection areas P1 to P5 on the photosensitive substrate 5 have a trapezoidal shape, and as shown in FIG.
Along the direction (non-scanning direction) so that adjacent regions (for example, P1 and P2, P2 and P3) are displaced by a predetermined amount in the X direction (scanning direction) of the drawing, and between the ends of the adjacent regions. They are arranged so that (the range indicated by the broken line) overlaps in the Y direction (that is, in two rows along the Y direction). Therefore, the plurality of projection optical systems 3a to 3e are also displaced by a predetermined amount in the X direction according to the arrangement of the projection regions P1 to P5, and are also arranged overlapping in the Y direction. In addition, a plurality of illumination optical systems 1a
The arrangements 1e to 1e are arranged so that the illumination area on the mask 2 is the same as the above-mentioned projection areas P1 to P5. Then, the mask 2 and the photosensitive substrate 5 are synchronously scanned in the X direction with respect to the projection optical systems 3a to 3e to transfer the entire surface of the pattern region 2a on the mask to the exposure region 5a on the photosensitive substrate. .

【0020】感光基板5は基板ステージ6に載置されて
おり、基板ステージ6は一次元の走査露光を行うべく走
査方向に長いストロークを持った駆動装置7を有してい
る。また、ステージ6をY方向に微小量移動するための
短いストロークを持った駆動装置8をも有している。さ
らに、走査方向については高分解能および高精度の位置
測定装置(例えばレーザ干渉計)9を有する。
The photosensitive substrate 5 is placed on the substrate stage 6, and the substrate stage 6 has a driving device 7 having a long stroke in the scanning direction for performing one-dimensional scanning exposure. It also has a drive device 8 having a short stroke for moving the stage 6 by a small amount in the Y direction. Further, it has a high-resolution and high-accuracy position measuring device (for example, a laser interferometer) 9 in the scanning direction.

【0021】マスク2は不図示のマスクステージにより
支持される。このマスクステージも基板ステージ6と同
様に、走査方向に長く、走査方向に垂直な方向に短いス
トロークを有する駆動装置とステージの走査方向の位置
を検出する位置測定装置とを有する。さらに、基板ステ
ージとマスクステージの少なくとも一方には、マスクや
感光基板のローテーションを補正するための回転機構が
備えてある。
The mask 2 is supported by a mask stage (not shown). Like the substrate stage 6, this mask stage also has a drive device having a long stroke in the scanning direction and a short stroke in the direction perpendicular to the scanning direction, and a position measuring device for detecting the position of the stage in the scanning direction. Further, at least one of the substrate stage and the mask stage is provided with a rotation mechanism for correcting the rotation of the mask and the photosensitive substrate.

【0022】尚、マスク2と感光基板5(或いは、マス
クステージと基板ステージ6)は、後述の図10のよう
にキャリッジ上に一体に保持されて上記走査露光を行う
構成としてもよい。感光基板5およびマスク2にはそれ
ぞれアライメントマークDが設けられている。このアラ
イメントマークをそれぞれ検出する位置であって、露光
装置に対して所定の位置にアライメントセンサPM,M
Mがそれぞれ配置されている。アライメントセンサP
M,MMは、それぞれ少なくとも2個必要とし、それぞ
れ不図示の信号処理装置によってマークの位置を検出す
る。このアライメントマークDは、図4(a)に示すよ
うに、感光基板の転写領域5aまたはマスクのパターン
領域2aの近傍に、走査方向に沿ってほぼ連続的に設け
られたマークDy1 ,Dy2 (マークDyで代表する)
と、マークDyの両端部で互いに任意の間隔をおいてY
方向に設けられたマークDx11,Dx12,Dx21,Dx
22(マークDxで代表する)とで構成される。またアラ
イメントマークDは、図4(b)に示すような格子状の
マークの集合とする。このマークDにレーザ光を照射
し、マークからの回折光を検出することによってマーク
のセンサPM,MMに対する位置を求める。
The mask 2 and the photosensitive substrate 5 (or the mask stage and the substrate stage 6) may be integrally held on a carriage to perform the scanning exposure as shown in FIG. 10 described later. An alignment mark D is provided on each of the photosensitive substrate 5 and the mask 2. The alignment sensors PM, M are located at predetermined positions with respect to the exposure apparatus, which are positions for detecting the alignment marks.
M are arranged respectively. Alignment sensor P
At least two M and MM are required, and the position of the mark is detected by a signal processing device (not shown). As shown in FIG. 4A, the alignment marks D are marks Dy 1 and Dy 2 provided substantially continuously in the scanning direction in the vicinity of the transfer area 5a of the photosensitive substrate or the pattern area 2a of the mask. (Represented by Mark Dy)
And Y at arbitrary intervals at both ends of the mark Dy.
Marks Dx 11 , Dx 12 , Dx 21 , Dx provided in the direction
22 (represented by the mark Dx). The alignment mark D is a set of lattice-shaped marks as shown in FIG. The position of the mark with respect to the sensors PM and MM is obtained by irradiating the mark D with laser light and detecting the diffracted light from the mark.

【0023】マークDに照射されるレーザ光は図4
(c)に示すようなスリット状であり、マークDxを検
出するビームをBx、マークDyを検出するビームをB
yとする。尚、ビームByは破線で示すように一定の振
幅および周波数で振動するものとする。これらのビーム
Bx,Byによってマークから生じた回折光をアライメ
ントセンサPM,MM内の受光スリットを介してディテ
クタで検出し、電気信号に変換する。
The laser beam applied to the mark D is shown in FIG.
The beam has a slit shape as shown in (c), and the beam for detecting the mark Dx is Bx and the beam for detecting the mark Dy is B.
Let y. The beam By is assumed to vibrate with a constant amplitude and frequency as indicated by the broken line. Diffracted light generated from the mark by these beams Bx and By is detected by a detector through a light receiving slit in the alignment sensors PM and MM, and converted into an electric signal.

【0024】ビームBxによるマークDxの信号は、X
方向の位置測定装置9によって検出されたX方向の座標
値に応じた信号強度変化として図5(a)のような波形
として得られ、所定のアルゴリズム処理を行うことでマ
ークの中心位置をX方向の座標値で認識することができ
る。また、ビームByによるマークDyの信号は、ビー
ムの振動によって得られる、時間的に変化する信号強度
を、振動と同一の周波数で位相検波することにより、図
5(b)のようなY方向の位置の偏差に対する信号強度
の変化として得られる。強度変化を位相検波の前の段階
でAGC処理することにより、生信号の強度の大きさに
係わらず、Y方向の位置の偏差に応じた一定の強度分布
となる。
The signal of the mark Dx by the beam Bx is X
5A is obtained as a signal intensity change corresponding to the coordinate value in the X direction detected by the direction position measuring device 9, and the center position of the mark is set in the X direction by performing a predetermined algorithm process. It can be recognized by the coordinate values of. Further, the signal of the mark Dy by the beam By is subjected to phase detection of the signal intensity that changes with time, which is obtained by the vibration of the beam, at the same frequency as the vibration, so that the signal in the Y direction as shown in FIG. It is obtained as a change in signal strength with respect to position deviation. By performing the AGC process on the intensity change before the phase detection, a constant intensity distribution according to the deviation of the position in the Y direction is obtained regardless of the intensity of the raw signal.

【0025】以上のアライメントマーク及びアライメン
トセンサの構成により、次の手順で感光基板5およびマ
スク2のアライメントを行う。以下は感光基板のアライ
メントについて述べるが、マスクのアライメントについ
ても同様である。 感光基板5をステージ6上に載置し、2つのアライメ
ントセンサPMのそれぞれの検出範囲内にマークD
11,Dx12が位置するようにステージ6を移動する。
With the above arrangement of the alignment mark and the alignment sensor, the photosensitive substrate 5 and the mask 2 are aligned in the following procedure. The alignment of the photosensitive substrate will be described below, but the same applies to the alignment of the mask. The photosensitive substrate 5 is placed on the stage 6, and the marks D are placed in the respective detection ranges of the two alignment sensors PM.
The stage 6 is moved so that x 11 and Dx 12 are positioned.

【0026】マークとビームとを相対的に走査してマ
ークDx11,Dx12のX方向の位置を計測する。 次に、アライメントセンサPMの検出範囲内にマーク
Dx21,Dx22が位置するようステージを移動し、同様
にマークDx21,Dx22のX方向の位置を計測する。
The mark and the beam are relatively scanned to measure the positions of the marks Dx 11 and Dx 12 in the X direction. Next, the stage is moved so that the marks Dx 21 , Dx 22 are positioned within the detection range of the alignment sensor PM, and the positions of the marks Dx 21 , Dx 22 in the X direction are measured in the same manner.

【0027】この結果、各位置の差(Dx11−Dx21
と(Dx12−Dx22)の平均値が感光基板のX方向の伸
縮量となり、差(Dx11−Dx12),(Dx21−D
22)の平均値が基板の光軸周りの回転量となる。 計測した回転量に応じてステージを回転し、ローテー
ションを補正する。尚、このステージの回転は、基板ス
テージとマスクステージのそれぞれで行う構成であって
も、どちらか一方で感光基板とマスクの相対的な回転量
を補正する構成であってもよい。この場合、片方のステ
ージに回転機構を設ける必要がないという利点がある。
As a result, the difference between the positions (Dx 11 -Dx 21 )
And the average value of (Dx 12 -Dx 22 ) is the amount of expansion and contraction of the photosensitive substrate in the X direction, and the difference (Dx 11 -Dx 12 ), (Dx 21 -D)
The average value of x 22 ) is the rotation amount of the substrate around the optical axis. Rotate the stage according to the measured amount of rotation to correct the rotation. The rotation of the stage may be performed by the substrate stage and the mask stage, or the relative rotation amount of the photosensitive substrate and the mask may be corrected by either one of them. In this case, there is an advantage that it is not necessary to provide a rotating mechanism on one of the stages.

【0028】ローテーション補正後に再度マークの位
置を計測し、ローテーションのチェックとともに感光基
板のマスクに対するX方向の位置を求める。 次に、マークDyをアライメントセンサで検出しなが
らステージ6をX方向に移動する。マークDyについて
は図5(b)に示すような信号が得られるので、マーク
Dy1 ,Dy2 それぞれの信号の平均値が0になるよう
に駆動装置8によってステージ6のY方向の位置を制御
すればよい。
After the rotation correction, the mark position is measured again, and the rotation is checked and the position of the photosensitive substrate in the X direction with respect to the mask is obtained. Next, the stage 6 is moved in the X direction while detecting the mark Dy with the alignment sensor. A signal as shown in FIG. 5B is obtained for the mark Dy, and therefore the position of the stage 6 in the Y direction is controlled by the driving device 8 so that the average value of each signal of the marks Dy 1 and Dy 2 becomes 0. do it.

【0029】感光基板のX方向の位置によるY方向の伸
縮量は、マークDy1 とDy2 の検出信号の差をY方向
の距離に換算することによって逐次求めることができ
る。因にX方向の伸縮は、上記,で求められた値に
基づいて、感光基板の移動速度を設計値に対して変更す
ることで補正できる。この場合、マークDxが感光基板
の両端にしか配置されていないのでX方向の位置に応じ
た伸縮の補正を行うことはできないが、マークDxを3
ヶ所以上配置することで測定ポイントを増やし、それぞ
れのポイント間の伸縮量を計測するようにすれば逐次補
正に近いものが実現できる。
The amount of expansion / contraction in the Y direction depending on the position of the photosensitive substrate in the X direction can be sequentially obtained by converting the difference between the detection signals of the marks Dy 1 and Dy 2 into the distance in the Y direction. Incidentally, the expansion and contraction in the X direction can be corrected by changing the moving speed of the photosensitive substrate with respect to the design value based on the value obtained in the above. In this case, since the marks Dx are arranged only at both ends of the photosensitive substrate, it is impossible to correct the expansion and contraction according to the position in the X direction.
By arranging more than one place to increase the number of measurement points and measuring the amount of expansion and contraction between each point, it is possible to realize a near-successive correction.

【0030】以上の方法で求められた伸縮量は、図2に
示す制御装置11内のメモリに記憶される。そして、感
光基板5に対して露光を行う際には、制御装置11は、
メモリに記憶された伸縮量に基づいて倍率制御装置10
によって投影光学系3a〜3eの倍率を変更するととも
に、駆動装置12に指令を送り平行平板ガラス4a〜4
eを駆動して光軸をシフトする。これは、倍率の変更に
よって図3に破線で示す投影領域の重複部分の位置関係
が変化し、感光基板に対する露光量が不均一になるた
め、投影領域の位置関係を初期の状態に戻すものであ
る。投影光学系の倍率を変更したときの複数の投影領域
の位置関係の変化について図7,9を参照して説明す
る。
The expansion / contraction amount obtained by the above method is stored in the memory in the control device 11 shown in FIG. Then, when the photosensitive substrate 5 is exposed, the control device 11
Magnification control device 10 based on the expansion / contraction amount stored in the memory
The projection optical systems 3a to 3e are changed in magnification by the command, and a command is sent to the driving device 12 to cause the parallel flat glass plates 4a to 4e.
Drive e to shift the optical axis. This is because the positional relationship of the overlapping portion of the projection area shown by the broken line in FIG. 3 changes due to the change of the magnification and the exposure amount on the photosensitive substrate becomes non-uniform, so that the positional relationship of the projection area is returned to the initial state. is there. A change in the positional relationship between the plurality of projection areas when the magnification of the projection optical system is changed will be described with reference to FIGS.

【0031】図7で二点鎖線で示す領域は投影光学系3
a〜3eの投影倍率が初期の状態での投影領域P1〜P
5を表し、実線で示す領域は投影光学系の投影倍率を変
更した状態での投影領域を表す。尚、説明を簡単にする
ため、投影領域の形状は図1とは異なり、矩形状のもの
とする。初期の倍率のときは、各投影領域のY方向の長
さはL、X方向の長さはWであり、各投影領域の中心ど
うし(例えばP1とP2)のY方向の間隔はP、X方向
の間隔はBである。この状態ではY方向の不要なオーバ
ーラップηは無く、同様にX方向の投影領域の位置関係
も所定の状態に設定されている。このため、図9(a)
に示すように格子状のパターンが正確に転写される。
The area indicated by the chain double-dashed line in FIG. 7 is the projection optical system 3.
Projection areas P1 to P in the initial state of projection magnifications a to 3e
5, the area indicated by the solid line represents the projection area in the state where the projection magnification of the projection optical system is changed. Note that, for simplicity of explanation, the shape of the projection area is different from that of FIG. 1 and is rectangular. At the initial magnification, the length of each projection region in the Y direction is L, the length in the X direction is W, and the distance between the centers of the projection regions (for example, P1 and P2) in the Y direction is P, X. The distance in the direction is B. In this state, there is no unnecessary overlap η in the Y direction, and similarly, the positional relationship of the projection regions in the X direction is also set to a predetermined state. Therefore, FIG. 9 (a)
The grid pattern is accurately transferred as shown in FIG.

【0032】一方、投影光学系の投影倍率を初期の倍率
のM倍に変更すると、各投影領域のY方向の長さはL×
M、X方向の長さはW×Mとなるが、各投影領域の中心
どうしの間隔はP,Bのままである。すると、各投影領
域どうしの位置関係が変化し(例えば辺の間隔が“b”
から“Mb−κ”、又は“b−(M−1)W”にな
る)、Y,Xの各方向に次式
On the other hand, when the projection magnification of the projection optical system is changed to M times the initial magnification, the length of each projection area in the Y direction is L ×.
The lengths in the M and X directions are W × M, but the distance between the centers of the projection regions remains P and B. Then, the positional relationship between the projection areas changes (for example, the side spacing is “b”).
To “Mb−κ” or “b− (M−1) W”), and the following equations in each of Y and X directions:

【0033】[0033]

【数1】 [Equation 1]

【0034】[0034]

【数2】 [Equation 2]

【0035】で表されるオーバーラップη、ずれκが生
じる。このため、図9(a)に示す格子状のパターン
は、図9(b)に示すように、オーバーラップηとずれ
κを含んだ像として転写されることになる。そこで、こ
のオーバーラップとずれを補正するため、投影光学系の
倍率の変更に応じて各投影領域の間隔も変更することと
する。尚、この補正は基本的に、投影領域の大きさ、間
隔が補正前と補正後とで相似となるようにする。この補
正のための構成について、図2,図6,図12を参照し
て投影領域の結像位置の補正について説明する。
An overlap η and a shift κ represented by Therefore, the lattice-shaped pattern shown in FIG. 9A is transferred as an image including the overlap η and the shift κ, as shown in FIG. 9B. Therefore, in order to correct the overlap and the shift, the interval between the projection regions is also changed according to the change of the magnification of the projection optical system. Note that this correction is basically performed so that the size and interval of the projection area are similar before and after correction. With respect to the configuration for this correction, the correction of the image forming position of the projection area will be described with reference to FIGS.

【0036】図6は、本発明の実施例による感光基板の
伸縮に応じた光軸の補正の状態を示す図である。図1と
同一の部材には同一の符号を付してある。平行平板ガラ
ス4a〜4eは、いずれもほぼ同一の板厚を有してお
り、同一の回転角における光軸AX1〜AX5のシフト
量は同一である。また、平行平板ガラスの回転角が0°
の場合に、感光基板5上で光軸AX1〜AX5が投影さ
れる位置をそれぞれα,β,γ,δ,εとする。この位
置α,β,γ,δ,εは、感光基板が伸縮する前のパタ
ーンの形成された位置と考えることができる。
FIG. 6 is a diagram showing a state of correction of the optical axis according to expansion and contraction of the photosensitive substrate according to the embodiment of the present invention. The same members as those in FIG. 1 are designated by the same reference numerals. The parallel plate glasses 4a to 4e have substantially the same plate thickness, and the shift amounts of the optical axes AX1 to AX5 at the same rotation angle are the same. Moreover, the rotation angle of the parallel flat glass is 0 °.
In this case, the positions where the optical axes AX1 to AX5 are projected on the photosensitive substrate 5 are α, β, γ, δ, ε, respectively. The positions α, β, γ, δ, ε can be considered as positions where the pattern is formed before the photosensitive substrate expands and contracts.

【0037】今、例えば感光基板5がY方向に均一にΔ
p(ppm)伸びている場合を考える。つまり、感光基板
が伸縮する前の予め形成されたパターンの位置α,β,
γ,δ,εは、感光基板の伸びによってそれぞれ位置
α′,β′,γ′,δ′,ε′に変位しているものとす
る。本実施例では、感光基板の伸縮に応じて投影光学系
の倍率を変更するとともに、倍率の変化量に応じて光軸
をシフトする。感光基板は均一に伸びているため、各位
置の変位量は感光基板の中心からの距離に比例し、従っ
て光軸をシフトさせる量も感光基板の中心からの距離に
比例する。即ち、位置α,β,γ,δ,εそれぞれの間
隔をlとすると、各位置の変位量|α′−α|,|β′
−β|,|γ′−γ|,|δ−δ′|,|ε−ε′|
は、それぞれ2Δl,Δl,0,Δl,2Δlとなる。
また、Δl=l×Δp/106 となる。
Now, for example, the photosensitive substrate 5 is uniformly Δ in the Y direction.
Consider the case where p (ppm) is increasing. That is, the positions α, β of the preformed pattern before the photosensitive substrate expands and contracts,
It is assumed that γ, δ, and ε are displaced to the positions α ′, β ′, γ ′, δ ′, and ε ′, respectively, due to the elongation of the photosensitive substrate. In this embodiment, the magnification of the projection optical system is changed according to the expansion and contraction of the photosensitive substrate, and the optical axis is shifted according to the change amount of the magnification. Since the photosensitive substrate extends uniformly, the amount of displacement at each position is proportional to the distance from the center of the photosensitive substrate, and therefore the amount by which the optical axis is shifted is also proportional to the distance from the center of the photosensitive substrate. That is, assuming that the intervals between the positions α, β, γ, δ, ε are l, the displacements at each position | α'-α |, | β '
−β |, | γ′−γ |, | δ−δ ′ |, | ε−ε ′ |
Are 2Δl, Δl, 0, Δl, 2Δl, respectively.
Also, Δl = 1 × Δp / 10 6 .

【0038】さて、伸びた感光基板5上にさらにパター
ンを重ねて形成する場合、投影光学系3a〜3eの投影
倍率をそれぞれΔp(ppm)拡大する。これによって必
要となる光軸のシフト量は、光軸AX1,AX5が次式
When a pattern is further formed on the extended photosensitive substrate 5, the projection magnification of each of the projection optical systems 3a to 3e is increased by Δp (ppm). As a result, the optical axis shifts required for the optical axes AX1 and AX5 are as follows.

【0039】[0039]

【数3】 [Equation 3]

【0040】また光軸AX2,AX4が次式The optical axes AX2 and AX4 are given by

【0041】[0041]

【数4】 [Equation 4]

【0042】である。ここで、平行平板ガラスの回転に
よる光軸のシフト量Δl(mm)は、平行平板ガラスの回
転角(微小角)をθ(rad)、板厚をt(mm)、屈折率
をnとしたとき、次式
It is Here, the shift amount Δl (mm) of the optical axis due to the rotation of the parallel flat plate glass is represented by the rotation angle (small angle) of the parallel flat plate glass θ (rad), the plate thickness t (mm), and the refractive index n. When,

【0043】[0043]

【数5】 [Equation 5]

【0044】で近似できる。このため、θを次式Can be approximated by Therefore, θ is given by

【0045】[0045]

【数6】 [Equation 6]

【0046】として、平行平板ガラス4a〜4eをそれ
ぞれ回転角2θ,θ,0,−θ,−2θ(図のRの方向
を正とする)だけ回転することによって光軸AX1〜A
X5の投影位置を位置α′,β′,γ′,δ′,ε′に
一致させる。以上によって、感光基板のY方向の伸びに
応じた投影像の補正(結像位置の補正)ができる。ま
た、例えば図12に示すように、厚さt=3(mm),屈
折率n=1.74の場合、傾斜角θ=1.0 (mrad)傾けるこ
とにより、光軸AXはΔl=1.3 (μm)シフトし、投
影光学系が等倍であれば、感光基板上で1.3 (μm)だ
け結像位置がシフトする。
As the parallel flat plate glasses 4a to 4e are rotated by rotation angles 2θ, θ, 0, -θ, -2θ (the direction of R in the figure is positive), the optical axes AX1 to AX1.
The projected position of X5 is made to coincide with the positions α ', β', γ ', δ', ε '. As described above, it is possible to correct the projected image (correct the image forming position) according to the expansion of the photosensitive substrate in the Y direction. Further, for example, as shown in FIG. 12, when the thickness t = 3 (mm) and the refractive index n = 1.74, the optical axis AX is shifted by Δl = 1.3 (μm) by tilting the inclination angle θ = 1.0 (mrad). If the projection optical system has the same magnification, the image forming position shifts by 1.3 (μm) on the photosensitive substrate.

【0047】そして、図2に示すように、制御装置11
はこのシフト量Δlに基づいて駆動装置12によって平
行平板ガラス4a〜4eを回転して結像位置を変更す
る。ところで、感光基板の伸縮がY方向の中心に対して
均一でない場合、即ち感光基板に非線形な伸縮が生じて
いる場合は、感光基板上の位置毎のずれを求めてメモリ
に記憶するようにする。例えば、別のパターン位置検査
装置を用いて感光基板5上に形成された任意のパターン
の位置を求め、このパターンの位置の設計位置からのず
れを求める。そして、感光基板5上の位置における伸縮
量を求めて制御装置11等に設けられたメモリに記憶す
る。実際の露光の際には、伸縮量に応じて各投影光学系
3a〜3eの投影倍率を変更するとともに、倍率の変更
量(言い換えれば、伸縮量)に応じた回転角だけ平行平
板ガラス4a〜4eを回転させる。また、感光基板のX
方向の任意の位置毎の感光基板の伸縮を補正する場合
は、走査露光中に投影光学系の倍率と平行平板ガラスの
回転角とを逐次制御するようにすればよい。しかしなが
ら、倍率や回転角の制御が感光基板の走査速度に追従し
ない場合は、感光基板の伸縮量をX方向に関して平均
し、この平均した伸縮量に基づいて倍率と回転角の制御
を行うようにすればよい。
Then, as shown in FIG.
On the basis of this shift amount Δl, the driving device 12 rotates the parallel plate glasses 4a to 4e to change the image forming position. By the way, when the expansion / contraction of the photosensitive substrate is not uniform with respect to the center in the Y direction, that is, when the nonlinear expansion / contraction of the photosensitive substrate occurs, the shift for each position on the photosensitive substrate is obtained and stored in the memory. . For example, the position of an arbitrary pattern formed on the photosensitive substrate 5 is obtained by using another pattern position inspection device, and the deviation of the position of this pattern from the design position is obtained. Then, the expansion / contraction amount at the position on the photosensitive substrate 5 is obtained and stored in the memory provided in the control device 11 or the like. At the time of actual exposure, the projection magnification of each projection optical system 3a to 3e is changed according to the expansion / contraction amount, and the parallel flat plate glass 4a to Rotate 4e. In addition, X of the photosensitive substrate
To correct the expansion and contraction of the photosensitive substrate at each arbitrary position in the direction, the magnification of the projection optical system and the rotation angle of the parallel flat plate glass may be sequentially controlled during scanning exposure. However, when the control of the magnification and the rotation angle does not follow the scanning speed of the photosensitive substrate, the expansion and contraction amounts of the photosensitive substrate are averaged in the X direction, and the magnification and the rotation angle are controlled based on the averaged expansion and contraction amount. do it.

【0048】上記の実施例では、板厚がほぼ同一の平行
平板ガラスを用いることとしたが、感光基板の伸縮が中
心に対して均一な場合には異なる板厚の平行平板ガラス
を用いることもできる。つまり、上記の式4の通り、シ
フト量は板厚に比例するため、平行平板ガラス4b,4
dの板厚をt,4a,4eの板厚を2tとすれば、各平
行平板ガラスの回転角の大きさは同一となる。このた
め、平行平板ガラスの駆動装置12の構成が簡素化され
ることになる。
In the above-mentioned embodiment, the parallel flat plate glass having substantially the same plate thickness is used, but when the expansion and contraction of the photosensitive substrate is uniform with respect to the center, the parallel flat plate glass having different plate thickness may be used. it can. That is, since the shift amount is proportional to the plate thickness as in the above formula 4 , the parallel plate glasses 4b and 4b
If the plate thickness of d is t, the plate thickness of 4a, and the plate thickness of 4e are 2t, the size of the rotation angle of each parallel flat plate glass is the same. For this reason, the structure of the driving device 12 for the parallel plate glass is simplified.

【0049】ところで、上記実施例の場合は、X,Y両
方向に対して均等に倍率の変更を行う例を示したが、感
光基板の伸縮は方向によって異なる場合もある。そのた
め、図8に示すように、Y方向にM1 、X方向にM2
倍率変更を行う。これは、投影光学系3a〜3eの倍率
を変更するのに加えて、X方向の走査露光の際のマスク
2と感光基板5との相対速度を補正することにより行う
ことができる。つまり、例えば投影光学系3a〜3eの
倍率をM1 だけ変更し、M1 とM2 との差については、
マスクと感光基板の移動速度の差として少なくとも一方
の移動速度を加速又は減速する。
By the way, in the above-mentioned embodiment, the example in which the magnification is changed uniformly in both the X and Y directions has been shown, but the expansion and contraction of the photosensitive substrate may be different depending on the direction. Therefore, as shown in FIG. 8, the magnification is changed to M 1 in the Y direction and M 2 in the X direction. This can be performed by changing the magnifications of the projection optical systems 3a to 3e and correcting the relative speed between the mask 2 and the photosensitive substrate 5 during scanning exposure in the X direction. That is, for example, the magnification of the projection optical system 3a~3e changed by M 1, the difference between M 1 and M 2 are
At least one moving speed is accelerated or decelerated as a difference in moving speed between the mask and the photosensitive substrate.

【0050】本発明の走査型露光装置の変形例を図10
に示す。この装置は、図1に示す装置と同様の機能を持
つ部材については同一の符号を付してある。図1に示す
装置と異なる点は以下の通りである。即ち、マスク2と
感光基板とを一体に走査移動可能なキャリッジ17を備
えている。また、マスク2がマスクテーブル6上に載置
されており、このマスクテーブル6をモータ等の駆動装
置14,15,16によって図のX,Y方向及び照明光
学系の光軸に対する回転方向(θ方向)に駆動すること
により、マスク2のX,Y,θ方向の位置を制御する。
そして、これらマスクステージ13及びキャリッジ17
は、レーザ干渉測長器等の測長装置18,19によって
それぞれX方向の位置が検出される。
A modification of the scanning type exposure apparatus of the present invention is shown in FIG.
Shown in. In this device, members having the same functions as those of the device shown in FIG. 1 are designated by the same reference numerals. Differences from the device shown in FIG. 1 are as follows. That is, the carriage 17 is provided with which the mask 2 and the photosensitive substrate can be integrally scanned and moved. Further, the mask 2 is placed on the mask table 6, and the mask table 6 is driven by driving devices 14, 15, 16 such as a motor in the X and Y directions in the drawing and the rotation direction (θ) with respect to the optical axis of the illumination optical system. By driving the mask 2 in the X direction, the position of the mask 2 in the X, Y, and θ directions is controlled.
Then, the mask stage 13 and the carriage 17
The respective positions in the X direction are detected by length measuring devices 18 and 19 such as a laser interference length measuring device.

【0051】さらに、投影光学系3a〜3eが備える倍
率制御装置20としては、図11に示すように、各投影
光学系内に曲率半径が比較的大きな2枚の平凹レンズ3
0a,30bと両凸レンズ30cとを組み合わせて構成
し、両凸レンズ30cを光軸AXの方向に移動すること
により像高を変化させる構成となっている。例えば、曲
率半径R=5000(mm),屈折率n=1.74のレンズを組み
合わせ、両凸レンズを±68(μm)移動する場合、±
20ppmの倍率調整(像高調整)が可能となる。
Further, as shown in FIG. 11, the magnification control device 20 included in the projection optical systems 3a to 3e has two plano-concave lenses 3 each having a relatively large radius of curvature in each projection optical system.
0a, 30b and the biconvex lens 30c are combined, and the image height is changed by moving the biconvex lens 30c in the direction of the optical axis AX. For example, when a lens having a radius of curvature R = 5000 (mm) and a refractive index n = 1.74 is combined and a biconvex lens is moved by ± 68 (μm),
Magnification adjustment (image height adjustment) of 20 ppm is possible.

【0052】また、マスク2及び感光基板5にはそれぞ
れアライメントマークMA1,MA2及びアライメント
マークPA1,PA2が設けられており、マスク2の上
方に設けられたアライメントセンサA1,A2によって
各マークの位置が検出される。このアライメントセンサ
A1,A2は、マスク2及び配列の両端部の投影光学系
3a,3eを介して感光基板5上のアライメントマーク
PA1,PA2を検出する構成となっており、マスク2
と感光基板5との相対位置関係を検出することができ
る。そして、検出した相対位置関係に基づいてマスク2
と感光基板5とのX,Y方向及び回転方向(θ方向)の
位置ずれを求め、駆動装置14,15,16を駆動して
マスク2と感光基板5との位置決めを行う。
Alignment marks MA1 and MA2 and alignment marks PA1 and PA2 are provided on the mask 2 and the photosensitive substrate 5, respectively, and the position of each mark is determined by the alignment sensors A1 and A2 provided above the mask 2. To be detected. The alignment sensors A1 and A2 are configured to detect the alignment marks PA1 and PA2 on the photosensitive substrate 5 via the mask 2 and the projection optical systems 3a and 3e at both ends of the array.
The relative positional relationship between the photosensitive substrate 5 and the photosensitive substrate 5 can be detected. Then, based on the detected relative positional relationship, the mask 2
The positional deviation between the photosensitive substrate 5 and the photosensitive substrate 5 in the X and Y directions and the rotational direction (θ direction) is obtained, and the driving devices 14, 15 and 16 are driven to position the mask 2 and the photosensitive substrate 5.

【0053】マスクと感光基板の倍率誤差(即ち、感光
基板の伸縮)は、上記アライメントセンサA1,A2を
用いて行う。例えば、2組のアライメントマークMA1
とPA1,MA2とPA2の位置を検出し、マークMA
1とMA2の距離と、マークPA1とPA2の距離との
比から倍率を求める。つまり、図10に示すようにY方
向に沿って配置された2組以上のアライメントマークM
A1とPA1,MA2とPA2を検出することによりY
方向の倍率(M1 )を求め、同様にX方向に沿って配置
された2組以上のアライメントマークMA2とPA2,
MA3とPA3を検出することによりX方向の倍率(M
2 )を求めることができる。
A magnification error between the mask and the photosensitive substrate (that is, expansion / contraction of the photosensitive substrate) is performed by using the alignment sensors A1 and A2. For example, two sets of alignment marks MA1
And the positions of PA1, MA2 and PA2 are detected and the mark MA
The magnification is obtained from the ratio of the distance between 1 and MA2 and the distance between the marks PA1 and PA2. That is, as shown in FIG. 10, two or more sets of alignment marks M arranged along the Y direction.
Y is detected by detecting A1 and PA1 and MA2 and PA2.
The magnification (M 1 ) in the direction is obtained, and two or more sets of alignment marks MA2 and PA2 similarly arranged in the X direction
By detecting MA3 and PA3, the magnification in the X direction (M
2 ) You can ask.

【0054】そして、求めた倍率に基づいて各投影光学
系による投影領域の結像位置をY方向にM1 、X方向に
2 だけ補正するとともに、平行平板ガラス4a〜4e
を回転する。投影領域の結像位置を変更した後、キャリ
ッジ17を走査して露光する際には、駆動装置14〜1
6を駆動してマスクステージ13を移動し、マスクと感
光基板の投影光学系に対する速度差がV×(M2 −1)
となるように走査露光を行う。これは、上述のX方向と
Y方向とで基板の伸縮量が異なる場合の例と同様であ
る。
[0054] Then, the corrected only M 2 to M 1, X-direction image forming position of the projection area by the projection optical system in the Y direction based on the magnification calculated, parallel flat glass 4a~4e
To rotate. When the carriage 17 is scanned and exposed after changing the image forming position of the projection area, the driving devices 14 to 1 are used.
6 is moved to move the mask stage 13 so that the speed difference between the mask and the photosensitive substrate with respect to the projection optical system is V × (M 2 −1).
Scanning exposure is performed so that This is the same as the case where the expansion and contraction amount of the substrate is different between the X direction and the Y direction.

【0055】尚、図1に示す装置と図10に示す装置に
おける構成の違いは、それぞれ相互に交換して構成され
ていても本発明の実施には何ら不都合はない。上記実施
例では、複数の照明光学系のそれぞれが複数の投影光学
系のそれぞれに光束を供給する構成としたが、1つの照
明光学系からの光束を複数の光束に分割して複数の投影
光学系のそれぞれに供給する構成であってもよい。
It should be noted that the difference in configuration between the apparatus shown in FIG. 1 and the apparatus shown in FIG. 10 does not cause any inconvenience in the practice of the present invention even if they are constructed by mutually exchanging them. In the above-described embodiment, each of the plurality of illumination optical systems supplies the light flux to each of the plurality of projection optical systems. However, the light flux from one illumination optical system is divided into a plurality of light fluxes to obtain a plurality of projection optical systems. It may be configured to supply to each of the systems.

【0056】また、アライメントセンサについてはアラ
イメントマークからの回折光を検出する方式としたが、
正反射光を検出する方式としてもよく、この場合は格子
状のアライメントマークでなく、連続したバーマークと
してもよい。特に、マークDxについては近接した複数
本のマーク群になっていてもよい。さらに、図1に示す
装置においては、前述したビームByの振動について
は、ビームそのものを振動させる手段の他に、ビームは
振動させずアライメントセンサ内の受光スリットを振動
させる手段もある。また、図4(c)に示されたレーザ
ビームBx,Byはお互いに分離された配置となってい
るが、受光系により分離される構成であれば、お互いが
重なった十字ビームになっていてもよい。
Further, the alignment sensor has a system of detecting the diffracted light from the alignment mark,
A method of detecting specular reflection light may be used, and in this case, continuous bar marks may be used instead of the grid-shaped alignment marks. In particular, the mark Dx may be a group of a plurality of adjacent marks. Further, in the apparatus shown in FIG. 1, for the above-described vibration of the beam By, in addition to the means for vibrating the beam itself, there is also means for vibrating the light receiving slit in the alignment sensor without vibrating the beam. Further, the laser beams Bx and By shown in FIG. 4C are arranged so as to be separated from each other, but if they are separated by the light receiving system, they are cross beams that overlap each other. Good.

【0057】また、Y方向の測定を振動ビームによる波
形を位相検波することで得ることとしたが、その他の手
法として、ビームを振動させない固定ビームとしてマー
クによる回折光もしくは反射光を2分割のセンサにて受
光し、両センサの信号強度比を電気的もしくはソフト的
に得ることにより、図5(b)のような位置情報として
得る手法もある。2つのセンサの電気的信号強度をA,
Bとすると、(A−B)/(A+B)として得ることで
信号強度に依存しない。
The measurement in the Y direction was obtained by phase-detecting the waveform of the oscillating beam. As another method, a fixed beam that does not oscillate the beam is used as a fixed beam, and the diffracted light or reflected light by the mark is divided into two sensors. There is also a method of obtaining the position information as shown in FIG. 5 (b) by receiving the light at, and electrically or software obtaining the signal intensity ratio of both sensors. The electrical signal strength of the two sensors is A,
If it is B, it is obtained as (A−B) / (A + B) and does not depend on the signal strength.

【0058】さらに、本実施例においては、マスクに形
成された2つのマークDyの間隔、および感光基板に形
成された2つのマークDyの間隔についての制約は特に
ないが、両間隔を同じにすることにより、第1層目の露
光に関してマスクのアライメントマークをそのまま感光
基板に転写し、そのパターンを第2層目以降の感光基板
のアライメントマークとして用いることができる。この
場合、3層以上の露光が必要な場合に2層目以降の露光
におけるマスクのアライメントマークの転写を防ぐた
め、視野絞りと共役な位置にシャッターを設ければよ
い。
Furthermore, in the present embodiment, there is no particular restriction on the distance between the two marks Dy formed on the mask and the distance between the two marks Dy formed on the photosensitive substrate, but both distances are the same. Thus, the alignment mark of the mask for the exposure of the first layer can be directly transferred to the photosensitive substrate, and the pattern can be used as the alignment mark of the photosensitive substrate of the second and subsequent layers. In this case, when exposure of three or more layers is required, a shutter may be provided at a position conjugate with the field stop in order to prevent transfer of the alignment mark of the mask in the exposure of the second and subsequent layers.

【0059】[0059]

【発明の効果】以上のように本発明によれば、基板の伸
縮量に応じて複数の投影光学系のうち少なくとも1つの
投影倍率を変更するとともに、倍率の変化量に応じて投
影像の結像位置を変更するようにしたため、基板の伸縮
に応じてマスクパターンの投影像を補正することができ
る。このため、基板上に複数層に渡ってマスクパターン
の像を重ね合わせて露光する場合にも、マスクパターン
の像の重ね合わせにずれが生じることなく露光すること
が可能となる。
As described above, according to the present invention, the projection magnification of at least one of the plurality of projection optical systems is changed according to the expansion / contraction amount of the substrate, and the projection image is formed according to the change amount of the magnification. Since the image position is changed, the projected image of the mask pattern can be corrected according to the expansion and contraction of the substrate. Therefore, even when the mask pattern images are superimposed and exposed on the substrate over a plurality of layers, it is possible to perform the exposure without causing a deviation in the superposition of the mask pattern images.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による走査型露光装置の概略的
な構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of a scanning exposure apparatus according to an embodiment of the present invention.

【図2】本発明の露光装置の投影光学系の光軸をシフト
する制御系の構成を示すブロック図。
FIG. 2 is a block diagram showing the configuration of a control system for shifting the optical axis of the projection optical system of the exposure apparatus of the present invention.

【図3】感光基板上に投影される投影領域の状態を示す
図。
FIG. 3 is a diagram showing a state of a projection area projected on a photosensitive substrate.

【図4】(a)は、感光基板上に形成されたアライメン
トマークを示す図。(b)は、アライメントマークの形
状を示す図。(c)は、アライメントマークを検出する
ビームを示す図。
FIG. 4A is a diagram showing an alignment mark formed on a photosensitive substrate. (B) is a figure which shows the shape of an alignment mark. FIG. 6C is a diagram showing a beam for detecting an alignment mark.

【図5】アライメントセンサで得られる信号を示す図。FIG. 5 is a diagram showing a signal obtained by an alignment sensor.

【図6】本発明の実施例による感光基板の伸縮に応じた
光軸の補正の状態を示す図。
FIG. 6 is a diagram showing a state of optical axis correction according to expansion and contraction of a photosensitive substrate according to an embodiment of the present invention.

【図7】投影光学系の倍率を変更することによって生じ
る像の位置関係の変化を説明する図。
FIG. 7 is a diagram for explaining changes in the positional relationship of images caused by changing the magnification of the projection optical system.

【図8】本発明による倍率の変更と像の位置の変更を示
す図。
FIG. 8 is a diagram showing a change in magnification and a change in image position according to the present invention.

【図9】倍率変更による格子状のパターンの像のずれを
示す図。
FIG. 9 is a diagram showing a shift of an image of a grid pattern due to a change in magnification.

【図10】本発明の実施例による走査型露光装置の変形
例を示す図。
FIG. 10 is a diagram showing a modification of the scanning exposure apparatus according to the embodiment of the present invention.

【図11】投影光学系の倍率制御装置の他の例を示す
図。
FIG. 11 is a diagram showing another example of the magnification control device of the projection optical system.

【図12】平行平板ガラスの回転と像のシフトについて
説明する図。
FIG. 12 is a diagram illustrating rotation of parallel flat glass and image shift.

【符号の説明】[Explanation of symbols]

1a〜1e 照明光学系 2 マスク 3a〜3e 投影光学系 4a〜4e 平行平板ガラス 5 感光基板 7,8,14,15,16 駆動装置 10,20 倍率制御装置 11 制御装置 12 駆動装置 P1〜P5 投影領域 D,MA1〜MA5,PA1〜PA5 アライメントマ
ーク MM,PM,A1,A2 アライメントセンサ
1a-1e Illumination optical system 2 Masks 3a-3e Projection optical system 4a-4e Parallel plate glass 5 Photosensitive substrate 7,8,14,15,16 Driving device 10,20 Magnification control device 11 Control device 12 Driving device P1-P5 Projection Area D, MA1 to MA5, PA1 to PA5 Alignment mark MM, PM, A1, A2 Alignment sensor

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/20 521 7352−4M H01L 21/30 522 B (72)発明者 関 昌美 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 宮崎 聖二 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 奈良部 毅 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 千葉 洋 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location G03F 7/20 521 7352-4M H01L 21/30 522 B (72) Inventor Masami Seki Marunouchi 3-chome, Chiyoda-ku, Tokyo No. 2 in 3 Nikon Corporation (72) Inventor Seiji Miyazaki 3 2-3 Marunouchi, Chiyoda-ku, Tokyo In Nikon Corporation (72) Inventor Take Narabe 3 2-3 Marunouchi, Chiyoda-ku, Tokyo No. In stock company Nikon (72) Inventor Hiroshi Chiba 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Inside Nikon company

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光束を視野絞りを介して所定
形状に整形し、該視野絞りを介した前記光束でマスク上
のパターン領域の一部分を照明する複数の照明光学系
と、該複数の照明光学系のそれぞれに対応して配置され
た複数の投影光学系とを有し、前記複数の照明光学系に
よって照明された複数の前記一部分の像のそれぞれを前
記複数の投影光学系を介して基板上の被投影領域に投影
するとともに、前記マスクと前記基板とを前記投影光学
系の投影倍率に応じた速度比で所定の方向に、前記投影
光学系に対して移動することによって前記パターン領域
の全面を前記基板上に露光する走査型露光装置におい
て、 予め、前記基板の形状の変化を求めて記憶する記憶手段
と;前記形状の変化に応じて前記複数の投影光学系のう
ち少なくとも1つの投影倍率を変更する倍率変更手段
と;前記投影倍率の変更に応じて、前記少なくとも1つ
の投影光学系による前記一部分の像の位置を変更する結
像位置変更手段とを備えたことを特徴とする走査型露光
装置。
1. A plurality of illumination optical systems for shaping a light beam from a light source into a predetermined shape through a field stop, and illuminating a part of a pattern region on a mask with the light beam through the field stop, and a plurality of the plurality of illumination optical systems. A plurality of projection optical systems arranged corresponding to each of the illumination optical systems, and through the plurality of projection optical systems, each of the plurality of images of the part illuminated by the plurality of illumination optical systems. The pattern area is formed by projecting onto a projection area on a substrate and moving the mask and the substrate in a predetermined direction at a speed ratio according to the projection magnification of the projection optical system with respect to the projection optical system. In a scanning type exposure apparatus for exposing the entire surface of the substrate onto the substrate, storage means for previously obtaining and storing a change in the shape of the substrate; and at least one of the plurality of projection optical systems according to the change in the shape. Magnification changing means for changing the projection magnification; and imaging position changing means for changing the position of the image of the part by the at least one projection optical system according to the change of the projection magnification. Scanning exposure equipment.
【請求項2】 前記走査型露光装置は、前記形状の変化
のうち前記所定の方向に直交する方向の変化に応じて前
記投影倍率を変更するとともに前記直交する方向の前記
像の位置を変更し、前記形状の変化のうち前記移動する
方向の変化に応じて前記移動する方向の前記像の位置を
変更することを特徴とする請求項1に記載の走査型露光
装置。
2. The scanning type exposure apparatus changes the projection magnification and changes the position of the image in the orthogonal direction according to a change in a direction orthogonal to the predetermined direction among changes in the shape. 2. The scanning exposure apparatus according to claim 1, wherein the position of the image in the moving direction is changed according to the change in the moving direction among the changes in the shape.
【請求項3】 前記走査型露光装置は、前記形状の変化
に応じて前記速度比を変更する速度比変更手段をさらに
備えることを特徴とする請求項1,2に記載の走査型露
光装置。
3. The scanning type exposure apparatus according to claim 1, wherein the scanning type exposure apparatus further comprises a speed ratio changing unit that changes the speed ratio according to a change in the shape.
【請求項4】 前記複数の投影光学系は、前記所定の方
向に直交する方向に沿って、且つ隣合う前記投影光学系
どうしが前記所定の方向に互いに変位することにより、
前記直交する方向に複数列配置されていることを特徴と
する請求項1に記載の走査型露光装置。
4. The plurality of projection optical systems are arranged so that adjacent projection optical systems are displaced from each other in the predetermined direction along a direction orthogonal to the predetermined direction.
The scanning exposure apparatus according to claim 1, wherein a plurality of columns are arranged in the orthogonal direction.
【請求項5】 前記結像位置変更手段は複数の前記光軸
それぞれの中に配置された同一の板厚を有する平行平板
ガラスであり、複数の該平行平板ガラスはそれぞれ前記
形状の変化に応じて前記光軸に対して異なる角度に変位
することを特徴とする請求項1に記載の走査型露光装
置。
5. The image forming position changing means is a parallel plate glass having the same plate thickness arranged in each of the plurality of optical axes, and each of the plurality of parallel plate glasses responds to the change of the shape. 2. The scanning exposure apparatus according to claim 1, wherein the scanning exposure apparatus is displaced at different angles with respect to the optical axis.
【請求項6】 前記結像位置変更手段は複数の前記光軸
それぞれの中に配置された異なる板厚を有する平行平板
ガラスであり、複数の該平行平板ガラスはそれぞれ前記
形状の変化に応じて前記光軸に対してほぼ同一の角度に
変位することを特徴とする請求項1に記載の走査型露光
装置。
6. The image forming position changing means is a parallel flat plate glass having different plate thicknesses arranged in each of the plurality of optical axes, and the plurality of parallel flat plate glasses respectively respond to the change of the shape. The scanning exposure apparatus according to claim 1, wherein the scanning exposure apparatus is displaced at substantially the same angle with respect to the optical axis.
【請求項7】 前記基板は、前記被投影領域の近傍に前
記所定の方向に沿って配置された複数のアライメントマ
ークを有し、 前記走査型露光装置は、前記投影光学系に対して所定の
位置関係で、前記アライメントマークの少なくとも一部
を検出可能な位置に配置され、前記マスクおよび基板の
移動中に前記アライメントマークを検出するマーク検出
手段と;前記マーク検出手段の検出結果に応じて前記投
影光学系に対する前記マスク又は基板の位置を補正する
位置決め手段とをさらに備えたことを特徴とする請求項
1に記載の走査型露光装置。
7. The substrate has a plurality of alignment marks arranged in the vicinity of the projection region along the predetermined direction, and the scanning exposure apparatus has a predetermined alignment with respect to the projection optical system. A mark detecting unit which is arranged at a position where at least a part of the alignment mark can be detected in a positional relationship, and which detects the alignment mark while the mask and the substrate are moving; and the mark detecting unit according to the detection result of the mark detecting unit. The scanning exposure apparatus according to claim 1, further comprising a positioning unit that corrects the position of the mask or the substrate with respect to the projection optical system.
【請求項8】 前記マーク検出手段による前記アライメ
ントマークの位置に応じて前記基板の形状の変化を求め
ることを特徴とする請求項7による走査型露光装置。
8. The scanning exposure apparatus according to claim 7, wherein a change in the shape of the substrate is obtained according to the position of the alignment mark by the mark detecting means.
【請求項9】 複数の照明光学系からの光束でマスク上
のパターン領域の一部分を照明し、照明された前記一部
分の像を複数の投影光学系を介して基板上の被投影領域
に投影するとともに、前記マスクと前記基板とを前記投
影光学系の投影倍率に応じた速度比で所定の方向に、前
記投影光学系に対して移動することによって前記マスク
の全面を前記基板上に露光する露光方法において、 予め、前記基板の形状の変化を求め、 前記形状の変化に応じて前記複数の投影光学系のうち少
なくとも1つの投影倍率を変更し、 前記投影倍率の変更に応じて、前記少なくとも1つの投
影光学系による前記一部分の像の位置を変更することを
特徴とする露光方法。
9. A light beam from a plurality of illumination optical systems illuminates a part of a pattern area on a mask, and an image of the illuminated part is projected onto a projected area on a substrate through a plurality of projection optical systems. At the same time, exposure for exposing the entire surface of the mask onto the substrate by moving the mask and the substrate in a predetermined direction at a speed ratio according to the projection magnification of the projection optical system with respect to the projection optical system. In the method, the change in the shape of the substrate is obtained in advance, the projection magnification of at least one of the plurality of projection optical systems is changed according to the change in the shape, and the at least 1 is changed in accordance with the change of the projection magnification. An exposure method comprising changing the position of the image of the part by one projection optical system.
【請求項10】 前記露光方法は、前記形状の変化のう
ち前記所定の方向に直交する方向の変化に応じて前記投
影倍率を変更するとともに前記直交する方向の前記像の
位置を変更し、前記形状の変化のうち前記所定の方向の
変化に応じて前記所定の方向の前記像の位置を変更する
ことを特徴とする請求項9に記載の露光方法。
10. The exposure method changes the projection magnification according to a change in a direction orthogonal to the predetermined direction among changes in the shape, and changes a position of the image in the orthogonal direction, 10. The exposure method according to claim 9, wherein the position of the image in the predetermined direction is changed according to the change in the predetermined direction among the changes in the shape.
【請求項11】 前記露光方法は、前記形状の変化に応
じて前記速度比を変更することをさらに含むことを特徴
とする請求項9,10に記載の露光方法。
11. The exposure method according to claim 9, wherein the exposure method further includes changing the speed ratio according to a change in the shape.
JP23296394A 1993-11-11 1994-09-28 Scanning exposure apparatus and exposure method Expired - Lifetime JP3477838B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23296394A JP3477838B2 (en) 1993-11-11 1994-09-28 Scanning exposure apparatus and exposure method
KR1019940029510A KR100416327B1 (en) 1993-11-11 1994-11-11 Scanning exposure apparatus and exposure method
US08/689,691 US5625436A (en) 1993-11-11 1996-08-13 Scanning type exposure apparatus and exposure method
US09/300,376 USRE37361E1 (en) 1993-11-11 1999-04-27 Scanning type exposure apparatus and exposure method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-282308 1993-11-11
JP28230893 1993-11-11
JP23296394A JP3477838B2 (en) 1993-11-11 1994-09-28 Scanning exposure apparatus and exposure method

Publications (2)

Publication Number Publication Date
JPH07183212A true JPH07183212A (en) 1995-07-21
JP3477838B2 JP3477838B2 (en) 2003-12-10

Family

ID=30117269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23296394A Expired - Lifetime JP3477838B2 (en) 1993-11-11 1994-09-28 Scanning exposure apparatus and exposure method

Country Status (3)

Country Link
US (2) US5625436A (en)
JP (1) JP3477838B2 (en)
KR (1) KR100416327B1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801324A1 (en) * 1996-04-10 1997-10-15 Eastman Kodak Company Apparatus and method for producing integral image elements
US5999244A (en) * 1995-11-07 1999-12-07 Nikon Corporation Projection exposure apparatus, method for correcting positional discrepancy of projected image, and method for determining image formation characteristic of projection optical system
JP2000047390A (en) * 1998-05-22 2000-02-18 Nikon Corp Exposure device and its production
JP2001166497A (en) * 1999-10-01 2001-06-22 Nikon Corp Method and aligning and aligner
JP2001215718A (en) * 1999-11-26 2001-08-10 Nikon Corp Exposure system and exposure method
JP2003207903A (en) * 2002-01-11 2003-07-25 Pentax Corp Projection aligner
JP2003255547A (en) * 2001-12-26 2003-09-10 Pentax Corp Projection aligner
US6811953B2 (en) 2000-05-22 2004-11-02 Nikon Corporation Exposure apparatus, method for manufacturing therof, method for exposing and method for manufacturing microdevice
JP2005338852A (en) * 2004-05-26 2005-12-08 Asml Holding Nv Lithography system
JP2006337594A (en) * 2005-05-31 2006-12-14 Ricoh Opt Ind Co Ltd Luminous flux array density transformation method, luminous flux array density transformation member and light source device
WO2007108420A1 (en) * 2006-03-20 2007-09-27 Nikon Corporation Scanning exposure apparatus, micro device manufacturing method, mask, projection optical apparatus and mask manufacturing method
KR100794280B1 (en) * 2004-12-02 2008-01-11 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and device manufacturing method
JP2009088542A (en) * 2003-05-30 2009-04-23 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4396032B2 (en) * 1998-01-07 2010-01-13 株式会社ニコン Exposure method and scanning exposure apparatus
JP2010217207A (en) * 2009-03-13 2010-09-30 Nikon Corp Transfer device, transfer method and method for manufacturing device
JP2011514969A (en) * 2008-03-10 2011-05-12 ハイデルベルク・インストルメンツ・ミクロテヒニツク・ゲー・エム・ベー・ハー Method and apparatus for displacement
JP4998803B2 (en) * 2006-04-14 2012-08-15 株式会社ニコン Exposure apparatus, device manufacturing method, and exposure method
US8654307B2 (en) 2006-03-20 2014-02-18 Nikon Corporation Scanning type exposure apparatus, method of manufacturing micro-apparatus, mask, projection optical apparatus, and method of manufacturing mask
WO2016159200A1 (en) * 2015-03-31 2016-10-06 株式会社ニコン Exposure device, method for producing flat panel display, method for producing device, and exposure method
JP2018522287A (en) * 2015-05-24 2018-08-09 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド Exposure equipment
JP2019117403A (en) * 2019-03-22 2019-07-18 株式会社ニコン Exposure apparatus, display and method for manufacturing device

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729331A (en) * 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
USRE37762E1 (en) 1994-04-12 2002-06-25 Nikon Corporation Scanning exposure apparatus and exposure method
US5710619A (en) * 1995-10-31 1998-01-20 Anvik Corporation Large-area, scan-and-repeat, projection patterning system with unitary stage and magnification control capability
JP4029130B2 (en) * 1997-06-03 2008-01-09 株式会社ニコン Exposure apparatus and exposure method
DE19757074A1 (en) 1997-12-20 1999-06-24 Zeiss Carl Fa Projection exposure system and exposure method
KR20000039787A (en) * 1998-12-16 2000-07-05 김영환 Apparatus for detecting alignment of alignment unit
TW447009B (en) * 1999-02-12 2001-07-21 Nippon Kogaku Kk Scanning exposure method and scanning type exposure device
EP1095989B1 (en) * 1999-10-26 2005-04-13 Furukawa-Sky Aluminum Corp. Resin-coated metal sheet for parts of electronic machinery and tools and production method thereof
JP2001154371A (en) 1999-11-30 2001-06-08 Nikon Corp Method for manufacturing circuit device and display device and large-sized display device
JP2001209188A (en) 2000-01-27 2001-08-03 Nikon Corp Scanning type aligner, method for scanning exposure and mask
US6478136B2 (en) 2001-01-08 2002-11-12 Nikon Corporation Method and apparatus for automatically transporting and precisely positioning work pieces at processing stations
US7061584B2 (en) * 2001-03-19 2006-06-13 Dmetrix, Inc. Multi-axis projection imaging system
KR100487430B1 (en) * 2001-11-15 2005-05-03 엘지.필립스 엘시디 주식회사 Exposure Equipment And Method For Exposuring Using The Same
US20030095339A1 (en) * 2001-11-20 2003-05-22 Pentax Corporation Projection aligner
TWI232347B (en) * 2001-12-26 2005-05-11 Pentax Corp Projection aligner
TWI232348B (en) * 2001-12-26 2005-05-11 Pentax Corp Projection aligner
TWI240850B (en) 2001-12-26 2005-10-01 Pentax Corp Projection aligner
TW200301848A (en) * 2002-01-09 2003-07-16 Nikon Corp Exposure apparatus and exposure method
TWI228636B (en) * 2002-01-11 2005-03-01 Pentax Corp Projection aligner
US6940659B2 (en) * 2002-01-11 2005-09-06 Ultradent Products, Inc. Cone-shaped lens having increased forward light intensity and kits incorporating such lenses
JP2003215731A (en) * 2002-01-22 2003-07-30 Canon Inc Document lighting unit and image reader with the same
US7061577B2 (en) * 2002-03-26 2006-06-13 Nikon Corporation Image adjustor including damping assembly
EP1493060A2 (en) * 2002-04-11 2005-01-05 Heidelberg Instruments Mikrotechnik GmbH Method and device for imaging a mask onto a substrate
KR100575230B1 (en) * 2002-12-28 2006-05-02 엘지.필립스 엘시디 주식회사 Lithography method using a lithography apparatus
US7158215B2 (en) * 2003-06-30 2007-01-02 Asml Holding N.V. Large field of view protection optical system with aberration correctability for flat panel displays
US7184124B2 (en) * 2004-10-28 2007-02-27 Asml Holding N.V. Lithographic apparatus having an adjustable projection system and device manufacturing method
US7271907B2 (en) * 2004-12-23 2007-09-18 Asml Netherlands B.V. Lithographic apparatus with two-dimensional alignment measurement arrangement and two-dimensional alignment measurement method
EP1986220A4 (en) * 2006-02-16 2010-08-18 Nikon Corp Projection optical system, exposure device, exposure method, display manufacturing method, mask, and mask manufacturing method
US8610986B2 (en) * 2009-04-06 2013-12-17 The Board Of Trustees Of The University Of Illinois Mirror arrays for maskless photolithography and image display
CN103324037B (en) * 2013-07-04 2015-01-07 北京京东方光电科技有限公司 Exposure device and method
US11981097B1 (en) * 2020-01-10 2024-05-14 Apple Inc. Pattern printing on prisms

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757986A (en) * 1993-06-30 1995-03-03 Nikon Corp Aligner
JPH0786139A (en) * 1993-09-14 1995-03-31 Nikon Corp Aligner
JPH07135165A (en) * 1993-11-11 1995-05-23 Nikon Corp Scanning aligner

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128713A (en) 1986-11-19 1988-06-01 Matsushita Electric Ind Co Ltd Correction of distortion in scanning aligner
US4769680A (en) * 1987-10-22 1988-09-06 Mrs Technology, Inc. Apparatus and method for making large area electronic devices, such as flat panel displays and the like, using correlated, aligned dual optical systems
USRE33836E (en) * 1987-10-22 1992-03-03 Mrs Technology, Inc. Apparatus and method for making large area electronic devices, such as flat panel displays and the like, using correlated, aligned dual optical systems
DE3910048A1 (en) 1989-03-28 1990-08-30 Heidelberg Instr Gmbh Laser Un Method for producing or inspecting microstructures on large-area substrates
JPH03212925A (en) 1990-01-18 1991-09-18 Matsushita Electric Ind Co Ltd Aligner
JP2897330B2 (en) * 1990-04-06 1999-05-31 キヤノン株式会社 Mark detection device and exposure device
US5361122A (en) 1990-09-06 1994-11-01 Canon Kabushiki Kaisha Autofocusing device and projection exposure apparatus with the same
US5343270A (en) 1990-10-30 1994-08-30 Nikon Corporation Projection exposure apparatus
JP3128827B2 (en) 1990-12-26 2001-01-29 株式会社ニコン Projection exposure apparatus, projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method
JP2830492B2 (en) 1991-03-06 1998-12-02 株式会社ニコン Projection exposure apparatus and projection exposure method
US5506684A (en) 1991-04-04 1996-04-09 Nikon Corporation Projection scanning exposure apparatus with synchronous mask/wafer alignment system
JP3109852B2 (en) 1991-04-16 2000-11-20 キヤノン株式会社 Projection exposure equipment
US5227839A (en) 1991-06-24 1993-07-13 Etec Systems, Inc. Small field scanner
JP2924344B2 (en) 1991-08-09 1999-07-26 キヤノン株式会社 Projection exposure equipment
US5298939A (en) 1991-11-04 1994-03-29 Swanson Paul A Method and apparatus for transfer of a reticle pattern onto a substrate by scanning
JP2646412B2 (en) 1992-02-18 1997-08-27 キヤノン株式会社 Exposure equipment
US5416562A (en) 1992-03-06 1995-05-16 Nikon Corporation Method of detecting a position and apparatus therefor
US5291240A (en) * 1992-10-27 1994-03-01 Anvik Corporation Nonlinearity-compensated large-area patterning system
JPH07142325A (en) 1993-06-23 1995-06-02 Nikon Corp Aligning device
US5729331A (en) * 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
US5559629A (en) 1994-08-19 1996-09-24 Tamarack Scientific Co., Inc. Unit magnification projection system and method
US5530516A (en) 1994-10-04 1996-06-25 Tamarack Scientific Co., Inc. Large-area projection exposure system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757986A (en) * 1993-06-30 1995-03-03 Nikon Corp Aligner
JPH0786139A (en) * 1993-09-14 1995-03-31 Nikon Corp Aligner
JPH07135165A (en) * 1993-11-11 1995-05-23 Nikon Corp Scanning aligner

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999244A (en) * 1995-11-07 1999-12-07 Nikon Corporation Projection exposure apparatus, method for correcting positional discrepancy of projected image, and method for determining image formation characteristic of projection optical system
EP0801324A1 (en) * 1996-04-10 1997-10-15 Eastman Kodak Company Apparatus and method for producing integral image elements
JP4396032B2 (en) * 1998-01-07 2010-01-13 株式会社ニコン Exposure method and scanning exposure apparatus
JP2000047390A (en) * 1998-05-22 2000-02-18 Nikon Corp Exposure device and its production
JP2001166497A (en) * 1999-10-01 2001-06-22 Nikon Corp Method and aligning and aligner
JP4649717B2 (en) * 1999-10-01 2011-03-16 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP2001215718A (en) * 1999-11-26 2001-08-10 Nikon Corp Exposure system and exposure method
US6811953B2 (en) 2000-05-22 2004-11-02 Nikon Corporation Exposure apparatus, method for manufacturing therof, method for exposing and method for manufacturing microdevice
JP2003255547A (en) * 2001-12-26 2003-09-10 Pentax Corp Projection aligner
JP2003207903A (en) * 2002-01-11 2003-07-25 Pentax Corp Projection aligner
JP2014082517A (en) * 2003-05-30 2014-05-08 Asml Netherlands Bv Lithography apparatus and device manufacturing method
US8675175B2 (en) 2003-05-30 2014-03-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8395755B2 (en) 2003-05-30 2013-03-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2012212898A (en) * 2003-05-30 2012-11-01 Asml Netherlands Bv Lithography apparatus and device manufacturing method
JP2009088542A (en) * 2003-05-30 2009-04-23 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2011077540A (en) * 2003-05-30 2011-04-14 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2005338852A (en) * 2004-05-26 2005-12-08 Asml Holding Nv Lithography system
KR100794280B1 (en) * 2004-12-02 2008-01-11 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and device manufacturing method
JP2006337594A (en) * 2005-05-31 2006-12-14 Ricoh Opt Ind Co Ltd Luminous flux array density transformation method, luminous flux array density transformation member and light source device
JP4739819B2 (en) * 2005-05-31 2011-08-03 リコー光学株式会社 Light flux array density conversion method, light flux array density conversion member, and light source device
TWI408507B (en) * 2006-03-20 2013-09-11 尼康股份有限公司 Scanning type exposure apparatus, manufacturing method of micro-device, mask, optical projection apparatus, and manufacturing method of mask
JP2007286580A (en) * 2006-03-20 2007-11-01 Nikon Corp Scanning type exposure apparatus, method of manufacturing micro-device, mask, projection optical apparatus, and method of manufacturing mask
US8654307B2 (en) 2006-03-20 2014-02-18 Nikon Corporation Scanning type exposure apparatus, method of manufacturing micro-apparatus, mask, projection optical apparatus, and method of manufacturing mask
WO2007108420A1 (en) * 2006-03-20 2007-09-27 Nikon Corporation Scanning exposure apparatus, micro device manufacturing method, mask, projection optical apparatus and mask manufacturing method
JP4998803B2 (en) * 2006-04-14 2012-08-15 株式会社ニコン Exposure apparatus, device manufacturing method, and exposure method
JP2011514969A (en) * 2008-03-10 2011-05-12 ハイデルベルク・インストルメンツ・ミクロテヒニツク・ゲー・エム・ベー・ハー Method and apparatus for displacement
JP2010217207A (en) * 2009-03-13 2010-09-30 Nikon Corp Transfer device, transfer method and method for manufacturing device
WO2016159200A1 (en) * 2015-03-31 2016-10-06 株式会社ニコン Exposure device, method for producing flat panel display, method for producing device, and exposure method
KR20170128601A (en) * 2015-03-31 2017-11-22 가부시키가이샤 니콘 Exposure device, method for producing flat panel display, method for producing device, and exposure method
CN107533303A (en) * 2015-03-31 2018-01-02 株式会社尼康 Exposure device, the manufacture method of flat-panel screens, manufacturing method and exposure method
JP2018522287A (en) * 2015-05-24 2018-08-09 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド Exposure equipment
JP2019117403A (en) * 2019-03-22 2019-07-18 株式会社ニコン Exposure apparatus, display and method for manufacturing device

Also Published As

Publication number Publication date
USRE37361E1 (en) 2001-09-11
US5625436A (en) 1997-04-29
JP3477838B2 (en) 2003-12-10
KR100416327B1 (en) 2004-04-17
KR950014931A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
JP3477838B2 (en) Scanning exposure apparatus and exposure method
US6388735B1 (en) Projection exposure system
KR100330069B1 (en) Scanning exposure apparatus and its exposure method
JP2001215718A (en) Exposure system and exposure method
US5999244A (en) Projection exposure apparatus, method for correcting positional discrepancy of projected image, and method for determining image formation characteristic of projection optical system
JP3991165B2 (en) Alignment method and exposure method
JP2007052214A (en) Scanning exposure apparatus and method for manufacturing microdevice
JPH06302496A (en) Alignment method
JP2007108559A (en) Scanning exposure apparatus and method for manufacturing device
JPH10223528A (en) Projection aligner and aligning method
JPH0822948A (en) Scanning aligner
JP3316706B2 (en) Projection exposure apparatus and element manufacturing method using the apparatus
JP3617657B2 (en) Misalignment correction method
JP5534549B2 (en) Transfer apparatus, transfer method, and device manufacturing method
JP3379238B2 (en) Scanning exposure equipment
JPH07326567A (en) Unmagnified projection aligner
JP2007279113A (en) Scanning exposure apparatus and method for manufacturing device
JP4396032B2 (en) Exposure method and scanning exposure apparatus
JP3666606B2 (en) Projection exposure equipment
JPH08306618A (en) Optical equipment
JPH11168050A (en) Exposure method and exposure system
JPH08162391A (en) Projection light exposure device
JPH05160000A (en) Exposure apparatus
JPH1187228A (en) Aligner and method of exposure
JP3092732B2 (en) Projection exposure apparatus and projection exposure method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141003

Year of fee payment: 11

EXPY Cancellation because of completion of term