JPH0753890B2 - Manufacturing method of high strength cold rolled steel sheet for deep drawing - Google Patents

Manufacturing method of high strength cold rolled steel sheet for deep drawing

Info

Publication number
JPH0753890B2
JPH0753890B2 JP1338516A JP33851689A JPH0753890B2 JP H0753890 B2 JPH0753890 B2 JP H0753890B2 JP 1338516 A JP1338516 A JP 1338516A JP 33851689 A JP33851689 A JP 33851689A JP H0753890 B2 JPH0753890 B2 JP H0753890B2
Authority
JP
Japan
Prior art keywords
cold
less
hot rolling
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1338516A
Other languages
Japanese (ja)
Other versions
JPH03199312A (en
Inventor
直光 水井
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1338516A priority Critical patent/JPH0753890B2/en
Publication of JPH03199312A publication Critical patent/JPH03199312A/en
Publication of JPH0753890B2 publication Critical patent/JPH0753890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、深絞り性の良好な高張力冷延鋼板の製造法
に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a high-strength cold-rolled steel sheet having good deep drawability.

〈従来技術とその課題〉 従来、深絞り用高張力鋼板の製造には、Si,Mn,P等を強
化元素として添加した低炭素アルミキルド鋼に通常の熱
延を施し、更にこれを冷延してから連続焼鈍或いは箱焼
鈍する方法を採用するのが一般的であった。しかし、S
i,Mn,P等を強化元素として添加した場合にはそれらの添
加量が増加するに従って深絞り性に好ましい再結晶集合
組織の発達が阻害されると言う問題があり、自ずとこれ
ら強化元素の添加量を制限せざるを得なかった。そのた
め、所望の強度を備えかつ十分な深絞り性を示す高張力
鋼板の実現が強く望まれていたのである。
<Prior art and its problems> Conventionally, in the production of high-strength steel sheets for deep drawing, ordinary hot rolling was applied to low carbon aluminum killed steel to which Si, Mn, P, etc. were added as strengthening elements, and this was further cold rolled. It was general to adopt the method of continuous annealing or box annealing after that. But S
When i, Mn, P, etc. are added as strengthening elements, there is a problem that the development of recrystallized texture, which is preferable for deep drawability, is hindered as the amount of addition of them increases. I had to limit the amount. Therefore, it has been strongly desired to realize a high-strength steel sheet having a desired strength and exhibiting sufficient deep drawability.

なお、このような状況下にあって、極低C−Ti添加鋼に
Si,Mn,P等を強化元素として添加した深絞り用高張力冷
延鋼板も提案されたが(特開昭56−142852号)、このよ
うに本来的に深絞り性が良好な極低C−Ti添加鋼をベー
スとしても、上記強化元素の添加量が或る程度に達する
とやはり深絞り性の劣化を招き、十分な強度と深絞り性
の両立には限度があった。
In addition, under such circumstances,
A high-strength cold-rolled steel sheet for deep drawing in which Si, Mn, P, etc. are added as a strengthening element has also been proposed (JP-A-56-142852), but as described above, extremely low C which originally has good deep drawability. Even if the Ti-added steel is used as a base, when the amount of the reinforcing element added reaches a certain level, the deep drawability is also deteriorated, and there is a limit to achieving both sufficient strength and deep drawability.

一方、これまで、深絞り用鋼板の製造に当っては熱延工
程での鋼帯圧延をオーステナイト域で行うことが必須と
されてきた。なぜなら、上記熱間圧延をフェライト域で
実施すると鋼板の表層近傍に深絞り性に不利なGoss
({110}〈001〉)方位が発達するためである。もっと
も、このGoss方位はその後の冷延によって一旦は他の方
位に変化するものであるが、焼鈍後に再びGoss方位とし
て冷延板中に現われ、焼鈍板の深絞り性を著しく劣化さ
せることとなる。
On the other hand, until now, in the production of steel sheets for deep drawing, it has been essential to carry out steel strip rolling in the hot rolling step in the austenite region. This is because when the above hot rolling is performed in the ferrite region, Goss which is disadvantageous to deep drawability near the surface layer of the steel sheet.
This is because the ({110} <001>) orientation develops. However, this Goss orientation temporarily changes to another orientation due to subsequent cold rolling, but it appears again in the cold-rolled sheet as Goss orientation after annealing, which significantly deteriorates the deep drawability of the annealed sheet. .

しかしながら、実際の熱延工程においては鋼帯の端部は
冷却され易く、そのため鋼帯中央と比べて低温で圧延さ
れることとなるので、ややもすればフェライト域で熱延
される傾向がある。従って、鋼帯端部の材質は鋼帯中央
部と比較して劣る傾向にあり、熱延に当って鋼帯端部に
補助的な加熱等を施さなければ製品歩留りの低下をもた
らす恐れがあった。
However, in the actual hot rolling process, the edges of the steel strip are likely to be cooled, and therefore the steel strip is rolled at a lower temperature than the center of the steel strip. Therefore, it tends to be hot rolled in the ferrite region. Therefore, the material at the end of the steel strip tends to be inferior to that at the center of the steel strip, and there is a risk that product yield may be reduced unless auxiliary heating is applied to the end of the steel strip during hot rolling. It was

しかも、上記熱延素材に強化元素としてSi添加がなされ
るような場合には、Siはフェライト形成元素であってA3
変態点を上げるように作用するため、鋼帯端部の仕上げ
熱延完了温度をA3変態点以上にするにはスラブ加熱温度
を高くしなければならず、エネルギー消費量の増大やス
ケールロスによる歩留り低下を招くと言った問題も無視
できなかった。
Moreover, in case that Si addition is made as a strengthening element in the hot-rolled material, Si is a ferrite forming element A 3
To act to raise the transformation point, finishing hot-rolling completion temperature of the steel strip ends to be greater than or equal to A 3 transformation point it is necessary to increase the slab heating temperature, by increasing or scale loss of energy consumption I could not ignore the problem of yield loss.

このようなことから、本発明の目的は、深絞り用高張力
冷延鋼板の製造に際して指摘される上記問題点を解消
し、“優れた深絞り性と十分な強度を兼備した深絞り用
高張力冷延鋼板”を安定した作業性の下でコスト安く製
造し得る手段を確立することに置かれた。
Therefore, the object of the present invention is to solve the above-mentioned problems pointed out in the production of a high-strength cold-rolled steel sheet for deep drawing, and to provide a "high deep-drawing strength having excellent deep drawability and sufficient strength". It was placed in establishing a means by which a "tension cold-rolled steel sheet" can be manufactured at a low cost with stable workability.

〈課題を解決するための手段〉 本発明者等は、上記目的を達成すべく、特に極低炭素鋼
の熱延集合組織の発達に及ぼす鋼の組成及び鋼板製造条
件について様々な観点から調査を行い、その結果に基づ
いて鋭意研究を重ねたところ、次に示すような新しい知
見を得ることができた。即ち、 (a) 深絞り用冷延鋼板の製造に際し、極低C−Ti添
加鋼を従来とは異なってA3変態点以下で仕上げ熱延する
と、Si添加量が増えるに従い、これに伴って、冷延,再
結晶焼鈍後の鋼板の中心層では深絞り性に好ましい再結
晶方位が増加する傾向となる, (b) これは、低温仕上げ熱延により鋼板中に歪が残
留して“冷延圧下率を高めたのと同様の効果”がもたら
されることによるものであり、上記歪が再結晶焼鈍時に
“深絞り性に好ましい再結晶集合組織”の発達を促すた
めと考えられる。
<Means for Solving the Problems> The present inventors, in order to achieve the above-mentioned object, particularly from various viewpoints about the composition of the steel and the steel plate manufacturing conditions that affect the development of the hot rolled texture of the ultra-low carbon steel. As a result of conducting the research and earnestly researching based on the results, the following new findings were obtained. That is, (a) in the production of a cold-rolled steel sheet for deep drawing, when ultra-low C-Ti-added steel is finish hot-rolled below the A 3 transformation point unlike the conventional case, as the Si addition amount increases, it follows that In the center layer of the steel sheet after cold rolling and recrystallization annealing, there is a tendency that the recrystallization orientation preferable for deep drawability increases. (B) This is because strain remains in the steel sheet due to low temperature finish hot rolling This is because "the same effect as increasing the rolling reduction" is brought about, and it is considered that the above-mentioned strain promotes the development of "a preferable recrystallization texture for deep drawability" during recrystallization annealing.

(c) また、深絞り性の観点から問題となる熱延中の
Goss方位の発達は、単に摩擦による付加的剪断変形によ
ってのみ生じるのではなく、該付加的剪断変形により相
当に歪が高くなった領域(つまり表層近傍の層)では熱
延中に容易に再結晶が生じ、この再結晶方位が再び圧延
されるために起きるものである。
(C) Further, during hot rolling, which is a problem from the viewpoint of deep drawability.
The development of Goss orientation is not only caused by the additional shear deformation due to friction, but easily recrystallizes during hot rolling in the region where the strain is considerably increased by the additional shear deformation (that is, the layer near the surface layer). Occurs, and this recrystallization orientation is caused by rolling again.

(d) ところが、上記熱延中の再結晶はSiの添加を通
じて極力抑制することができ、特定量以上のSi添加によ
って鋼板表層近傍でのGoss方位の発達を抑制することが
できる, (e) ただ、Tiを添加しない単なる極低C鋼にSiを添
加しただけでは上記の深絞り性向上効果が得られない
が、Tiを添加して鋼中のN,S,Cを窒化物,硫化物,炭化
物として固定した所謂“インタースティシャル・フリー
鋼”を用いることによって初めて上述の効果が十分に確
保される, (f) もっとも、インタースティシャル・フリー鋼を
用いると粒界の強度が低下して2次加工脆性を生じ易く
なりがちであるが、Bを添加すると深絞り性に格別な悪
影響を及ぼすことなく2次加工脆性の抑制が図れる。
(D) However, the recrystallization during the hot rolling can be suppressed as much as possible through the addition of Si, and the addition of Si in a specific amount or more can suppress the development of the Goss orientation near the surface layer of the steel sheet, (e) However, the effect of improving the deep drawability cannot be obtained by simply adding Si to an ultra-low C steel containing no Ti, but N, S, C in the steel can be nitrided or sulfided by adding Ti. , The above-mentioned effect is sufficiently secured only by using so-called “interstitial free steel” fixed as carbide. (F) However, when interstitial free steel is used, the strength of the grain boundary decreases. However, when B is added, the secondary work embrittlement can be suppressed without any particular adverse effect on the deep drawability.

本発明は、上記知見事項等に基づいてなされたものであ
り、 「C:0.0050%以下(以降、成分割合を表わす%は重量%
とする), Si:0.5〜3.5%,Mn:0.001〜0.5%, P:0.050%以下,S:0.02%以下, N:0.0050%以下, 酸可溶Al:0.001〜0.1%, Ti:酸化物として含まれるものを除いて〔4×C(%)
+3.4×N(%)+1.3×S(%)〕の値(%)以上 を含有するか、或いは更に B:0.0030%以下 をも含み、残部がFe及び不可避的不純物から成る成分組
成の鋼片を1000℃以上に均熱して粗熱延を施した後、Ar
3変態点以下500℃以上の温度域で圧下率:50%以上の仕
上げ熱延を行って600℃以下の温度で巻取り、次いで脱
スケール後に圧下率:40〜95%の冷間圧延を施してか
ら、更に再結晶温度以上であって950℃以下又は組成に
よってオーステナイト相が現われる場合にはAc3変態点
以下の温度域に加熱して焼鈍することにより、優れた深
絞り性と高い強度を備えた高張力冷延鋼板を安定して製
造し得るようにした点」 に特徴を有している。
The present invention has been made based on the above findings and the like, and "C: 0.0050% or less (hereinafter,% representing a component ratio is% by weight).
, Si: 0.5 to 3.5%, Mn: 0.001 to 0.5%, P: 0.050% or less, S: 0.02% or less, N: 0.0050% or less, acid soluble Al: 0.001 to 0.1%, Ti: oxide Except those included as [4 x C (%)
+ 3.4 × N (%) + 1.3 × S (%)] value (%) or more, or B: 0.0030% or less, with the balance being Fe and inevitable impurities After soaking the steel slabs of 1000 ℃ or more and performing rough hot rolling,
3 Reduction temperature: 500 ° C or higher Temperature reduction: 50% or higher finish hot rolling, coiling at 600 ° C or lower, then descaling, Cold reduction: 40-95% cold rolling Then, when the austenite phase appears at the recrystallization temperature or higher and 950 ° C. or lower or the composition causes annealing by heating to a temperature range of Ac 3 transformation point or lower, excellent deep drawability and high strength are obtained. The feature is that it is possible to stably manufacture the provided high-strength cold-rolled steel sheet ”.

即ち、本発明に係る深絞り用高張力冷延鋼板の製造法
は、鋼中のN,S,Cを窒化物,硫化物,炭化物として固定
するのに十分なTiと、フェライト域熱延時の再結晶を抑
制するのに十分なSiを添加した極低炭素鋼をAr3変態点
以下で仕上げ熱延し、これに酸洗等の脱スケール処理,
冷間圧延,焼鈍を施すことを骨子としているが、本発明
において素材鋼の成分組成及び鋼板の製造条件(熱間圧
延条件,冷間圧延条件,焼鈍条件)を前記の如くに限定
した理由をその作用と共に以下に説明する。
That is, the method for producing a deep-drawing high-strength cold-rolled steel sheet according to the present invention, Ti, N, S, C in the steel is sufficient to fix as nitrides, sulfides, carbides, and ferrite hot rolling during hot rolling. Ultra-low carbon steel with sufficient Si added to suppress recrystallization is finish hot-rolled below the Ar 3 transformation point, and descaling treatment such as pickling,
Although cold rolling and annealing are the main points, the reason why the composition of the raw material steel and the manufacturing conditions of the steel sheet (hot rolling conditions, cold rolling conditions, annealing conditions) are limited as described above in the present invention is as follows. The operation will be described below.

〈作用〉 (A) 素材鋼の成分組成 a)C Cは鋼中へ不可避的に持ち込まれる元素であり、その含
有量は低いほど望ましい。なお、C含有量が0.0050%を
超えるとTiの必要添加量が多くなって製造コストの上昇
を招くことから、C含有量は0.0050%以下と限定した。
<Action> (A) Component composition of raw steel a) Cc is an element that is inevitably introduced into the steel, and the lower the content, the more desirable. If the C content exceeds 0.0050%, the required addition amount of Ti increases and the manufacturing cost increases, so the C content was limited to 0.0050% or less.

b)Si Siは本発明において重要な作用を担う元素であり、鋼板
の強化元素として添加されると同時に、Ar3変態点を上
げて仕上げ熱延完了温度を上げることによって熱延作業
性を容易化し、更には熱延中のGoss方位の発達を抑制す
る作用及び冷延・再結晶焼鈍後に好ましい再結晶方位を
増加させる作用を通じて優れた深絞り性を確保する効果
を発揮する。ただ、これらの効果を得るためには0.5%
以上のSi量を確保する必要があり、一方、3.5%を超え
て添加すると鋼の冷間加工性が著しく低下して冷延中に
鋼帯が割れる恐れがあることから、Si含有量は0.5〜3.5
%と定めた。
b) Si Si is an element that plays an important role in the present invention, and at the same time it is added as a strengthening element of the steel sheet, the hot rolling workability is facilitated by raising the Ar 3 transformation point and raising the finish hot rolling completion temperature. Further, it exerts the effect of ensuring excellent deep drawability through the action of suppressing the development of the Goss orientation during hot rolling and the action of increasing the preferred recrystallization orientation after cold rolling / recrystallization annealing. However, 0.5% to obtain these effects
It is necessary to secure the above Si amount. On the other hand, if it is added in excess of 3.5%, the cold workability of steel may be significantly reduced and the steel strip may crack during cold rolling. ~ 3.5
Defined as%.

c)Mn MnにはSと結合して鋼の熱間脆性を防止する作用がある
ため、該作用による所望の効果を確保するため0.001%
以上の添加がなされる。しかし、一方で、Mnはオーステ
ナイト形成元素であるためAr3変態点を下げる作用を有
していることから、0.5%を超えて含有させると、本発
明が特徴とする“Ar3変態点以下での仕上げ熱延”を必
要以上の低温で行わなければならなくし、熱間圧延機に
負荷がかかり過ぎる事態を招く恐れがある。従って、Mn
含有量は0.001〜0.5%と定めた。
c) Mn Mn acts to prevent hot embrittlement of steel by combining with S, so 0.001% is added to ensure the desired effect due to the action.
The above additions are made. However, on the other hand, Mn has an action of lowering the Ar 3 transformation point because it is an austenite-forming element, so if it is contained in excess of 0.5%, the content of Mn is less than “Ar 3 transformation point” However, there is a risk that the hot rolling of the hot rolling mill would have to be performed at an unnecessarily low temperature, and the hot rolling mill would be overloaded. Therefore, Mn
The content was set to 0.001 to 0.5%.

d)P Pは鋼中へ不可避的に持ち込まれる元素であり、現在の
製鋼技術では、安価にかつ安定して0.001%未満にまで
低減することはできない。ただ、Pは必要に応じて鋼の
強化元素として添加される場合もあるが、Ti添加鋼では
Tiの燐化物を形成するのでインタースティシャル・フリ
ー鋼とするために必要なTi添加量が増加し、コストの上
昇を招く。また、P含有量が増えると冷延鋼板の2次加
工脆性が顕著になる。そこで、上記不都合が容認できる
0.050%以下にP含有量を制限した。
d) P P is an element that is inevitably introduced into steel, and current steelmaking technology cannot inexpensively and stably reduce it to less than 0.001%. However, P may be added as a strengthening element of steel if necessary, but in Ti-added steel
Since Ti phosphide is formed, the amount of Ti added necessary for forming an interstitial free steel increases, which causes an increase in cost. Further, as the P content increases, the secondary work brittleness of the cold rolled steel sheet becomes remarkable. Therefore, the above inconvenience can be tolerated.
The P content was limited to 0.050% or less.

e)S Sも鋼中へ不可避的に持ち込まれる元素であり、その含
有量は少ないほど好ましい。なお、S含有量が0.02%を
超えるとTiの必要添加量が増してコスト高が顕著となる
ことから、S含有量は0.02%以下と定めたが、好ましく
は0.005%以下に抑えるのが良い。
e) S S is also an element that is inevitably introduced into the steel, and the smaller the content, the better. When the S content exceeds 0.02%, the required addition amount of Ti increases and the cost becomes remarkable, so the S content was set to 0.02% or less, but it is preferable to suppress it to 0.005% or less. .

f)N Nも不可避的な不純物元素であり、現在の製鋼技術では
容易にかつ安定して0.0005%未満にすることは困難であ
るが、その含有量は少ないほど好ましい。なお、N含有
量が0.0050%を超えるとやはりTiの必要添加量が増して
コスト高が顕著となることから、N含有量は0.0050%以
下と定めたが、好ましくは0.0020%以下に抑えるのが良
い。
f) N N is also an unavoidable impurity element, and it is difficult to easily and stably make it less than 0.0005% by the current steelmaking technology, but the smaller the content, the better. When the N content exceeds 0.0050%, the necessary addition amount of Ti also increases and the cost becomes remarkable, so the N content is set to 0.0050% or less, but preferably 0.0020% or less is suppressed. good.

g)酸可溶Al 酸可溶Alは、溶鋼にTiを添加するに先立って脱酸調整の
ために添加されるものである。従って、少しでも鋼中に
含まれていれば脱酸が十分に行われたことを示してお
り、0.001%以上の含有量が確認できれば十分な効果が
もたらされる。ただ、その含有量が0.1%を超えると鋼
が硬質化して延性が劣化することから、酸可溶Al含有量
は0.001〜0.1%と定めた。
g) Acid-soluble Al Acid-soluble Al is added for deoxidation adjustment prior to adding Ti to molten steel. Therefore, it is shown that deoxidation was sufficiently performed if it was contained in the steel as much as possible, and a sufficient effect is brought if the content of 0.001% or more can be confirmed. However, if the content exceeds 0.1%, the steel becomes hard and the ductility deteriorates, so the content of acid-soluble Al was set to 0.001 to 0.1%.

h)Ti Tiも本発明において重要な作用を担う元素であり、Ar3
変態点以下での仕上げ熱延を施して冷延鋼板での優れた
深絞り性を確保するためには、Siの添加と共に、Ti添加
によるインタースティシャル・フリー鋼を用いることが
欠かせない。そのため、Tiは〔4×C(%)+3.4×N
(%)+1.3×S(%)〕の値(%)以上添加する必要
がある。
h) Ti Ti is also an element that plays an important role in the present invention, and Ar 3
In order to perform the finish hot rolling below the transformation point to ensure the excellent deep drawability in the cold rolled steel sheet, it is essential to use the interstitial free steel by adding Ti together with the addition of Si. Therefore, Ti is [4 x C (%) + 3.4 x N
(%) + 1.3 × S (%)] value (%) or more.

i)B インタースティシャル・フリー鋼を用いると粒界の強度
が低下し冷延鋼板の2次加工脆性を生じ易くなるが、B
にはこれを抑制する作用がある。ただ、2次加工時の延
性−脆性遷移温度は冷延鋼板の1次加工における加工度
に依存するため、1次加工の加工度が厳しい場合にのみ
添加すれば良い。しかし、多量に含有させるとAr3変態
点を下げ、Ar3変態点以下での仕上げ熱延を必要以上の
低温で行わなければならなくし、熱間圧延機に負荷がか
かり過ぎる事態を招く恐れがある。従って、B添加を実
施する場合には、その含有量を0.0030%以下に抑えるこ
とと定めた。
i) B When interstitial-free steel is used, the strength of the grain boundary is reduced and secondary work embrittlement of the cold-rolled steel sheet easily occurs.
Has the effect of suppressing this. However, the ductility-brittleness transition temperature at the time of secondary working depends on the workability of the cold-rolled steel sheet in the primary working, so it may be added only when the workability of the primary working is severe. However, if contained in a large amount, the Ar 3 transformation point is lowered, and the finish hot rolling below the Ar 3 transformation point must be performed at a lower temperature than necessary, which may lead to a situation where the hot rolling mill is overloaded. is there. Therefore, when B is added, its content is specified to be 0.0030% or less.

(B) 鋼板製造条件 a)熱延時のスラブ加熱温度 スラブ加熱温度が1000℃未満ではスラブに温度ムラが生
じ易くなり、かつAr3変態点以上で熱間圧延を完了する
ことが困難になる。従って、熱延に際してのスラブの均
熱温度を1000℃以上と定めたが、好ましくは1050〜1150
℃とするのが良い。
(B) Steel plate manufacturing conditions a) Slab heating temperature during hot rolling When the slab heating temperature is less than 1000 ° C, temperature unevenness easily occurs in the slab, and it becomes difficult to complete hot rolling at the Ar 3 transformation point or higher. Therefore, the soaking temperature of the slab during hot rolling was determined to be 1000 ° C or higher, but preferably 1050 to 1150
It is good to set it to ℃.

b)仕上げ熱延条件 熱延の仕上げ温度がA3変態点以上であると、冷延,再結
晶焼鈍後の冷延鋼板に“深絞り性に好ましい再結晶方
位”を増やして深絞り性を向上させる効果を確保するこ
とができない。また、Ar3変態点以下での仕上げ熱延に
よる冷延鋼板の深絞り性向上効果を得るためには、フェ
ライト域における累積圧下率が50%以上なくてはならな
い。一方、500℃未満で仕上げ熱延を行うと熱間圧延機
に負荷がかかり過ぎるので現実的ではない。従って、仕
上げ熱延はAr3変態点以下500℃以上の温度域で実施し、
更にその時の圧下率を50%以上にすることと定めた。
If b) finishing heat finishing temperature of rolling conditions hot rolling is A 3 transformation point or higher, cold-rolled, the the increase in deep drawability "preferred recrystallization orientation in deep drawability" the cold-rolled steel sheet after recrystallization annealing It is not possible to secure the effect of improving it. Further, in order to obtain the effect of improving the deep drawability of the cold-rolled steel sheet by finish hot rolling below the Ar 3 transformation point, the cumulative rolling reduction in the ferrite region must be 50% or more. On the other hand, finishing hot rolling at less than 500 ° C. is not realistic because the hot rolling mill is overloaded. Therefore, finish hot rolling is performed in the temperature range of 500 ° C or higher below the Ar 3 transformation point,
Furthermore, it was decided that the reduction rate at that time should be 50% or more.

なお、仕上げ熱延にて潤滑を行うと、これによって鋼帯
表層近傍のGoss方位の発達がより一層抑制されるので、
出来れば仕上げ熱延は潤滑圧延とすることが好ましい。
If lubrication is applied by finish hot rolling, the Goss orientation in the vicinity of the surface of the steel strip is further suppressed.
If possible, finish hot rolling is preferably lubrication rolling.

c)巻取り温度 600℃を超える温度で巻取りを行うとAr3変態点以下での
仕上げ熱延で生じた歪を鋼板中に残留させることが難し
く、Ar3変態点以下での仕上げ熱延による冷延鋼板の深
絞り性向上効果が十分得られない。従って、巻取り温度
は600℃以下と定めたが、好ましくは500℃以下とするの
が良い。また、同様の観点より、仕上げ熱延完了から巻
取りに至るまでの過程で鋼帯を急冷することは、Ar3
態点以下での仕上げ熱延による冷延鋼板の深絞り性向上
効果を高める上で好ましいことである。
c) Winding temperature When winding is performed at a temperature over 600 ° C, it is difficult to retain the strain caused by finish hot rolling below the Ar 3 transformation point in the steel sheet, and finish hot rolling below the Ar 3 transformation point. The effect of improving the deep drawability of the cold-rolled steel sheet cannot be obtained sufficiently. Therefore, the winding temperature is set to 600 ° C or lower, but preferably 500 ° C or lower. Further, from the same viewpoint, quenching the steel strip in the process from completion of hot rolling to winding of the finish enhances the deep drawability improvement effect of the cold rolled steel sheet by finish hot rolling below the Ar 3 transformation point. This is preferable from the above.

d)冷延圧下率 冷延圧下率が40%未満では深絞り性に好ましい再結晶集
合組織が発達しない。一方、圧下率は高い方が好ましい
が、95%を超えると逆に深絞り性の劣化を招くようにな
ることから、冷延圧下率は40〜95%と定めた。
d) Cold rolling reduction If the cold rolling reduction is less than 40%, a recrystallization texture suitable for deep drawability does not develop. On the other hand, it is preferable that the rolling reduction is high, but if it exceeds 95%, the deep drawability deteriorates.

e)焼鈍条件 再結晶焼鈍であるから再結晶温度以上に加熱する必要が
あることは言うまでもないが、加熱温度が950℃を超え
たり、組成によってオーステナイト相が現われる場合に
はAc3変態点に超える温度にまで加熱するとα→γ→α
と変態することにより“再結晶過程で形成させた深絞り
性に好ましい再結晶集合組織”を消してしまうことにな
るので、加熱温度は950℃以下、或いはオーステナイト
相が現われる場合にはAc3変態点以下に抑える必要があ
る。
e) Annealing condition Needless to say, it is necessary to heat above the recrystallization temperature because it is recrystallization annealing, but if the heating temperature exceeds 950 ° C or the austenite phase appears depending on the composition, it exceeds the Ac 3 transformation point. When heated to temperature α → γ → α
Since the "recrystallization texture formed in the recrystallization process that is preferable for deep drawability" is erased by the transformation, the heating temperature is 950 ° C or lower, or when the austenite phase appears, the Ac 3 transformation It is necessary to keep it below the point.

なお、焼鈍方法は、連続焼鈍,箱焼鈍,連続溶融亜鉛め
っきによる焼鈍の何れでも良い。
The annealing method may be any of continuous annealing, box annealing, and continuous hot dip galvanizing.

このようにして製造された鋼板はインタースティシャル
フリー鋼なので原則として調質圧延は不要であるが、平
坦矯正等の目的で必要に応じて焼鈍後に調質圧延されて
から出荷される。また、場合によっては亜鉛めっき等の
表面処理を施した後に出荷がなされる。
Since the steel sheet produced in this way is an interstitial free steel, temper rolling is not required in principle, but it is temper rolled after annealing if necessary for the purpose of flattening or the like and then shipped. In some cases, the products are shipped after being subjected to surface treatment such as zinc plating.

続いて、本発明を実施例により更に具体的に説明する。Next, the present invention will be described more specifically by way of examples.

〈実施例〉 まず、第1表に示した各種成分組成の極低炭素鋼を実験
用真空溶解炉で溶製した。
<Examples> First, ultra-low carbon steels having various component compositions shown in Table 1 were melted in a laboratory vacuum melting furnace.

次いで、これらを分割して熱間鍛造により熱延用試料と
し、第2表及び第3表に示した条件で熱間圧延,冷延圧
延及び焼鈍を施し、更に調質圧延を施した。なお、一部
の試料については熱延ロールに牛脂を塗布して潤滑熱延
を行った。
Next, these were divided into hot-rolled samples by hot forging, hot-rolled, cold-rolled and annealed under the conditions shown in Tables 2 and 3, and further temper-rolled. In addition, about some samples, beef tallow was apply | coated to the hot rolling roll and the lubrication hot rolling was performed.

続いて、得られた冷延鋼板からJIS5号試験片を切り出し
て引張試験を行った。
Subsequently, a JIS No. 5 test piece was cut out from the obtained cold rolled steel sheet and a tensile test was conducted.

そして、上記試験結果を第2表及び第3表に併せて示す
と共に、第2表に示される結果を整理して第1図に、ま
た第3表に示される結果を整理して第2図にそれぞれ図
示したが、これらの結果からも、本発明で規定される条
件通りに製造された冷延鋼板は優れた深絞り性と強度と
を兼備していることが確認できる。
The test results are shown in Tables 2 and 3 together, the results shown in Table 2 are summarized in FIG. 1, and the results shown in Table 3 are summarized in FIG. Although these are respectively illustrated in Fig. 6, it can be confirmed from these results that the cold-rolled steel sheet manufactured under the conditions specified in the present invention has both excellent deep drawability and strength.

また、第2表及び第1図に示される結果からは、素材鋼
のSi添加量が0.5%以上になると強度の上昇に伴い全伸
びは低下するが、深絞り性の指標であるr値の向上する
ことが分かる。
In addition, from the results shown in Table 2 and FIG. 1, when the Si addition amount of the material steel is 0.5% or more, the total elongation decreases with the increase of strength, but the r value of r, which is an index of deep drawability, decreases. You can see that it will improve.

更に、Ti添加量が〔4×C(%)+3.4×N(%)+1.3
×S(%)〕の値(%)を下回る場合や、Mnの添加量が
0.5%を超える場合にはr値は低いことも分かる。
Furthermore, the Ti addition amount is [4 × C (%) + 3.4 × N (%) + 1.3
XS (%)] value (%) or the amount of Mn added is
It can also be seen that the r value is low when it exceeds 0.5%.

一方、第3表及び第2図に示される結果からは、α域熱
延の圧下量が増加するほどr値が向上することや、冷延
圧下率の増加に伴ってr値は増加するが、或る程度以上
になると逆に低下することが確認できる。そして、r値
が最高になる冷延圧下率は、鋼成分によって異なるが95
%以下であれば問題が無いことも明らかである。
On the other hand, from the results shown in Table 3 and FIG. 2, although the r value improves as the reduction amount in the α-region hot rolling increases, and the r value increases as the cold rolling reduction increases. However, it can be confirmed that when the temperature exceeds a certain level, it decreases. The cold rolling reduction ratio at which the r value is the highest depends on the steel composition, but is 95
It is also clear that there is no problem if it is less than%.

そして、同じ熱延条件であっても潤滑熱延を行うことに
より焼鈍後のr値が向上することも確認できる。
It can also be confirmed that the r value after annealing is improved by performing the hot rolling lubrication even under the same hot rolling conditions.

〈効果の総括〉 以上に説明した如く、この発明によれば、優れた深絞り
性と強度とを併せ持つ深絞り用高張力冷延鋼板を作業性
良く安定して量産することが可能となるなど、産業上極
めて有用な効果がもたらされる。
<Summary of Effects> As described above, according to the present invention, it is possible to stably mass-produce a high-strength cold-rolled steel sheet for deep drawing having excellent deep drawability and strength with good workability. , An extremely useful effect is brought about in the industry.

【図面の簡単な説明】[Brief description of drawings]

第1図は、冷延鋼板の機械的性質に及ぼす鋼成分の影響
を示したグラフである。 第2図は、冷延鋼板の機械的性質に及ぼす製造条件の影
響を示したグラフである。
FIG. 1 is a graph showing the effect of steel components on the mechanical properties of cold-rolled steel sheet. FIG. 2 is a graph showing the influence of manufacturing conditions on the mechanical properties of cold-rolled steel sheet.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量割合にて C:0.0050%以下,Si:0.5〜3.5%, Mn:0.001〜0.5%,P:0.050%以下, S:0.02%以下,N:0.0050%以下, 酸可溶Al:0.001〜0.1%, Ti:酸化物として含まれるものを除いて〔4×C(%)
+3.4×N(%)+1.3×S(%)〕の値(%)以上 を含有し、残部がFe及び不可避的不純物から成る成分組
成の鋼片を1000℃以上に均熱して粗熱延を施した後、Ar
3変態点以下500℃以上の温度域で圧下率:50%以上の仕
上げ熱延を行って600℃以下の温度で巻取り、次いで脱
スケール後に圧下率:40〜95%の冷間圧延を施してか
ら、更に再結晶温度以上であって950℃以下又は組成に
よってオーステナイト相が現われる場合にはAc3変態点
以下の温度域に加熱して焼鈍することを特徴とする、深
絞り加工用冷延鋼板の製造法。
1. By weight ratio, C: 0.0050% or less, Si: 0.5 to 3.5%, Mn: 0.001 to 0.5%, P: 0.050% or less, S: 0.02% or less, N: 0.0050% or less, acid-soluble Al: 0.001 to 0.1%, Ti: Excluding those included as oxides [4 x C (%)
+3.4 × N (%) + 1.3 × S (%)] value (%) or more, with the balance being Fe and inevitable impurities. After hot rolling, Ar
3 Reduction temperature: 500 ° C or higher Temperature reduction: 50% or higher finish hot rolling, coiling at 600 ° C or lower, then descaling, Cold reduction: 40-95% cold rolling After that, when the austenite phase is higher than the recrystallization temperature and lower than 950 ° C. or the composition, it is heated to a temperature range lower than the Ac 3 transformation point and annealed, and cold-rolled for deep drawing. Steel plate manufacturing method.
【請求項2】重量割合にて C:0.0050%以下,Si:0.5〜3.5%, Mn:0.001〜0.5%,P:0.050%以下, S:0.02%以下,N:0.0050%以下, 酸可溶Al:0.001〜0.1%, Ti:酸化物として含まれるものを除いて〔4×C(%)
+3.4×N(%)+1.3×S(%)〕の値(%)以上, B:0.0030%以下 を含有し、残部がFe及び不可避的不純物から成る成分組
成の鋼片を1000℃以上に均熱して粗熱延を施した後、Ar
3変態点以下500℃以上の温度域で圧下率:50%以上の仕
上げ熱延を行って600℃以下の温度で巻取り、次いで脱
スケール後に圧下率:40〜95%の冷間圧延を施してか
ら、更に再結晶温度以上であって950℃以下又は組成に
よってオーステナイト相が現われる場合にはAc3変態点
以下の温度域に加熱して焼鈍することを特徴とする、深
絞り加工用冷延鋼板の製造法。
2. By weight ratio, C: 0.0050% or less, Si: 0.5 to 3.5%, Mn: 0.001 to 0.5%, P: 0.050% or less, S: 0.02% or less, N: 0.0050% or less, acid soluble Al: 0.001 to 0.1%, Ti: Excluding those included as oxides [4 x C (%)
+ 3.4 × N (%) + 1.3 × S (%)] value (%) or more, B: 0.0030% or less, the balance is Fe and inevitable impurities. After soaking and rough hot rolling,
3 Reduction temperature: 500 ° C or higher Temperature reduction: 50% or higher finish hot rolling, winding at 600 ° C or lower, then descaling, Cold reduction: 40 to 95% cold rolling After that, when the austenite phase is higher than the recrystallization temperature and lower than 950 ° C. or the composition, it is heated to a temperature range lower than the Ac 3 transformation point and annealed, and cold-rolled for deep drawing. Steel plate manufacturing method.
JP1338516A 1989-12-28 1989-12-28 Manufacturing method of high strength cold rolled steel sheet for deep drawing Expired - Fee Related JPH0753890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338516A JPH0753890B2 (en) 1989-12-28 1989-12-28 Manufacturing method of high strength cold rolled steel sheet for deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338516A JPH0753890B2 (en) 1989-12-28 1989-12-28 Manufacturing method of high strength cold rolled steel sheet for deep drawing

Publications (2)

Publication Number Publication Date
JPH03199312A JPH03199312A (en) 1991-08-30
JPH0753890B2 true JPH0753890B2 (en) 1995-06-07

Family

ID=18318897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338516A Expired - Fee Related JPH0753890B2 (en) 1989-12-28 1989-12-28 Manufacturing method of high strength cold rolled steel sheet for deep drawing

Country Status (1)

Country Link
JP (1) JPH0753890B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360493A (en) * 1992-06-08 1994-11-01 Kawasaki Steel Corporation High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
KR100401979B1 (en) * 1996-12-10 2004-03-20 주식회사 포스코 MANUFACTURING METHOD OF 35 kg/mm¬2 CLASS HIGH TENSILE STRENGTH COLD ROLLED STRIP FOR DEEP DRAWING HAVING SUPERIOR WIRE BENDING PREVENTING CHARACTERISTICS

Also Published As

Publication number Publication date
JPH03199312A (en) 1991-08-30

Similar Documents

Publication Publication Date Title
US20090071574A1 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP2003055740A (en) High tensile strength hot rolled steel sheet having excellent galling resistance and fatigue resistance and production method therefor
JP5903884B2 (en) Manufacturing method of high-strength thin steel sheet with excellent resistance to folding back
JP2530338B2 (en) High strength cold rolled steel sheet with good formability and its manufacturing method
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JPH0753890B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JPH06256901A (en) High tensile strength cold rolled steel sheet for deep drawing and its production
JPS5852430A (en) Production of zinc plated steel plate for drawing
JP3718987B2 (en) Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same
JPH0559490A (en) High tensile strength thin steel sheet for press working and its manufacture
JPH07102341A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen embrittlement resistance and its production
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JPS59123721A (en) Production of cold rolled steel sheet having excellent processability
JP3544770B2 (en) Manufacturing method of cold rolled steel sheet with excellent formability
JP2669188B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JPH07216452A (en) Production of high strength cold rolled steel sheet for deep drawing
JP3544771B2 (en) Manufacturing method of cold rolled steel sheet with excellent formability
JP2000199031A (en) Cold rolled steel sheet excellent in workability and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees