JPH0745403A - Semiconductor ceramic element - Google Patents

Semiconductor ceramic element

Info

Publication number
JPH0745403A
JPH0745403A JP18521493A JP18521493A JPH0745403A JP H0745403 A JPH0745403 A JP H0745403A JP 18521493 A JP18521493 A JP 18521493A JP 18521493 A JP18521493 A JP 18521493A JP H0745403 A JPH0745403 A JP H0745403A
Authority
JP
Japan
Prior art keywords
temperature
constant
oxide
resistance value
ceramic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18521493A
Other languages
Japanese (ja)
Other versions
JP3334264B2 (en
Inventor
Kenjirou Mihara
賢二良 三原
Hideaki Niimi
秀明 新見
Yuichi Takaoka
祐一 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP18521493A priority Critical patent/JP3334264B2/en
Publication of JPH0745403A publication Critical patent/JPH0745403A/en
Application granted granted Critical
Publication of JP3334264B2 publication Critical patent/JP3334264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To acquire a semiconductor ceramic element of good reliability test characteristics wherein the rise of the resistance value at a low temperature is high, a resistance value in a temperature rise state is small, a current consumption amount can be reduced and it is possible to correspond to a large current. CONSTITUTION:A ceramic element body comprised of rare earth transition element oxide such as LaCo oxide is used and porosity of the ceramic element body is made 3 to 20vol%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負の抵抗温度係数を有
するセラミック素体を用いた半導体セラミック素子に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor ceramic device using a ceramic body having a negative temperature coefficient of resistance.

【0002】[0002]

【従来の技術】例えば、スイッチング電源ではスイッチ
を入れた瞬間に過電流が流れることから、この初期の突
入電流を吸収する素子として、いわゆるNTCサーミス
タ素子が用いられている。このNTCサーミスタ素子
は、室温での抵抗値が高く、温度の上昇と共に抵抗値が
低下する機能を有しており、これによって初期の突入電
流を抑制し、その後自己発熱により昇温して低抵抗とな
り、定常状態では電力消費量が低減できる。このような
NTCサーミスタ素子のセラミック素体としては、従来
からスピネル酸化物が用いられている。
2. Description of the Related Art For example, a so-called NTC thermistor element is used as an element for absorbing an initial rush current because an overcurrent flows in a switching power supply at the moment when the switch is turned on. This NTC thermistor element has a high resistance value at room temperature and has a function of decreasing the resistance value as the temperature rises, which suppresses the initial inrush current, and then raises the temperature by self-heating to reduce the resistance. Therefore, the power consumption can be reduced in the steady state. Spinel oxide has been conventionally used as the ceramic body of such an NTC thermistor element.

【0003】[0003]

【発明が解決しようとする課題】このようなNTCサー
ミスタ素子を突入電流防止用に用いた場合、上述のよう
に自己発熱による昇温状態で抵抗値が小さくならなけれ
ばならない。しかしながら、従来のスピネル酸化物を用
いたNTCサーミスタ素子は、一般に比抵抗を小さくす
るほどB定数が小さくなる傾向にあり、昇温状態におけ
る抵抗値を十分に小さくすることができず、定常状態に
おける電力消費量を低減することができないという問題
があった。
When such an NTC thermistor element is used for preventing an inrush current, the resistance value must be small in the temperature rising state due to self-heating as described above. However, in the conventional NTC thermistor element using spinel oxide, the B constant tends to decrease as the specific resistance decreases, and the resistance value in the temperature rising state cannot be sufficiently decreased. There is a problem that the power consumption cannot be reduced.

【0004】また、従来のNTCサーミスタ素子では、
外気温度の変化により初期抵抗値にばらつきがあり、特
に0℃以下の低温では抵抗値の立ち上がりが遅れるとい
う問題があった。このような問題を改善するためには、
常温付近でのB定数が小さく、高温でのB定数が大きく
なる特性が必要である。
Further, in the conventional NTC thermistor element,
There is a problem that the initial resistance value varies depending on the change of the outside air temperature, and the rise of the resistance value is delayed particularly at a low temperature of 0 ° C. or less. To remedy such problems,
It is necessary that the B constant be small near room temperature and the B constant be large at high temperature.

【0005】本発明の目的は、低温での抵抗値の立ち上
がりが向上し、昇温状態での抵抗値を小さくして電力消
費量を低減すると共に、大電流にも対応可能とし、かつ
信頼性に優れた半導体セラミック素子を提供することに
ある。
The object of the present invention is to improve the rise of the resistance value at a low temperature, reduce the resistance value in a temperature rising state to reduce the power consumption, and also to cope with a large current, and to improve the reliability. Another object of the present invention is to provide an excellent semiconductor ceramic device.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため、B定数が室温で小さく高温で大きくな
る負の抵抗温度特性を示すセラミック組成物について鋭
意検討したところ、希土類遷移元素からなる酸化物セラ
ミック組成がこのような特性を有しており、かつこのよ
うな希土類遷移元素酸化物のセラミック素体の空隙率を
3〜20体積%とすることにより、信頼性の高い半導体
セラミック素子が得られることを見い出し、本発明を完
成するに至った。
In order to achieve the above object, the inventors of the present invention have made earnest studies on a ceramic composition exhibiting a negative resistance-temperature characteristic in which the B constant is small at room temperature and large at high temperature. The oxide ceramic composition of elements has such characteristics, and the porosity of such a ceramic element body of rare earth transition element oxide is set to 3 to 20% by volume, so that a highly reliable semiconductor can be obtained. The inventors have found that a ceramic element can be obtained, and completed the present invention.

【0007】すなわち、本発明の半導体セラミック素子
は、セラミック素体が希土類遷移元素酸化物から形成さ
れ、かつセラミック素体の空隙率が3〜20体積%であ
ることを特徴としている。
That is, the semiconductor ceramic element of the present invention is characterized in that the ceramic body is made of a rare earth element oxide and the porosity of the ceramic body is 3 to 20% by volume.

【0008】本発明において用いる希土類遷移元素酸化
物は、希土類元素と遷移元素からなる酸化物であれば特
に限定されるものではないが、例えば、LaCo系また
はNdCoO3 等の希土類遷移元素酸化物を用いること
ができる。特に、LaCo系酸化物は、温度上昇による
B定数の増加が大きく、かつ室温におけるB定数が小さ
いので、優れた特性を得ることができる。
The rare earth transition element oxide used in the present invention is not particularly limited as long as it is an oxide composed of a rare earth element and a transition element. For example, a rare earth transition element oxide such as LaCo type or NdCoO 3 is used. Can be used. In particular, LaCo-based oxides have a large increase in B constant due to temperature increase and a small B constant at room temperature, and therefore excellent properties can be obtained.

【0009】[0009]

【作用】希土類遷移元素酸化物が、低抵抗で室温のB定
数が小さく、かつ高温でのB定数が大きいという特性に
ついては、例えば、V.G.Bhide、D.S.Ra
−joriaによる文献(Phys.Rev.B6
〔3〕1021(1972))等に記載されている。本
発明者らは、このような特性が実際に素子に適用できる
か否かについて実用試験を種々試みた結果、大電流を流
しても破壊されず、十分に電流抑制効果を示すものの、
抵抗値の変化率が製造条件によって大きく影響され、こ
の原因が成形充填圧力や焼成温度、あるいはバインダの
含有率によって決まる焼成体の空隙率に大きく依存して
いることを見い出した。本発明では、このようなセラミ
ック素体の空隙率を3〜20体積%とし、信頼性の高い
安定した特性を示す半導体セラミック素子としている。
セラミック素体の空隙率が3体積%より小さくなると、
酸化が容易に進まないためB定数が小さくなり、20体
積%を超えると、信頼性が低下する。
With respect to the characteristics that the rare earth transition element oxide has a low resistance, a small B constant at room temperature, and a large B constant at high temperature, for example, V.I. G. Bhide, D.A. S. Ra
-Joria reference (Phys. Rev. B6
[3] 1021 (1972)) and the like. As a result of various trials of practical tests on whether or not such characteristics can be actually applied to the element, the present inventors did not break even when a large current was flowed, but showed a sufficient current suppressing effect,
It was found that the rate of change of the resistance value was greatly influenced by the manufacturing conditions, and the cause was largely dependent on the molding filling pressure, the firing temperature, or the porosity of the fired body determined by the binder content. In the present invention, such a ceramic body has a porosity of 3 to 20% by volume, and is a semiconductor ceramic element exhibiting reliable and stable characteristics.
When the porosity of the ceramic body becomes smaller than 3% by volume,
Since the oxidation does not proceed easily, the B constant becomes small, and when it exceeds 20% by volume, the reliability decreases.

【0010】本発明に従い希土類遷移元素酸化物からな
るセラミック素体を用い、かつその空隙率を3〜20体
積%とすることにより、信頼性及び室温抵抗値の安定性
を向上させることができ、室温状態での抵抗の低抵抗
化、定常状態での電力消費量の低減化、及び許容電流値
の大電流化を図ることができる。
According to the present invention, by using a ceramic body made of a rare earth transition element oxide and having a porosity of 3 to 20% by volume, reliability and stability of room temperature resistance value can be improved, It is possible to reduce the resistance in the room temperature state, reduce the power consumption in the steady state, and increase the allowable current value.

【0011】[0011]

【実施例】以下、本発明を実施例により詳細に説明す
る。実施例 希土類遷移元素酸化物として、LaX CoY 3 (X/
Y=0.9〜1.1)となるように、Co3 4 、La
2 3 の粉末を秤量し混合する。この粉末を、純水を用
いてボールミルで16時間湿式混合した後、乾燥させて
1000℃で2時間仮焼する。この仮焼粉末にバインダ
を5重量%加えて、再度ボールミルで5時間湿式混合し
て粉砕し、濾過、乾燥させた後、室温抵抗値が10Ωと
なるように、円板状に加圧成形し、該成形体を大気中で
1400℃で2時間焼成して焼成体(8.2体積%)と
する。次に、この焼成体の両面に銀ペーストを塗布した
後に、650℃で焼き付けて電極を形成し、NTCサー
ミスタ素子を得る。
EXAMPLES The present invention will be described in detail below with reference to examples. Examples La X Co Y O 3 (X /
Y = 0.9 to 1.1) so that Co 3 O 4 , La
2 O 3 powder is weighed and mixed. The powder is wet mixed with pure water in a ball mill for 16 hours, dried, and calcined at 1000 ° C. for 2 hours. 5% by weight of a binder was added to the calcined powder, the mixture was again wet mixed in a ball mill for 5 hours, pulverized, filtered, dried, and then pressure-molded into a disk shape so that the room temperature resistance value was 10Ω. The molded body is fired in the atmosphere at 1400 ° C. for 2 hours to obtain a fired body (8.2% by volume). Next, after applying a silver paste on both sides of this fired body, it is baked at 650 ° C. to form an electrode, and an NTC thermistor element is obtained.

【0012】比較例 比較のため、従来のNTCサーミスタ素子を製造する。
Co3 4 、Mn3 4 及びCuCO3 をそれぞれ重量
比で6:3:1の割合となるように秤量し、この粉末を
用いて、上記実施例と同様にしてNTCサーミスタ素子
を製造する。
[0012]Comparative example For comparison, a conventional NTC thermistor element is manufactured.
Co3OFour, Mn3O FourAnd CuCO3Each weight
Weigh this powder to a ratio of 6: 3: 1 and
Using the NTC thermistor element as in the above embodiment
To manufacture.

【0013】図1は、上記実施例及び比較例のNTCサ
ーミスタ素子の比抵抗の温度依存性を示す特性図であ
る。図1に示されるように、比較例のNTC素子では、
25℃の比抵抗が100Ω・cmと高く、また温度上昇
によるB定数の増加が小さい。これに対して、本発明に
従う実施例のNTC素子では、25℃の比抵抗が20Ω
・cm以下と小さく、さらに温度上昇によるB定数の増
加が大きく、高温において比較例のNTC素子よりも低
抵抗が得られることを示している。
FIG. 1 is a characteristic diagram showing the temperature dependence of the specific resistance of the NTC thermistor elements of the above-mentioned Examples and Comparative Examples. As shown in FIG. 1, in the NTC element of the comparative example,
The specific resistance at 25 ° C. is as high as 100 Ω · cm, and the increase in B constant due to temperature rise is small. On the other hand, in the NTC element of the example according to the present invention, the specific resistance at 25 ° C. is 20Ω.
It is shown that the resistance is smaller than that of the NTC element of the comparative example at a high temperature, which is small as cm or less and further increases the B constant due to the temperature rise.

【0014】実施例のNTC素子と比較例のNTC素子
とをそれぞれスイッチング電源に直列接続し、電源投入
時のスイッチング電源電流値の時間変化を測定した。こ
の結果を表1に示す。
The NTC element of the example and the NTC element of the comparative example were respectively connected in series to a switching power supply, and the time change of the current value of the switching power supply when the power was turned on was measured. The results are shown in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】表1から明らかなように、比較例の素子の
場合も電流遅延効果はあるが、外気温が60℃と−30
℃の時、1秒後の電流値がそれぞれ9.1A及び1.3
Aを示しており、立ち上がり特性のばらつきが大きいこ
とがわかる。
As is clear from Table 1, the device of the comparative example also has the current delay effect, but the outside air temperature is 60 ° C. and −30.
At ℃, the current value after 1 second was 9.1 A and 1.3, respectively.
A indicates that there is a large variation in the rising characteristics.

【0017】図2は、実施例のNTC素子の繰り返し通
電試験の結果を示す図である。試験は、1分間電流を通
電後、30分間電源を切り25℃に冷却するというヒー
トサイクルを10000回行った。図2には、1回目の
特性と、10000回目の特性が示されており、100
00回行っても特性の変化がまったく認められないこと
がわかる。
FIG. 2 is a diagram showing the results of the repeated energization test of the NTC element of the example. In the test, a heat cycle of conducting a current for 1 minute, turning off the power for 30 minutes and cooling to 25 ° C. was performed 10,000 times. FIG. 2 shows the characteristics of the first time and the characteristics of the 10,000th time.
It can be seen that no change in the characteristics was observed even after the operation was repeated 100 times.

【0018】また、実施例のNTC素子100個に対
し、20Aを通電して実用試験を行った結果、いずれの
素子も破壊することがなく、大電流にも適用できること
が確認された。
Further, as a result of conducting a practical test to 100 NTC elements of the embodiment by applying 20 A to them, it was confirmed that they can be applied to a large current without destroying any element.

【0019】次に、上記実施例において仮焼粉末に加え
るバインダの量を0〜15重量%と変化させることによ
り、下記の表2に示すような空隙率の異なる焼成体を作
製し、これらの焼成体から上記実施例と同様にしてNT
Cサーミスタ素子を製造した。これらのNTCサーミス
タ素子それぞれ50個に対し、高温放置試験(200
℃,1000時間)、及び通電試験(10A,1000
時間)における抵抗値の変化率を測定し、その結果を表
2に示した。またB定数を測定し、表2に示した。ここ
でB定数は、温度をT、比抵抗をρ、自然対数をLnと
すると、 B(T)={Lnρ(T0 )−Lnρ(T)}/(T0
−T) で定義される定数であり、温度による抵抗変化を示して
いる。この数値が大きいほど温度による抵抗変化が大き
い。ここで示したB定数は、室温25℃から200℃に
上昇させたときの定数を示す。
Next, by changing the amount of the binder added to the calcined powder in the above-mentioned examples to 0 to 15% by weight, fired bodies having different porosities as shown in Table 2 below were prepared, and these were prepared. From the fired body to NT as in the above embodiment
A C thermistor element was manufactured. A high-temperature storage test (200
℃, 1000 hours) and energization test (10A, 1000
The rate of change in resistance value over time was measured, and the results are shown in Table 2. The B constant was measured and is shown in Table 2. Here, B constant is B (T) = {Lnρ (T 0 ) −Lnρ (T)} / (T 0 where T is temperature, ρ is resistivity, and Ln is natural logarithm.
It is a constant defined by −T) and indicates a resistance change with temperature. The larger this value, the larger the resistance change with temperature. The B constant shown here is a constant when the temperature is raised from 25 ° C. to 200 ° C.

【0020】なお、表2において、試料番号に*を付け
たものは、空隙率が本発明の範囲外である比較例であ
る。
In Table 2, the sample numbers with * are comparative examples in which the porosity is outside the range of the present invention.

【0021】[0021]

【表2】 [Table 2]

【0022】表2から明らかなように、空隙率が本発明
の範囲よりも小さい試料番号1及び2では、高温でのB
定数が小さくなっている。また空隙率が本発明の範囲よ
りも大きい試料番号9及び10では、高温放置試験にお
ける抵抗変化率及び通電試験における抵抗変化率が−1
0%以上の変化を示しており、信頼性が低いことがわか
る。
As is clear from Table 2, in Sample Nos. 1 and 2 having a porosity smaller than the range of the present invention, B at high temperature
The constant is getting smaller. In Sample Nos. 9 and 10 having a porosity larger than the range of the present invention, the resistance change rate in the high temperature storage test and the resistance change rate in the current application test were -1.
A change of 0% or more is shown, indicating that the reliability is low.

【0023】上記実施例では、円板状のNTCサーミス
タ素子を製造し説明しているが、本発明の半導体セラミ
ック素子はこのような形状に限定されるものではなく、
積層素子、円筒形素子など他の素子形状のものにも適用
されるものである。また上記実施例においては、素子の
電極としてAgを用いたが、Pd、Pt、あるいはそれ
らの合金など他の電極材料を用いても同様の特性を得る
ことができる。
Although the disk-shaped NTC thermistor element is manufactured and described in the above embodiment, the semiconductor ceramic element of the present invention is not limited to such a shape.
It is also applied to other element shapes such as a laminated element and a cylindrical element. Further, although Ag is used as the electrode of the element in the above-mentioned embodiment, similar characteristics can be obtained by using other electrode materials such as Pd, Pt or alloys thereof.

【0024】[0024]

【発明の効果】本発明に従い、希土類遷移元素酸化物か
らなるセラミック素体を用いることにより、室温でのB
定数が小さく、かつ温度上昇によるB定数が大きい素子
とすることができ、定常状態でき電力消費量を低減する
ことができ、大電流にも適用することができる。またセ
ラミック素体の空隙率を3〜20体積%とすることによ
り、高温でのB定数の向上、高温放置試験、通電試験等
の信頼性試験における特性値の安定性などを著しく向上
させることができる。
As described above, according to the present invention, by using the ceramic body made of rare earth transition element oxide, B
An element having a small constant and a large B constant due to temperature rise can be formed, a steady state can be achieved, power consumption can be reduced, and a large current can be applied. Further, by setting the porosity of the ceramic body to 3 to 20% by volume, it is possible to remarkably improve the B constant at high temperature and the stability of characteristic values in reliability tests such as high temperature storage test and energization test. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるNTCサーミスタ素子
の比抵抗の温度依存性を示す図。
FIG. 1 is a diagram showing the temperature dependence of the specific resistance of an NTC thermistor element in an example of the present invention.

【図2】本発明の実施例のヒートサイクル試験の時間−
電流特性を示す図。
FIG. 2 Time of heat cycle test of Example of the present invention-
The figure which shows a current characteristic.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負の抵抗温度係数を有するセラミック素
体を用いた半導体セラミック素子において、 前記セラミック素体が希土類遷移元素酸化物により形成
され、かつセラミック素体の空隙率が3〜20体積%で
あることを特徴とする、半導体セラミック素子。
1. A semiconductor ceramic device using a ceramic body having a negative temperature coefficient of resistance, wherein the ceramic body is made of a rare earth transition element oxide and the porosity of the ceramic body is 3 to 20% by volume. A semiconductor ceramic device characterized in that
【請求項2】 前記希土類遷移元素酸化物が、LaCo
系酸化物である、請求項1に記載の半導体セラミック素
子。
2. The rare earth transition element oxide is LaCo
The semiconductor ceramic device according to claim 1, which is a system oxide.
JP18521493A 1993-07-27 1993-07-27 Semiconductor ceramic element Expired - Fee Related JP3334264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18521493A JP3334264B2 (en) 1993-07-27 1993-07-27 Semiconductor ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18521493A JP3334264B2 (en) 1993-07-27 1993-07-27 Semiconductor ceramic element

Publications (2)

Publication Number Publication Date
JPH0745403A true JPH0745403A (en) 1995-02-14
JP3334264B2 JP3334264B2 (en) 2002-10-15

Family

ID=16166875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18521493A Expired - Fee Related JP3334264B2 (en) 1993-07-27 1993-07-27 Semiconductor ceramic element

Country Status (1)

Country Link
JP (1) JP3334264B2 (en)

Also Published As

Publication number Publication date
JP3334264B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
JPH0737706A (en) Semiconductor ceramic element
US3510820A (en) Thermistor
JPH09208310A (en) Semiconductor ceramic composition and semiconductor ceramic element using the same
JP2841395B2 (en) Method for manufacturing NTC thermistor
JP3334264B2 (en) Semiconductor ceramic element
JP3141719B2 (en) Semiconductor ceramic having negative resistance-temperature characteristics and semiconductor ceramic parts using the same
JPH08162302A (en) Thermistor and its manufacture
EP1227507B1 (en) Semiconductive ceramic composition and semiconductive ceramic element using the same
JPH07230902A (en) Semiconductor ceramic element
JPH07176405A (en) Ntc thermistor element
JPH01290549A (en) Oxide semiconductor composition for thermistor
JPH07176406A (en) Negative resistance temp. coefficient semiconductor ceramics, rush current-blocking element and motor start delaying element
JP3206517B2 (en) Semiconductor porcelain composition and semiconductor porcelain device using the same
JP3202278B2 (en) Composition for thermistor
JPH11116332A (en) Semiconductor ceramic composition and semiconductor ceramic device using the same
JP3624975B2 (en) PTC thermistor material and manufacturing method thereof
JP2000252104A (en) Semiconductor ceramic and semiconductor ceramic element
JP2948933B2 (en) Composition for thermistor
JPH0737705A (en) Semiconductor ceramic element
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH03271154A (en) Composition for thermistor
JP3208857B2 (en) Barium titanate-based semiconductor porcelain with negative resistance temperature characteristics
JPS643325B2 (en)
JPS5932043B2 (en) Manufacturing method of voltage nonlinear resistance element
JPH0653011A (en) Barium titanate based semiconductor porcelain having negative resistance temperature characteristic

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090802

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees