JPH0744158B2 - Semiconductor element manufacturing furnace - Google Patents

Semiconductor element manufacturing furnace

Info

Publication number
JPH0744158B2
JPH0744158B2 JP24756186A JP24756186A JPH0744158B2 JP H0744158 B2 JPH0744158 B2 JP H0744158B2 JP 24756186 A JP24756186 A JP 24756186A JP 24756186 A JP24756186 A JP 24756186A JP H0744158 B2 JPH0744158 B2 JP H0744158B2
Authority
JP
Japan
Prior art keywords
furnace
quartz tube
tube
temperature
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24756186A
Other languages
Japanese (ja)
Other versions
JPS63102224A (en
Inventor
秀明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP24756186A priority Critical patent/JPH0744158B2/en
Publication of JPS63102224A publication Critical patent/JPS63102224A/en
Publication of JPH0744158B2 publication Critical patent/JPH0744158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路等の半導体素子の製造炉であって、更
に詳述すれば、シリコン等の半導体に熱処理を施して酸
化または拡散を行う酸化・拡散炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a semiconductor element manufacturing furnace such as an integrated circuit. More specifically, a semiconductor such as silicon is subjected to heat treatment for oxidation or diffusion. Oxidation / diffusion furnace

〔従来技術〕[Prior art]

従来より、半導体製造プロセスに於て、酸化または拡散
のために一般的に用いられている炉は、第3図に図示す
る如く構成されている。
Conventionally, a furnace generally used for oxidation or diffusion in a semiconductor manufacturing process is configured as shown in FIG.

すなわち、この炉は、加工すべき半導体ウエハを収容可
能にした石英製の炉管1と該炉管1を加熱するために囲
繞されたヒータ2と、炉管1およびヒータ2との間に配
置されてヒータ2からの汚染を防止すると共に、ヒータ
2からの放射熱を均一にする均熱間3とから成ってい
る。
That is, this furnace is arranged between a furnace tube 1 made of quartz capable of accommodating a semiconductor wafer to be processed, a heater 2 surrounded to heat the furnace tube 1, and the furnace tube 1 and the heater 2. The heat soak zone 3 prevents the contamination from the heater 2 and makes the radiant heat from the heater 2 uniform.

このような炉により、例えば拡散処理は、適当な不純物
としての原子を含むガスを炉管に通過させ、炉温により
ウエハ表面に行われる。
With such a furnace, for example, the diffusion process is performed on the wafer surface at a furnace temperature by passing a gas containing atoms as appropriate impurities through a furnace tube.

係る製造炉では、加工される材料の反覆性と均等性は、
炉内の温度安定度と均等性によって得られることが良く
知られている。従って、炉内温度を測定し、制御するこ
と並びに炉内の汚染を防止して均等性を維持することは
重要かつ不可欠である。
In such a manufacturing furnace, the repetitiveness and uniformity of the processed material are
It is well known that it is obtained by temperature stability and uniformity in the furnace. Therefore, it is important and essential to measure and control the temperature in the furnace and prevent contamination in the furnace to maintain uniformity.

従来炉では、炉内の汚染を防止して温度制御を行うため
に、熱電対を用いかつ炉管の外側で温度測定を行ってい
た。また、作業処理工程前に炉内温度を別途測定し、こ
の炉内温度をもとに前記外部測定により得られた温度を
補正するようにして、ヒータ電流を制御していた。
In the conventional furnace, in order to prevent contamination in the furnace and control the temperature, the temperature was measured using a thermocouple and outside the furnace tube. Further, the temperature inside the furnace is separately measured before the work processing step, and the heater current is controlled so as to correct the temperature obtained by the external measurement based on the temperature inside the furnace.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上述したとおり従来炉では、炉管の外側
で測定して得られた外部温度に相応して炉内温度を制御
していたため、例えば作業状態下でガス流の状態によっ
て左右される温度変化には必ずしも追従できていなかっ
た。この点を解決するためには、炉内温度に近似した外
部温度が測定されればよい訳であり、そのために、均熱
管を取外すことも考えられるが、しかし、均熱管は汚染
防止上から取外すことができなかった。
However, as described above, in the conventional furnace, the temperature inside the furnace was controlled according to the external temperature obtained outside the furnace tube. Was not always able to follow. In order to solve this point, it is only necessary to measure the external temperature that is close to the temperature inside the furnace. Therefore, it is possible to remove the soaking tube. I couldn't.

本発明の目的は、作業状態下の炉内の温度が実時間で測
定できて、加工される材料の反覆性と均等性が向上でき
る半導体素子の製造炉を提供することにある。
An object of the present invention is to provide a semiconductor device manufacturing furnace capable of measuring the temperature in the furnace under working conditions in real time and improving the repetitiveness and uniformity of the material to be processed.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明の上記目的は、中空円筒体から成り、
加工すべき半導体ウエハを収容可能にした石英管と、該
石英管を囲むように前記石英管の外方に順次配設された
均熱管及びヒータとを有し、該ヒータにより前記石英管
を加熱し前記半導体ウエハを高温処理する半導体素子の
製造炉において、前記石英管が遊嵌状態に嵌め合わされ
た2重構造からなり、かつ内方の石英管と外方の石英管
との間に該内方の石英管の内部温度を測定する少なくと
も1つの熱電対を設けたことを特徴とする半導体素子の
製造炉により達成される。
That is, the above-mentioned object of the present invention comprises a hollow cylindrical body,
It has a quartz tube capable of accommodating a semiconductor wafer to be processed, and a soaking tube and a heater which are sequentially arranged outside the quartz tube so as to surround the quartz tube, and the quartz tube is heated by the heater. In a semiconductor element manufacturing furnace for processing the semiconductor wafer at a high temperature, the quartz tube has a double structure in which the quartz tube is fitted in a loose fit state, and the quartz tube is provided between the inner quartz tube and the outer quartz tube. This is achieved by a furnace for manufacturing a semiconductor device, which is provided with at least one thermocouple for measuring the internal temperature of the other quartz tube.

〔作用〕[Action]

熱電対は内方の石英管と外方の石英管との間に納められ
た状態で炉内温度を測定するため、シリコンウエハが内
方の石英管内に収容された処理作業下で、炉管内の反応
に影響を与えない。
Since the thermocouple measures the temperature inside the furnace while it is housed between the inner quartz tube and the outer quartz tube, the inside of the furnace tube cannot be Does not affect the reaction of.

〔実施例〕〔Example〕

以下、図面により本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図は本発明の半導体素子の製造炉の1
実施例を図示しており、第2図は第1図に示す炉の要部
断面を示している。なお、本実施例では拡散炉を例示し
て説明する。
1 and 2 show a semiconductor device manufacturing furnace 1 according to the present invention.
Fig. 2 shows an embodiment, and Fig. 2 shows a cross section of the main part of the furnace shown in Fig. 1. In this embodiment, a diffusion furnace will be described as an example.

本発明が適用される2重石英管構造の拡散炉10は、口径
が異なる2本の中空円筒体の石英管11,12が長手方向に
沿って遊嵌状態に嵌め合わされており、他に前記2本の
石英管11,12を内包するように配置された均熱管13と、
該均熱管13の外面に配設されたヒータから成る電気炉14
と、を備えている。前記石英管11,12は石英製から成っ
ており、内方の石英管11は拡散が行われるシリコンウエ
ハ16を内部に収容可能に設けている。また、内方の石英
管11及び、内方の石英管11と外方の石英管12との間はガ
ス流が供給されるように設けられており、かつ内方の石
英管11と外方の石英管12との間には炉管に沿って少なく
とも1つの熱電対が収容可能に設けられている。
In the diffusion furnace 10 having a double quartz tube structure to which the present invention is applied, two hollow cylindrical quartz tubes 11 and 12 having different diameters are loosely fitted along the longitudinal direction. Soaking tube 13 arranged so as to include two quartz tubes 11 and 12,
An electric furnace 14 comprising a heater arranged on the outer surface of the soaking tube 13.
And are equipped with. The quartz tubes 11 and 12 are made of quartz, and the inner quartz tube 11 is provided so that a silicon wafer 16 in which diffusion is performed can be housed inside. Further, the inner quartz tube 11 and the inner quartz tube 11 and the outer quartz tube 12 are provided so that a gas flow is supplied, and the inner quartz tube 11 and the outer quartz tube 12 are provided. Between the quartz tube 12 and the quartz tube 12, at least one thermocouple is accommodated along the furnace tube.

このように構成された製造炉を用い、シリコンウエハ16
に外部から不純物を添加する拡散は、シリコンウエハ16
を石英から成る受台17に乗せて内方の石英管11内に収容
させた後、該石英管11の一方から例えばB(ホウ素)を
供給し、このBを含む雰囲気の中でシリコンウエハ16を
電気炉14によって900℃〜1000℃に加熱して行う。この
際、内方の石英管11と外方の石英管12との間に少なくと
も1つ熱電対15がセッティングされているので、石英管
11内の拡散温度を実時間で監視できる。また、炉管内の
複数個所の温度を一度に測定できる。
Using the manufacturing furnace configured as above, the silicon wafer 16
External diffusion of impurities into the silicon wafer 16
Is placed on a pedestal 17 made of quartz and housed in an inner quartz tube 11, and then, for example, B (boron) is supplied from one side of the quartz tube 11 and the silicon wafer 16 is supplied in an atmosphere containing B. Is heated to 900 ° C to 1000 ° C by the electric furnace 14. At this time, since at least one thermocouple 15 is set between the inner quartz tube 11 and the outer quartz tube 12, the quartz tube
The diffusion temperature within 11 can be monitored in real time. In addition, the temperature at a plurality of locations inside the furnace tube can be measured at one time.

熱電対は、被測定温度および使用される雰囲気に適した
ものが選択されることが望ましい。また、熱電対の動作
によりヒータ電流を直接制御するように構成することも
出来る。
It is desirable to select a thermocouple suitable for the temperature to be measured and the atmosphere used. Alternatively, the heater current may be directly controlled by the operation of the thermocouple.

前記実施例では、ホウ素原子を拡散してp形シリコンを
作る場合を述べたが、P(リン)を拡散してn形シリコ
ンを作る場合であっても、更にまた、酸化性ガスを供給
してシリコン酸化膜を形成する酸化炉にも本発明は適用
できることは当然である。
In the above-mentioned embodiment, the case where the boron atom is diffused to form the p-type silicon is described. However, even when the P (phosphorus) is diffused to form the n-type silicon, the oxidizing gas is further supplied. It goes without saying that the present invention can be applied to an oxidation furnace that forms a silicon oxide film by using the above method.

〔発明の効果〕〔The invention's effect〕

以上記載したとおり、本発明の製造炉によれば、2重石
英管構造の内方の石英管と外方の石英管との間に熱電対
を収容可能に設けたことにより、ウエハを炉内に収容し
た加工処理状態でも、石英管炉内の温度を監視できる。
また、このように加工処理状態下の温度が実時間で測定
できるため、温度制御が正確になり、従って、処理加工
の反覆性および均等性が向上できる。更に、熱電対は取
外し自在に設けられることにより、対象の熱電対を複数
の炉に適用させて用いることが出来る。
As described above, according to the manufacturing furnace of the present invention, since the thermocouple is accommodated between the inner quartz tube and the outer quartz tube of the double quartz tube structure, the wafer can be housed in the furnace. The temperature inside the quartz tube furnace can be monitored even in the processing state stored in.
Further, since the temperature under the processing state can be measured in real time in this manner, the temperature control becomes accurate, and therefore, the repetitiveness and uniformity of the processing can be improved. Further, since the thermocouple is detachably provided, the target thermocouple can be used by being applied to a plurality of furnaces.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例による製造炉の構成を説明す
る部分斜視図、第2図は第1図の要部を示す垂直断面
図、第3図は従来の製造炉を説明する図である。 10…拡散炉、11…内方の石英管、12…外方の石英管、13
…均熱管、14…電気炉、15…熱電対、16…シリコンウエ
ハ、17…受台。
FIG. 1 is a partial perspective view for explaining the structure of a manufacturing furnace according to an embodiment of the present invention, FIG. 2 is a vertical sectional view showing an essential part of FIG. 1, and FIG. 3 is a drawing for explaining a conventional manufacturing furnace. Is. 10… Diffusion furnace, 11… Inner quartz tube, 12… Outer quartz tube, 13
… Soaking tube, 14… Electric furnace, 15… Thermocouple, 16… Silicon wafer, 17… Cradle.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中空円筒体から成り、加工すべき半導体ウ
エハを収容可能にした石英管と、該石英管を囲むように
前記石英管の外方に順次配設された均熱管及びヒータと
を有し、該ヒータにより前記石英管を加熱し前記半導体
ウエハを高温処理する半導体素子の製造炉において、 前記石英管が遊嵌状態に嵌め合わされた2重管構造から
なり、かつ内方の石英管と外方の石英管との間に該内方
の石英管の内部温度を測定する少なくとも1つの熱電対
を設けたことを特徴とする半導体素子の製造炉。
1. A quartz tube which is made of a hollow cylindrical body and which can accommodate a semiconductor wafer to be processed, and a soaking tube and a heater which are sequentially arranged outside the quartz tube so as to surround the quartz tube. A furnace for manufacturing a semiconductor device, wherein the quartz tube is heated by the heater to process the semiconductor wafer at a high temperature, and the quartz tube has a double tube structure in which the quartz tube is fitted loosely and the inner quartz tube is A furnace for manufacturing a semiconductor device, wherein at least one thermocouple for measuring an internal temperature of the inner quartz tube is provided between the outer quartz tube and the outer quartz tube.
JP24756186A 1986-10-20 1986-10-20 Semiconductor element manufacturing furnace Expired - Lifetime JPH0744158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24756186A JPH0744158B2 (en) 1986-10-20 1986-10-20 Semiconductor element manufacturing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24756186A JPH0744158B2 (en) 1986-10-20 1986-10-20 Semiconductor element manufacturing furnace

Publications (2)

Publication Number Publication Date
JPS63102224A JPS63102224A (en) 1988-05-07
JPH0744158B2 true JPH0744158B2 (en) 1995-05-15

Family

ID=17165325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24756186A Expired - Lifetime JPH0744158B2 (en) 1986-10-20 1986-10-20 Semiconductor element manufacturing furnace

Country Status (1)

Country Link
JP (1) JPH0744158B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252435U (en) * 1988-10-11 1990-04-16

Also Published As

Publication number Publication date
JPS63102224A (en) 1988-05-07

Similar Documents

Publication Publication Date Title
KR100366395B1 (en) Vertical heat treatment device
JP4426024B2 (en) Temperature calibration method for heat treatment equipment
JPS5588323A (en) Manufacture of semiconductor device
JPH0744158B2 (en) Semiconductor element manufacturing furnace
JP3075254B2 (en) Lamp annealing equipment
JP4393009B2 (en) Vertical heat treatment equipment
JPS6047981B2 (en) Jig for detecting internal temperature of horizontal heat treatment furnace
JPH01102923A (en) Adjustment of temperature inside heating furnace
JPS62140413A (en) Vertical type diffusion equipment
JPS63181315A (en) Equipment for heat treatment
JPS626342B2 (en)
JPS61141123A (en) Equipment for manufacturing semiconductor
JP3130908B2 (en) Temperature measurement method for heat treatment furnace for substrates
JPH06208964A (en) Diffusion and oxidation processing device for silicon wafer
JPH06196427A (en) Boat for heat treatment of wafer
JPH04259214A (en) Measuring method of temperature distribution in heat treating furnace
JPS5932907Y2 (en) temperature measuring device
JP3344603B2 (en) Temperature measuring device and temperature measuring method
JPS63115329A (en) Impurity diffusing method
JPS58294Y2 (en) semiconductor diffusion furnace
JP2005093685A (en) Heat treatment apparatus and manufacturing method for semiconductor device
KR940000403Y1 (en) Quartz tube structure for wafer
JP2003249456A (en) Substrate treating apparatus
JP2001033314A (en) Thermometer for heat treatment furnace
JPH0373134B2 (en)