JPH0742528B2 - Method for producing high purity, high chromium content alloy - Google Patents

Method for producing high purity, high chromium content alloy

Info

Publication number
JPH0742528B2
JPH0742528B2 JP5717489A JP5717489A JPH0742528B2 JP H0742528 B2 JPH0742528 B2 JP H0742528B2 JP 5717489 A JP5717489 A JP 5717489A JP 5717489 A JP5717489 A JP 5717489A JP H0742528 B2 JPH0742528 B2 JP H0742528B2
Authority
JP
Japan
Prior art keywords
ferrochrome
nitride
nitriding
particles
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5717489A
Other languages
Japanese (ja)
Other versions
JPH02236237A (en
Inventor
昌憲 加藤
恵一 中川
清 川崎
豊 矢野
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP5717489A priority Critical patent/JPH0742528B2/en
Priority to US07/428,582 priority patent/US5123957A/en
Priority to EP89120889A priority patent/EP0371299B1/en
Priority to DE89120889T priority patent/DE68909009T2/en
Priority to CA002002790A priority patent/CA2002790A1/en
Publication of JPH02236237A publication Critical patent/JPH02236237A/en
Publication of JPH0742528B2 publication Critical patent/JPH0742528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は合金の添加金属として用いられる高純度のク
ロム含有率の高い合金の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a high-purity alloy having a high chromium content, which is used as an additive metal of an alloy.

[従来の技術] 高純度の低炭素フェロクロム(Cr65%以上)は、ニッケ
ル基、鉄ニッケル基、コバルト基などのスーパーアロイ
分野で、主成分のクロム源として添加され、耐食性また
は強度の向上に必要不可欠のものである。また、溶接
棒、粉末冶金の分野では粉末状の添加材として鉄、ニッ
ケルの粉末と混合されて多量に使用されている。
[Prior Art] High-purity low-carbon ferrochrome (Cr 65% or more) is added as a main component chromium source in the superalloy field of nickel-based, iron-nickel-based, cobalt-based, etc., and is required for improving corrosion resistance or strength. It is indispensable. Further, in the fields of welding rods and powder metallurgy, they are used in large amounts by being mixed with iron and nickel powders as powdery additive materials.

従来の高クロム含有低炭素フェロクロムの製造方法とし
ては、大別すると(a)ペラン法、(b)スエーデン
法、(c)多段ペラン法、(d)その他が挙げられる。
The conventional methods for producing high-chromium low-carbon ferrochromes are roughly classified into (a) perane method, (b) sweden method, (c) multi-stage perane method, (d) and others.

このうち、(a),(b)法は電気炉を用いて多量に生
産できる経済的な方法として知られている。また、
(c)法はクロム鉱石の1次スラグを溶解後、弱還元条
件で脱鉄し、最後に強還元して低炭素フェロクロムを得
る方法で、85%〜90%の高いCr成分のものが得れる。さ
らに、(d)その他の方法としてアルミテルミット法が
考えられる。
Among them, the methods (a) and (b) are known as economical methods capable of mass production using an electric furnace. Also,
Method (c) is a method in which the primary slag of chromium ore is melted, deironed under weak reducing conditions, and finally strongly reduced to obtain low-carbon ferrochrome, which has a high Cr content of 85% to 90%. Be done. Further, as (d) other methods, an aluminum thermite method can be considered.

[発明が解決しようとする課題] しかしながら、前記(a)ペラン法、(b)スエーデン
法では、原料として経済的に入手できるクロム鉱石がFe
を多量に含むため、得られる低炭素フェロクロムのCr成
分は72%が上限である。(c)多段ぺラン法は、製造工
程で高融点の溶融金属の取り扱いに問題があり、また多
量に発生するCr含有量の低い低炭素フェロクロムの処理
が必要となるために、経済的に得られるCr含有率は高々
91%程度で、さらに製品中のSi,O,N等の不純物が多いな
どの難点がある。
[Problems to be Solved by the Invention] However, in the above-mentioned (a) Perran method and (b) Sweden method, chromium ore that is economically available as a raw material is Fe.
As a result, the upper limit of the Cr content of the obtained low carbon ferrochrome is 72%. (C) The multi-stage perlan method has a problem in handling molten metal having a high melting point in the manufacturing process and requires treatment of low carbon ferrochrome having a low Cr content, which is generated in a large amount. The highest Cr content
It is about 91%, and there is a problem that there are many impurities such as Si, O, N in the product.

本発明はかかる事情に鑑みてなされたもので、上記の難
点を解消し、クローム含有率95%以上の高純度、高クロ
ム含有合金の製造方法を提供しようとするものである。
The present invention has been made in view of such circumstances, and an object of the present invention is to solve the above problems and provide a method for producing a high-purity, high-chromium-containing alloy having a chromium content of 95% or more.

[問題点を解決するための手段、作用] 本発明による高純度、高クロム含有合金の製造方法は、
低炭素フェロクロムを固体窒化法により窒化して窒化フ
ェロクロムを得る第1の工程と、第1の工程で得られた
窒化フェロクロムを粉砕後、固体窒化法により窒化して
高窒素含有窒化フェロクロムを得る第2の工程と、前記
高窒素含有窒化フェロクロムを−1mm以下の粒度に粉砕
して得られた粒子と酸溶液とを混合、撹拌して脱鉄する
第3の工程と、脱鉄された前記高窒素含有窒化フェロク
ロムを真空加熱して脱窒する第4の工程を有する方法で
あって、前記第3の工程は前記粒子は前記酸溶液の中で
全体が浮遊するように撹拌混合すること、または前記粒
子と前記酸溶液からなるスラリーを循環手段により循環
させて、混合撹拌させることを特徴とする。
[Means and Actions for Solving Problems] The method for producing an alloy of high purity and high chromium content according to the present invention comprises:
First step of nitriding low carbon ferrochrome by solid nitriding method to obtain ferrochrome nitride, and crushing ferrochrome nitride obtained in the first step, then nitriding by solid nitriding method to obtain high nitrogen content ferrochrome nitride The second step, the third step of mixing the particles obtained by crushing the high nitrogen-containing ferrochrome nitride to a particle size of -1 mm or less with an acid solution, stirring and deferring the iron, A method comprising a fourth step of denitrifying nitrogen-containing ferrochrome nitride by heating it in vacuum, wherein the third step comprises stirring and mixing the particles so that they are entirely suspended in the acid solution, or It is characterized in that a slurry comprising the particles and the acid solution is circulated by a circulation means and mixed and stirred.

第1の工程で得られる窒化フェロクロムは、Crが85〜95
%の窒化物相と、Fe,Si,Coおよび5〜20%のCrを含む金
属相の2相からなっている。第2の工程によりで前記窒
化フェロクロム中の窒化物はCr2Nの形態からCrNの形態
に変化され、このCrNの中の固溶Fe量が低減して第3の
工程で効率よく脱鉄される。脱鉄の工程ではSi,P,S,Ni,
Co,Mn等の不純物が鉄とともに除去される。第4の工程
で、酸処理された前記窒化フェロクロムを真空中で加熱
することにより、下記の反応により脱窒されるととも
に、その他のC,0等の不純物成分が除去される。
Ferrochrome nitride obtained in the first step has a Cr content of 85 to 95.
% Nitride phase and a metallic phase containing Fe, Si, Co and 5 to 20% Cr. By the second step, the nitride in the ferrochrome nitride is changed from the Cr 2 N form to the CrN form, the amount of solid solution Fe in this CrN is reduced, and the iron is efficiently deironed in the third process. It In the iron removal process, Si, P, S, Ni,
Impurities such as Co and Mn are removed together with iron. In the fourth step, the acid-treated ferrochrome nitride is heated in vacuum to be denitrified by the following reaction, and other impurity components such as C, 0 are removed.

CrN(s)→2Cr(s)+1/2N2(g)、 Cr2N(s)→2Cr(s)+1/2N2(g)、 C(s)+O(s)→CO(g)、 上記の式で、(s)は固体、(g)は気体を表す。CrN (s) → 2Cr (s) + 1 / 2N 2 (g), Cr 2 N (s) → 2Cr (s) + 1 / 2N 2 (g), C (s) + O (s) → CO (g), In the above formula, (s) represents a solid and (g) represents a gas.

[実施例] 本実施例においては、原料となる低炭素フェロクロム
は、Cr,50%以上、C,1%以下のものが使用される。Crが
50%未満では酸処理で除去するFeの量が多くなって効率
が悪く、Cが1%を超えると窒化が円滑に進まない。前
記低炭素フェロクロムは、機械的に破砕して5mm以下の
粒度にされ、これを真空加熱炉を用いて固体窒化法によ
り窒化される。このとき、真空加熱炉は、真空度を0.1T
orr以下、温度を1000℃〜1300℃として、窒素ガスが導
入され、窒化が行われる。
[Examples] In this example, the low carbon ferrochrome used as a raw material is Cr, 50% or more and C, 1% or less. Cr is
If it is less than 50%, the amount of Fe removed by the acid treatment is large and the efficiency is poor, and if C exceeds 1%, nitriding does not proceed smoothly. The low carbon ferrochrome is mechanically crushed into particles having a particle size of 5 mm or less, and this is nitrided by a solid nitriding method using a vacuum heating furnace. At this time, the vacuum furnace has a vacuum degree of 0.1T.
Nitrogen gas is introduced and nitriding is performed at a temperature of 1000 ° C to 1300 ° C below orr.

こうして得られた窒化フェロクロムは、Nを約7%含む
もので、走査電子顕微鏡による観察によると、Cr85%〜
95%の窒化物相と、Cr10%〜20%を含みその他Si,Coを
含むFe主体の金属相との2相からなっている。この窒化
物中の窒化クロムはCr2Nの形態から再度窒化することに
より、CrNの形態に変化され、このCrNの中の固溶Fe量が
低減するので、次の第3の工程で効率よく脱鉄されると
ともに、Si,Co等の不純物が除去される。
The ferrochrome nitride thus obtained contains about 7% of N, and when observed by a scanning electron microscope, it has a Cr content of 85% to 85%.
It consists of two phases, a 95% nitride phase and a Fe-based metal phase containing 10% to 20% of Cr and other Si and Co. Chromium nitride in this nitride is changed to the form of CrN by renitriding from the form of Cr 2 N, and the amount of solid solution Fe in this CrN is reduced. As the iron is removed, impurities such as Si and Co are removed.

脱鉄の工程においては、この高窒素含有窒化フェロクロ
ムを1mm以下に破砕して酸処理することにより、前記金
属相は大部分除去され、窒化物相だけが回収される。酸
処理された窒化物を温度1150〜1500℃で真空加熱するこ
とによりCrの含有率が95%以上の低炭素フェロクロムが
塊状で得られる。このときの酸処理および真空加熱の工
程で、C,N,Oが低減されて高純度のものとすることがで
きる。
In the deferring step, the high nitrogen-containing ferrochrome nitride is crushed to 1 mm or less and treated with an acid, whereby most of the metal phase is removed and only the nitride phase is recovered. By vacuum heating the acid-treated nitride at a temperature of 1150 to 1500 ° C, low carbon ferrochrome having a Cr content of 95% or more can be obtained in a lump form. C, N, O are reduced in the steps of acid treatment and vacuum heating at this time, and a high-purity product can be obtained.

本実施例の好ましい具体例を数値を挙げて説明する。表
1にはそれぞれ(1)原料とした低炭素フェロクロム、
(2)第1の工程で窒化された窒化フェロクロム、
(3)第2の工程で再度窒化された高窒素含有窒化フェ
ロクロム、(4)第3の工程による酸処理後の高窒素含
有窒化クロムおよび(5)第4の工程による脱窒後の高
純度、高クロム含有合金の成分を示してある。
A preferred specific example of this embodiment will be described by using numerical values. Table 1 shows low carbon ferrochrome used as (1) raw material,
(2) Ferrochrome nitride nitrided in the first step,
(3) high nitrogen content ferrochrome nitride renitrided in the second step, (4) high nitrogen content chromium nitride after the acid treatment in the third step, and (5) high purity after denitrification in the fourth step. , The components of high chromium content alloys are shown.

表1−(1)に示す組成で、粒度3mm以下の低炭素フェ
ロクロム、30.0kgを真空加熱炉で1150℃、24Hrの窒化処
理を行い、表1−(2)の窒化フェロクロムを32.4kgを
得た。この窒化フェロクロムを粉砕して、0.30mm以下と
し、これを30.0kgとって再度、真空加熱炉で900℃、24H
r、窒素900Torrの窒化処理を行い、窒素13.3%の高い窒
素含有率を有する表1−(3)の窒化フェロクロムを3
2.0kg回収した。
With the composition shown in Table 1- (1), 30.0 kg of low-carbon ferrochrome having a grain size of 3 mm or less, 30.0 kg, was subjected to a nitriding treatment at 1150 ° C. for 24 hours in a vacuum heating furnace to obtain 32.4 kg of ferrochrome nitride in Table 1- (2). It was Grind this ferrochrome nitride to 0.30 mm or less, and weigh it 30.0 kg again in a vacuum heating furnace at 900 ° C for 24 hours
Nitrogen treatment of 900 Torr of nitrogen and nitrogen was performed, and ferrochrome nitride of Table 1- (3) having a high nitrogen content of 13.3% of nitrogen was used.
2.0 kg was recovered.

この高窒素含有窒化フェロクロムを0.30mm以下に粉砕
し、以下の酸処理を行った。すなわち、容積100の反
応槽に、上昇流タイプの羽根を有し、羽根径/タンク径
=0.8で出力0.4kw,回転数250rpmの撹拌機を用いて、水5
0、次いで上記の粒度−0.30mmの高窒素含有窒化フェ
ロクロム、12kgを入れて撹拌した。さらに前記反応槽に
62.5%,H2SO4を全量で8、連続的に10Hrで定量ポンプ
により添加し、添加開始から16Hrで反応を行わせた。
The high nitrogen content ferrochrome nitride was crushed to 0.30 mm or less and subjected to the following acid treatment. That is, using a stirrer with an upflow type blade in a reaction tank with a volume of 100, a blade diameter / tank diameter = 0.8, an output of 0.4 kw, and a rotation speed of 250 rpm,
Then, 12 kg of high nitrogen-containing ferrochrome nitride having a grain size of −0.30 mm as described above was added and stirred. Further in the reaction tank
The total amount of 62.5%, H 2 SO 4 was 8 at 10 Hr continuously added by a metering pump, and the reaction was carried out at 16 Hr from the start of addition.

この反応スラリーを濾過、水洗後、ケーク(濾過物とも
いう)として回収し、水40と25%NH3,0.5の水溶液
中で前記反応槽中で混合し、濾過・水洗を行い乾燥し
た。得られた乾燥物8.0kgの組成を表1−(4)に示し
た。さらに、これにカーボンブラック0.6wt%を加えて
混合し、1350℃、24Hr真空処理を行って脱窒し、表1−
(5)に示すようにSi,P,S,Ni,Co,Mn,V,C,O,Nのいずれ
も低いCr99.0%の高純度、高クロム合金が6.2kg得られ
た。
The reaction slurry was filtered and washed with water, then collected as a cake (also referred to as a filtered product), mixed with water 40 and an aqueous solution of 25% NH 3 , 0.5 in the reaction tank, filtered, washed with water and dried. The composition of the obtained dried product (8.0 kg) is shown in Table 1- (4). Further, 0.6 wt% of carbon black was added thereto and mixed, and subjected to vacuum treatment at 1350 ° C. for 24 hours for denitrification.
As shown in (5), 6.2 kg of a high-purity, high-chromium alloy with Cr 99.0% in which Si, P, S, Ni, Co, Mn, V, C, O, and N were all low was obtained.

この具体例について、さらに説明を加える。まず、最初
の原料となる低炭素フェロクロムについては、粒度は−
3mmで、化学組成上はCrが高く、V,Mnは低い方が好まし
い。すなわち、粒度がこれ以上粗いと窒化工程で窒素が
入り難くなり、また、このため粉砕が経済的に行えなく
なってくる。またCr成分については、これが低いと酸処
理で除去すべきFe量が多くなり易く、通常入手できる範
囲(Cr60〜72%)でもなるべく高目の方が好ましい。ま
た、Mn,Vについては酸処理によって完全に除去できない
ことから、なるべく低めの方が好ましい。しかしなが
ら、本実施例については市販の一般に入手出来る低炭素
フェロクロムであって差し支えない。
This specific example will be further described. First, the particle size of low carbon ferrochrome, which is the first raw material, is-
It is preferable that Cr is 3 mm and the chemical composition is high in Cr and V and Mn are low. That is, if the particle size is coarser than this, it becomes difficult for nitrogen to enter in the nitriding step, and this makes it difficult to perform pulverization economically. Regarding the Cr component, if it is low, the amount of Fe to be removed by acid treatment tends to be large, and it is preferable that the Cr component is as high as possible even in the range that can be usually obtained (Cr 60 to 72%). Further, since Mn and V cannot be completely removed by acid treatment, it is preferable that the Mn and V be as low as possible. However, in this embodiment, commercially available low carbon ferrochrome may be used.

次に、窒化条件であるが、第1の工程では1000〜1300℃
と高目とし、第2の工程では第1の工程より低目として
800〜1000℃とすることが好ましい。窒素分圧について
はなるべく高圧の方が好ましい。いずれにしても、温
度、圧力、時間等の操業の条件は経済的に実施できる範
囲で定めることができる。
Next, the nitriding conditions are 1000 to 1300 ° C in the first step.
And the second step is lower than the first step
The temperature is preferably 800 to 1000 ° C. The nitrogen partial pressure is preferably as high as possible. In any case, operating conditions such as temperature, pressure and time can be determined within a range that can be economically implemented.

さらに、酸処理における条件については、1mm以下の粒
度とし、反応槽内で粒子全体が浮遊するように撹拌とス
ラリ循環方式の組み合わせで反応を行わせ、連続的に硫
酸を添加することが、不純物が低減され、かつ脱鉄工程
でのクロム歩留を向上できるので好ましい。
Furthermore, regarding the conditions in the acid treatment, the particle size is 1 mm or less, the reaction is carried out by a combination of stirring and a slurry circulation method so that the entire particles are suspended in the reaction tank, and sulfuric acid is continuously added. Is reduced and the chromium yield in the iron removal step can be improved, which is preferable.

必要とする酸量、濃度、反応温度等については目標とす
る製品中のCr含有量によって多少の増減を行うことが可
能である。
The required amount of acid, concentration, reaction temperature, etc. can be slightly increased or decreased depending on the target Cr content in the product.

[発明の効果] 本発明によれば、低炭素フェロクロムを窒化して得られ
る窒化フェロクロムを粉砕し、これを再窒化して高窒素
フェロクロムとした後、細粒に粉砕して、反応槽内で粒
子全体が浮遊するようにして酸溶液を連続的に添加して
脱鉄反応を行い、その後真空脱窒するので、市販の安価
な低炭素フェロクロムからFe以外の不純物量が少なく、
Crが95%以上の高純度、高クロム含有合金が経済的に製
造可能である。
[Effects of the Invention] According to the present invention, the ferrochrome nitride obtained by nitriding low-carbon ferrochrome is pulverized, renitrided to obtain high-nitrogen ferrochrome, and then pulverized into fine particles in a reaction tank The acid solution is continuously added so that the whole particles are suspended to carry out a deironing reaction, and then vacuum denitrification is performed, so that the amount of impurities other than Fe from commercially available low-carbon ferrochrome is small,
It is possible to economically produce a high-purity, high-chromium alloy containing 95% or more of Cr.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】低炭素フェロクロムを固体窒化法により窒
化して窒化フェロクロムを得る第1の工程と、第1の工
程で得られた窒化フェロクロムを粉砕後、固体窒化法に
より窒化して高窒素含有窒化フェロクロムを得る第2の
工程と、前記高窒素含有窒化フェロクロムを−1mm以下
の粒度に粉砕して得られた粒子と酸溶液とを混合、撹拌
して脱鉄する第3の工程と、脱鉄された前記高窒素含有
窒化フェロクロムを真空加熱して脱窒する第4の工程を
有する方法であって、前記第3の工程は前記粒子は前記
酸溶液の中で全体が浮遊するように撹拌混合すること、
または前記粒子と前記酸溶液からなるスラリーを循環手
段により循環させて、混合撹拌させることを特徴とする
高純度、高クロム含有合金の製造方法。
1. A first step of nitriding low carbon ferrochrome by a solid nitriding method to obtain ferrochrome nitride, and crushing the ferrochrome nitride obtained in the first step, followed by nitriding by a solid nitriding method to contain a high nitrogen content. A second step of obtaining ferrochrome nitride, a third step of mixing the particles obtained by crushing the high nitrogen content ferrochrome nitride to a particle size of -1 mm or less with an acid solution, stirring and deferring iron, A method comprising a fourth step of denitrifying the iron-containing high-nitrogen ferrochrome nitride by heating in vacuum, wherein the third step comprises stirring the particles so that they are entirely suspended in the acid solution. Mixing,
Alternatively, a method for producing a high-purity, high-chromium-containing alloy, characterized in that a slurry comprising the particles and the acid solution is circulated by a circulation means and mixed and stirred.
JP5717489A 1988-11-11 1989-03-09 Method for producing high purity, high chromium content alloy Expired - Fee Related JPH0742528B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5717489A JPH0742528B2 (en) 1989-03-09 1989-03-09 Method for producing high purity, high chromium content alloy
US07/428,582 US5123957A (en) 1988-11-11 1989-10-30 Method for manufacturing low carbon ferrochrome with high chromium content
EP89120889A EP0371299B1 (en) 1988-11-11 1989-11-10 Method for manufacturing low carbon ferrochrome with high chromium content
DE89120889T DE68909009T2 (en) 1988-11-11 1989-11-10 Process for the production of ferrochrome with low carbon and high chromium content.
CA002002790A CA2002790A1 (en) 1988-11-11 1989-11-10 Method for manufacturing low carbon ferrochrome with high chromium content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5717489A JPH0742528B2 (en) 1989-03-09 1989-03-09 Method for producing high purity, high chromium content alloy

Publications (2)

Publication Number Publication Date
JPH02236237A JPH02236237A (en) 1990-09-19
JPH0742528B2 true JPH0742528B2 (en) 1995-05-10

Family

ID=13048176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5717489A Expired - Fee Related JPH0742528B2 (en) 1988-11-11 1989-03-09 Method for producing high purity, high chromium content alloy

Country Status (1)

Country Link
JP (1) JPH0742528B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235229A (en) * 1991-01-07 1992-08-24 Japan Metals & Chem Co Ltd Production of high purity metallic chromium

Also Published As

Publication number Publication date
JPH02236237A (en) 1990-09-19

Similar Documents

Publication Publication Date Title
US2205386A (en) Production of metals and alloys
RU2130822C1 (en) Method of preparing hard material powders
US5316723A (en) Master alloys for beta 21S titanium-based alloys
JPH0742528B2 (en) Method for producing high purity, high chromium content alloy
JPH064897B2 (en) High-purity, high-chromium alloy manufacturing method
US4179287A (en) Method for adding manganese to a molten magnesium bath
US5364587A (en) Nickel alloy for hydrogen battery electrodes
JPH03188229A (en) Manufacture of high purity high chromium alloy
JPH02133541A (en) Manufacture of low-carbon ferrochrome having high chrome content
US4300947A (en) Mechanically alloyed powder process
US5123957A (en) Method for manufacturing low carbon ferrochrome with high chromium content
JPH03170640A (en) Manufacture of high purity high chromium alloy
US4792351A (en) Hydrometallurgical process for producing irregular morphology powders
JPS63161101A (en) Production of low-oxygen metallic chromium power
JPH0215618B2 (en)
JP2650697B2 (en) Production method of high purity metallic chromium
JPH04235232A (en) Production of high strength titanium alloy
US2829041A (en) Method for reducing the carbon content of carbon-containing ferrochromium
JPS6247437A (en) Manufacture of metallic chromium with very low nitrogen content
SU1538997A1 (en) Method of processing slime waste of alloyed steels
JPS634037A (en) Production of high-chromium iron alloy
JP2002193607A (en) Method of producing high purity trichromium dicarbide
JPS60128230A (en) Production of vanadium
JPS6358802A (en) Manufacture of rare earth magnet
RU1770434C (en) Method for production of compositional boron-containing alloys for steel alloying

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees