JPH03188229A - Manufacture of high purity high chromium alloy - Google Patents

Manufacture of high purity high chromium alloy

Info

Publication number
JPH03188229A
JPH03188229A JP32525889A JP32525889A JPH03188229A JP H03188229 A JPH03188229 A JP H03188229A JP 32525889 A JP32525889 A JP 32525889A JP 32525889 A JP32525889 A JP 32525889A JP H03188229 A JPH03188229 A JP H03188229A
Authority
JP
Japan
Prior art keywords
ferrochrome
nitride
vacuum heating
crushed
ferrochrome nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32525889A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kawasaki
清 川崎
Yoshinori Kato
加藤 昌憲
Yutaka Yano
豊 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32525889A priority Critical patent/JPH03188229A/en
Publication of JPH03188229A publication Critical patent/JPH03188229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture the high chromium-contg. alloy by powdering high silicon-low carbon ferrochrome, thereafter subjecting it to nitriding treatment, furthermore to pulverizing, to acid treatment, removing iron and silicon therefrom and successively executing denitriding by vacuum heating. CONSTITUTION:At the time of manufacturing low carbon ferrochrome, the content of Si is increased to 2 to 4%, is embrittlea and is powdered into <=0.3 mm. It is charged to a vacuum heating furnace, is heated, e.g. to 1150 deg.C for many hours while an N2 gas is fed thereto and is transformed into ferrochrome nitride contg. about 13% N. The ferrochrome nitride is pulverized into the shape of grains of <=1 mm and is thereafter mixed with an acid soln. The mixture is stirred into the shape of slurry, and the contents such as Fe, Si, P, Ni, Co and Mn in the ferrochrome nitride are melted away. Next, the ferrochrome nitride is admixed with a small amt. of carbon black and is subjected to denitriding treatment by vacuum heating at a high temp., by which the high purity Cr alloy of high quality having about 99% Cr can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は合金の添加金属として用いられる高純度でク
ロム含有率の高いクロム合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a chromium alloy with high purity and high chromium content, which is used as an additive metal in an alloy.

[従来の技術] 高純度の含クロム合金(Cr65%以上)は、ニッケル
基、鉄ニツケル基、コバルト基などのスーパーアロイ分
野で、主要成分のクロム源として添加され、耐食性また
は強度の向上に必要不可欠のものである。また、溶接棒
、粉末冶金の分野では粉末状の添加剤として鉄、ニッケ
ルの粉末と混合されて多量に使用されている。
[Prior art] High-purity chromium-containing alloys (65% or more Cr) are added as the main chromium source in the field of superalloys such as nickel-based, iron-nickel-based, and cobalt-based alloys, and are necessary to improve corrosion resistance or strength. It is essential. In addition, in the fields of welding rods and powder metallurgy, it is used in large quantities as a powdered additive mixed with iron and nickel powder.

従来の高クロム低炭素フェロクロムの製造方法としては
、大別すると、(a)ペラン法、(b)スウェーデン法
、(c)多段ペラン法、(d)その他が挙げられる。
Conventional methods for producing high-chromium, low-carbon ferrochrome can be broadly classified into (a) the Perrin process, (b) the Swedish process, (c) the multi-stage Perrin process, and (d) others.

このうち、(a)、(b)法は電気炉を用いて多量に生
産できる経済的な方法として知られている。また、(c
)法はクロム鉱石の1次スラグを溶解後、弱還元条件で
脱鉄し、最後に強還元して低炭素フェロクロムを得る方
法で、85%〜90%の高いCr成分のものが得れる。
Among these methods, methods (a) and (b) are known as economical methods that can be produced in large quantities using an electric furnace. Also, (c
) method is a method in which the primary slag of chromium ore is melted, iron is removed under weak reducing conditions, and finally strong reduction is performed to obtain low carbon ferrochrome, and a product with a high Cr content of 85% to 90% can be obtained.

さらに、(d)その他の方法としてアルミテルミット法
が考えられる。
Furthermore, (d) an aluminum thermite method can be considered as another method.

[発明が解決しようとする課題] しかしながら、前記(a)ペラン法、(b)スウェーデ
ン法では、原料として経済的に入手できるクロム鉱石は
Feを多量に含むため、得られる低炭素フェロクロムの
Cr成分は72%が上限である。(C)多段ペラン法は
、高いCr成分のものが得られる反面、製造工程で高融
点の溶融金属の取り扱いに問題があり、また多量に発生
するCr含有量の低い低炭素フェロクロムの処理が必要
となり、さらに、Si、 O、N等の不純物が多い等の
欠点がある。
[Problems to be Solved by the Invention] However, in the (a) Perrin process and (b) Swedish process, the chromium ore that is economically available as a raw material contains a large amount of Fe, so the Cr component of the resulting low carbon ferrochrome is The upper limit is 72%. (C) Although the multi-stage Perrin process can produce products with a high Cr content, there are problems in handling molten metal with a high melting point during the manufacturing process, and it is necessary to process low-carbon ferrochrome with a low Cr content, which is generated in large quantities. Furthermore, there are other drawbacks such as a large amount of impurities such as Si, O, and N.

さらに、(d)アルミテルミット法では[AI]の混入
が避けられず、また原料として使用する酸化クロムや反
応助剤が高価であるなどの問題がある。
Furthermore, in the (d) aluminum thermite method, contamination with [AI] is unavoidable, and chromium oxide and reaction aids used as raw materials are expensive.

本発明はかかる事情に鑑みてなされたもので、上記の難
点を解消し、クローム含有率の高いの高純度、高クロム
合金の製造方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and aims to solve the above-mentioned difficulties and provide a method for producing a high-purity, high-chromium alloy with a high chromium content.

[問題点を解決するための手段及び作用]本発明による
高純度、高クロム合金の製造方法は、シリコンを2乃至
4%含む低炭素フェロクロムを出発原料とし、前記出発
原料を0.3mm以下に破砕する第1の工程と、第1の
工程で0.3−一以下に破砕された低炭素フェロクロム
を、固体窒化法により窒化して窒化フェロクロムを得る
第2の工程と、前記窒化フェロクロムを1關以下の粒度
に破砕して、酸溶液と混合、攪拌する酸処理により脱鉄
・脱珪する第3の工程と、第3の工程で、脱鉄・脱珪さ
れた窒化フェロクロムを真空加熱して、脱窒する第4の
工程と、を有することを特徴とする。
[Means and effects for solving the problems] The method for producing a high purity, high chromium alloy according to the present invention uses low carbon ferrochrome containing 2 to 4% silicon as a starting material, and reduces the starting material to a thickness of 0.3 mm or less. a first step of crushing, a second step of obtaining nitrided ferrochrome by nitriding the low carbon ferrochrome crushed to 0.3-1 or less in the first step by a solid nitriding method; In the third step, the ferrochrome nitride that has been deironated and desiliconized is heated under vacuum. and a fourth step of denitrifying.

日本工業規格(JIS)に定められた低炭素フェロクロ
ムのシリコン含有量は1%以下であって、工業的に3關
以下に破砕することは困難である。
The silicon content of low carbon ferrochrome specified by the Japanese Industrial Standards (JIS) is 1% or less, and it is difficult to crush it industrially into 3 parts or less.

予め電気炉で溶製するときにシリコンを 2−4%含有
するように溶製されたものを出発原料として用いると、
容易に0.3mm以下に破砕することができる。小さい
粒度の低炭素フェロクロムを用いることにより、前記第
2乃至第4の工程が効率よく行われる。
If you use as a starting material a material that has been melted in an electric furnace to contain 2-4% silicon,
It can be easily crushed into pieces of 0.3 mm or less. By using low carbon ferrochrome with a small particle size, the second to fourth steps can be carried out efficiently.

第2の工程で窒素雰囲気で加熱して得られる窒化フェロ
クロムはCrが98〜99.5wt%の窒化物相とFe
、St、Co等を含む金属相からなっている。
Ferrochrome nitride obtained by heating in a nitrogen atmosphere in the second step has a nitride phase containing 98 to 99.5 wt% Cr and Fe.
, St, Co, etc.

第3の工程では酸処理により前記金属相に含まれる前記
Fe、 Sj、 P 、 Ni、 Co、 Mn等の不
純物が除去される。原料中に2−4wt%含まれるシリ
コンは大部分、金属シリコンであるから、前記酸処理に
よって除去される。なお、第3の工程における破砕は、
窒化の際、焼結して塊状されたものを解砕することで特
に困難を伴う操作ではない。
In the third step, impurities such as Fe, Sj, P, Ni, Co, and Mn contained in the metal phase are removed by acid treatment. Since most of the 2-4 wt % silicon contained in the raw material is metallic silicon, it is removed by the acid treatment. In addition, the crushing in the third step is
During nitriding, the sintered lumps are crushed, so the operation is not particularly difficult.

第4の工程では、酸処理された窒化フェロクロムは、真
空中で加熱することにより下記反応により脱窒されると
ともにC1O等の不純物成分が除去される。
In the fourth step, the acid-treated ferrochrome nitride is heated in vacuum to be denitrified by the reaction described below, and impurity components such as C1O are removed.

Cr2N(s)    −+    2Cr(s)+ 
 1/2Nz(g)、C(s)+ 0(s)−=   
Co(g)[実施例] 第1の工程において、予め、電気炉で溶製した表1−(
1)に示す成分の低炭素フェロクロムを出発原料として
、これを粒度0.3mm以下に破砕した0表1の成分は
すべてwt%で表したものである。
Cr2N(s) −+ 2Cr(s)+
1/2Nz(g), C(s)+0(s)−=
Co(g) [Example] In the first step, Table 1-(
The low carbon ferrochrome of the components shown in 1) was used as a starting material and was crushed to a particle size of 0.3 mm or less. All components in Table 1 are expressed in wt%.

前記第1の工程における低炭素フェロクロムを破砕した
後、第2の工程において、破砕された低炭素フェロクロ
ムを真空加熱炉に装入して窒素を導入し、760 To
rrの窒素雰囲気とした0次いで真空加熱炉を加熱して
1150℃として、24Hrの窒化処理を行い、[N]
−13,4wt%、を含有する表1−(2)の窒化フェ
ロクロム34.0kgを得た。
After crushing the low carbon ferrochrome in the first step, in the second step, the crushed low carbon ferrochrome is charged into a vacuum heating furnace, nitrogen is introduced, and 760 To
[N]
-13.4 wt%, 34.0 kg of ferrochrome nitride shown in Table 1-(2) was obtained.

続いて第3の工程において、第1図に示す攪拌装置を用
いて次の通り酸処理を行った。第2図は比較例に用いた
攪拌装置である。前記第1図で1は反応容器、2は窒化
フェロクロムと酸溶液が混合されたスラリー、4は撹拌
羽根である。
Subsequently, in the third step, acid treatment was performed as follows using the stirring apparatus shown in FIG. FIG. 2 shows a stirring device used in a comparative example. In FIG. 1, 1 is a reaction vessel, 2 is a slurry containing a mixture of ferrochrome nitride and an acid solution, and 4 is a stirring blade.

容Miooj1の反応容器1に水501と0.3n以下
に破砕された前記窒化フェロクロムを12kg入れ、攪
拌機を用いて混合した。前記攪拌機は、上昇流タイプの
羽根を有し、羽根径/タンク径=0.8で、回転数; 
25Orpm、で運転された。
12 kg of the ferrochrome nitride crushed to 0.3 nm or less with 501 water were placed in a reaction vessel 1 having a volume of 1, and mixed using a stirrer. The agitator has upward flow type blades, blade diameter/tank diameter = 0.8, and rotation speed;
It was operated at 25 rpm.

前記攪拌機を用いた攪拌方法では、窒化フェロクロムの
粒子が全量、酸溶液中に浮遊され、酸処理が効率的に行
われる。前記反応容器に62.5%。
In the stirring method using the stirrer, the entire amount of ferrochrome nitride particles is suspended in the acid solution, and the acid treatment is efficiently performed. 62.5% to the reaction vessel.

H2SO4を全量でl、連続的に定量ポンプにより10
Hrにわたって添加し、添加開始から168r、攪拌を
続けた。この後、酸溶液と窒化フェロクロムが混合され
たスラリーを濾過、水洗、乾燥して8.0誌を回収した
。その成分は表1−(3)に示す通りである。
A total of 1 liter of H2SO4 was added continuously using a metering pump for 10
The mixture was added over 168 hours and stirring was continued for 168 hours from the start of the addition. Thereafter, the slurry in which the acid solution and ferrochrome nitride were mixed was filtered, washed with water, and dried to collect 8.0 magazines. Its components are shown in Table 1-(3).

比較例として用いた撹拌装置を第2図に示す。FIG. 2 shows a stirring device used as a comparative example.

第2図で3は容器底に沈積した窒化フェロクロム、5は
比較例に用いた攪拌羽根で、その他は第1図と同様であ
る。比較例においては、羽根径/タンク径=0.6で、
回転数: 150rpm、で運転された。その他の酸処
理および酸処理後の回収の条件は、上記の実施例と同様
である。この場合の攪拌方法では、攪拌力が弱く、窒化
フェロクロムの粒子が一部、反応容器の底部に沈積され
る。比較例において回収された窒化フェロクロムの成分
は表1−(5)に示しである。
In FIG. 2, 3 is the ferrochrome nitride deposited on the bottom of the container, 5 is the stirring blade used in the comparative example, and the rest is the same as in FIG. 1. In the comparative example, the blade diameter/tank diameter = 0.6,
It was operated at a rotational speed of 150 rpm. Other conditions for acid treatment and recovery after acid treatment are the same as in the above examples. In this stirring method, the stirring force is weak, and some of the ferrochrome nitride particles are deposited at the bottom of the reaction vessel. The components of the ferrochrome nitride recovered in the comparative example are shown in Table 1-(5).

表1−(5)と表1−(3>の成分を比較すると、実施
例では比較例に対して、Cr含有率が大きく、Si、P
の不純物は低下している。
Comparing the components in Table 1-(5) and Table 1-(3>), it is found that the Cr content is higher in the Examples than in the Comparative Examples, and Si, P
impurities are decreasing.

第4の工程において、第3の工程で得られた回収物に、
カーボンブラック0.3wt%を加えて混合し、125
0℃、24 Hrの真空加熱を行って脱窒した。第4の
工程により、表1−(4)に示す通りCr。
In the fourth step, the recovered material obtained in the third step is
Add 0.3 wt% of carbon black and mix, 125
Denitrification was performed by vacuum heating at 0° C. for 24 hours. Through the fourth step, Cr is produced as shown in Table 1-(4).

88.5wt%、Si、 0.02wt%、その他P、
 S 、 Ni。
88.5wt%, Si, 0.02wt%, other P,
S, Ni.

Co、 Mn、 V 、 C、O、Nがいずれも低い高
純度、高クロム合金が6.2Kg得られた。
6.2 kg of a high-purity, high-chromium alloy containing low amounts of Co, Mn, V, C, O, and N was obtained.

第4の工程では、酸処理された窒化フェロクロムは、真
空中で加熱することにより下記反応により脱窒されると
ともにC,O等の不純物成分が除去される。
In the fourth step, the acid-treated ferrochrome nitride is denitrified by the following reaction by heating in vacuum, and impurity components such as C and O are removed.

Cr2N(s> =  2Cr(s)+ 1/2N2(
g)、C(s)+ 0(s)  →  Co(g)  
、第3の工程で得られた回収物にカーボンブラ・ツク 
0.6wt%を加えて混合し、1250℃、24 Hr
の真空加熱を行って脱窒した。第4の工程により、表1
−(4)に示す通りCr、 99.Ovt%、その他S
i。
Cr2N(s>=2Cr(s)+1/2N2(
g), C(s) + 0(s) → Co(g)
, Carbon Bra Tsuku is added to the recovered material obtained in the third step.
Add 0.6 wt%, mix, and heat at 1250°C for 24 Hr.
Denitrification was performed by vacuum heating. Through the fourth step, Table 1
- Cr as shown in (4), 99. Ovt%, other S
i.

P 、 S 、 Ni、 Co、 Mn、 V 、 C
、O、Nのいずれも低い高純度、高クロム合金が6.2
にgが得られた。
P, S, Ni, Co, Mn, V, C
A high-purity, high-chromium alloy with low levels of , O, and N is 6.2
g was obtained.

下に破砕し、これを窒化して破砕した後、酸溶液と混合
、攪拌して、脱鉄、不純物の除去を十分行い、その後真
空脱窒するので、St、 P 、 S 、 Ni。
After crushing it by nitriding and crushing it, it is mixed with an acid solution and stirred to sufficiently remove iron and impurities, and then vacuum denitrification is performed, so that St, P, S, Ni.

Co、 Mn、 C、N 、 O等の不純物量が少ない
高純度、高クロム合金が経済的に製造可能である。
High-purity, high-chromium alloys with low amounts of impurities such as Co, Mn, C, N, and O can be produced economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例の攪拌装置を示す図、第2図は比較例
(1)の攪拌装置を示す図である。 1・・・反応容器、2・・・窒化フェロクロムと酸溶液
が混合されたスラリー、3・・・窒化フェロクロム、4
・・・実施例の攪拌羽根、5・・・比較例の攪拌羽根。
FIG. 1 is a diagram showing the stirring device of this example, and FIG. 2 is a diagram showing the stirring device of Comparative Example (1). DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Slurry in which ferrochrome nitride and acid solution were mixed, 3... Ferrochrome nitride, 4
... Stirring blade of Example, 5... Stirring blade of Comparative Example.

Claims (2)

【特許請求の範囲】[Claims] (1)シリコンを2乃至4%含む低炭素フェロクロムを
出発原料とし、前記出発原料を0.3mm以下に破砕す
る第1の工程と、第1の工程で0.3mm以下に破砕さ
れた低炭素フェロクロムを、固体窒化法により窒化して
窒化フェロクロムを得る第2の工程と、前記窒化フェロ
クロムを1mm以下の粒度に破砕して、酸溶液と混合、
攪拌する酸処理により脱鉄・脱珪する第3の工程と、第
3の工程で、脱鉄・脱珪された窒化フェロクロムを真空
加熱して、脱窒する第4の工程とを有することを特徴と
する高純度、高クロム合金の製造方法。
(1) A first step in which low-carbon ferrochrome containing 2 to 4% silicon is used as a starting material, and the starting material is crushed into pieces of 0.3 mm or less, and the low-carbon particles are crushed into pieces of 0.3 mm or less in the first step. a second step of nitriding ferrochrome by a solid-state nitriding method to obtain nitrided ferrochrome; and crushing the nitrided ferrochrome to a particle size of 1 mm or less and mixing it with an acid solution.
A third step of deironating and desiliconizing by stirring acid treatment, and a fourth step of vacuum heating the ferrochrome nitride that has been deironated and desiliconized in the third step to denitrify it. A manufacturing method for high-purity, high-chromium alloys.
(2)第3の工程の酸処理は、破砕された窒化フェロク
ロムが酸溶液の中で全体が浮遊するように攪拌、混合す
ること、および酸溶液を連続的に添加して反応させるこ
とを含む請求項1の高純度、高クロム合金の製造方法。
(2) The acid treatment in the third step includes stirring and mixing the crushed ferrochrome nitride so that it is entirely suspended in the acid solution, and continuously adding the acid solution to cause a reaction. A method for producing a high purity, high chromium alloy according to claim 1.
JP32525889A 1989-12-15 1989-12-15 Manufacture of high purity high chromium alloy Pending JPH03188229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32525889A JPH03188229A (en) 1989-12-15 1989-12-15 Manufacture of high purity high chromium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32525889A JPH03188229A (en) 1989-12-15 1989-12-15 Manufacture of high purity high chromium alloy

Publications (1)

Publication Number Publication Date
JPH03188229A true JPH03188229A (en) 1991-08-16

Family

ID=18174803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32525889A Pending JPH03188229A (en) 1989-12-15 1989-12-15 Manufacture of high purity high chromium alloy

Country Status (1)

Country Link
JP (1) JPH03188229A (en)

Similar Documents

Publication Publication Date Title
US2205386A (en) Production of metals and alloys
US5092921A (en) Method for producing high-purity metallic chromium
US5316723A (en) Master alloys for beta 21S titanium-based alloys
JPH03122205A (en) Manufacture of ti powder
JPH03188229A (en) Manufacture of high purity high chromium alloy
JPH03170640A (en) Manufacture of high purity high chromium alloy
JPH02236238A (en) Production of high-purity high chromium alloy
JPH0339426A (en) Manufacture of metallic niobium
JP2000204420A (en) Recovery of valuable metal from vanadium-containing waste
JPH0742528B2 (en) Method for producing high purity, high chromium content alloy
EP0651682A1 (en) Nickel alloy for hydrogen battery electrodes
JPS63161101A (en) Production of low-oxygen metallic chromium power
JP2650697B2 (en) Production method of high purity metallic chromium
JPH02133541A (en) Manufacture of low-carbon ferrochrome having high chrome content
SU1538997A1 (en) Method of processing slime waste of alloyed steels
JPH0215618B2 (en)
JPH07252518A (en) Method for raising temperature of molten steel and temperature raising agent
JPS60128230A (en) Production of vanadium
JPH0469092B2 (en)
JPS6247437A (en) Manufacture of metallic chromium with very low nitrogen content
JPH04235229A (en) Production of high purity metallic chromium
JP2002193607A (en) Method of producing high purity trichromium dicarbide
US2829041A (en) Method for reducing the carbon content of carbon-containing ferrochromium
CA2002790A1 (en) Method for manufacturing low carbon ferrochrome with high chromium content
JPH07116532B2 (en) Method for producing high-purity metallic chromium