JPH02133541A - Manufacture of low-carbon ferrochrome having high chrome content - Google Patents

Manufacture of low-carbon ferrochrome having high chrome content

Info

Publication number
JPH02133541A
JPH02133541A JP28517388A JP28517388A JPH02133541A JP H02133541 A JPH02133541 A JP H02133541A JP 28517388 A JP28517388 A JP 28517388A JP 28517388 A JP28517388 A JP 28517388A JP H02133541 A JPH02133541 A JP H02133541A
Authority
JP
Japan
Prior art keywords
ferrochrome
nitride
nitrided
low
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28517388A
Other languages
Japanese (ja)
Other versions
JPH0660368B2 (en
Inventor
Yoshinori Kato
加藤 昌憲
Toshio Kamaya
釜谷 俊夫
Keiichi Nakagawa
恵一 中川
Kiyoshi Kawasaki
清 川崎
Yutaka Yano
豊 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP28517388A priority Critical patent/JPH0660368B2/en
Priority to US07/428,582 priority patent/US5123957A/en
Priority to ZA898497A priority patent/ZA898497B/en
Priority to DE89120889T priority patent/DE68909009T2/en
Priority to EP89120889A priority patent/EP0371299B1/en
Priority to CA002002790A priority patent/CA2002790A1/en
Publication of JPH02133541A publication Critical patent/JPH02133541A/en
Publication of JPH0660368B2 publication Critical patent/JPH0660368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To manufacture of the title ferrochrome by subjecting low-carbon ferrochrome to nitriding, thereafter to iron removing treatment by dissolving with acid and successively to denitrifying treatment by vacuum heating. CONSTITUTION:Low-carbon ferrochrome contg., by weight, >50% Cr, <1.0% C and the balance essential Fe with Si and Co is crushed into the shape of grains of <=3mm and is thereafter heated to 1000 to 1300 deg.C in a heating furnace in the atmosphere of N2 gas to execute nitriding treatment. The nitrided ferrochrome is constituted of a phase of ferrochrome nitride essentially consisting of Cr2N and a metallic phase contg. 10 to 20% Cr, small amounts of Si and Co and essential Fe, and it is furthermore crushed into the size of 0.3 to 3mm and is subjected to secondary nitriding treatment to convert Cr2N into CrN. It is subjected to acid treatment in 8 to 25% proportion by outer ratio to sulfuric acid of 1 to 3N to remove Fe in the metallic phase by dissolving, which is thereafter neutralized and cleaned by aqueous ammonia. It is then mixed with about 0.7% carbon and the mixture is heated to 1250 deg.C in vacuum to subject the ferrochrome nitride to denitriding treatment, by which the high Cr-contg. low carbon ferrochrome contg. 70 to 95% Cr can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は合金の添加金属として用いられるクロム含有
率の高い低炭素フェロクロムの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method for producing low carbon ferrochrome with a high chromium content, which is used as an additive metal in an alloy.

[従来の技術] 高純度の低炭素フェロクロム(Cr65%以上)は、ニ
ッケル基、鉄ニツケル基、コバルト基などのスーパーア
ロイ分野で、副成分のクロム源として添加され、耐食性
または強度の向上に必要不可欠のものである。また、溶
接棒、粉末冶金の分野では粉末状の添加材として鉄、ニ
ッケルの粉末と混合されて多量に使用されている。
[Prior art] High purity low carbon ferrochrome (Cr 65% or more) is added as a chromium source as a subcomponent in the field of superalloys such as nickel-based, iron-nickel-based, and cobalt-based alloys, and is necessary to improve corrosion resistance or strength. It is essential. In addition, in the fields of welding rods and powder metallurgy, it is used in large quantities as a powdered additive mixed with iron and nickel powder.

1メC来の高クロム含有低炭素フェロクロムの製造方法
としては、大別すると(a)ペラン法、(b)スウエデ
ン法、(C)多段ペラン法、(d)その他が挙げられる
。このうち、 (a)、(b)法は電気炉を用いて多量
に生産できる経済的な方法として知られている。また、
(C)法はクロム鉱石の1次スラグを溶解後、弱還元条
件で脱鉄し、最後に強還元して低炭素フェロクロムを得
る方法で、85%〜90%の高いCr成分のものが得れ
る。さらに、(d>その他の方法としてアルミテルミッ
ト法が考えられる。
Methods for producing high-chromium-containing, low-carbon ferrochrome from 1 meC can be broadly classified into (a) Perrin process, (b) Swedish process, (C) multi-stage Perrin process, and (d) others. Among these, methods (a) and (b) are known as economical methods that can be produced in large quantities using an electric furnace. Also,
Method (C) is a method in which the primary slag of chromium ore is melted, iron is removed under weak reducing conditions, and finally strong reduction is performed to obtain low carbon ferrochrome, resulting in a high Cr content of 85% to 90%. It will be done. Furthermore, (d>Another method is the aluminum thermite method.

[発明が解決しようとする課題] しかしながら、前記(a)ペラン法、(b)スウェデン
法、は原料として経済的に入手できるクロム鉱石はFe
を多量に含むため、得られる低炭素フェロクロムのCr
成分は70%が上限である。(c)多段ペラン法は高い
Cr成分のものが得られる反面、製造工程で高融点の溶
融金属の取り汲いが難しいこと、また多量に発生するC
r含有量の低い低炭素フェロクロムの処理が必要となり
、さらに製品中のSi、0.N等の不純物が多いなどの
難点がある。
[Problems to be Solved by the Invention] However, in the above (a) Perrin method and (b) Swedish method, chromium ore that is economically available as a raw material is Fe.
Because it contains a large amount of Cr, the resulting low carbon ferrochrome
The upper limit for the ingredients is 70%. (c) Although the multi-stage Perrin process can produce products with a high Cr content, it is difficult to collect molten metal with a high melting point during the manufacturing process, and a large amount of Cr is generated.
It is necessary to process low carbon ferrochrome with low r content, and furthermore, the Si in the product, 0. There are disadvantages such as a large amount of impurities such as N.

本発明はかかる事情に鑑みてなされたもので、上記の難
点を解消し、70%〜95%の高クロム含有率をもつ高
純度の低炭素フェロクロムの製造法を提供しようとする
のもである。
The present invention has been made in view of the above circumstances, and aims to solve the above-mentioned difficulties and provide a method for producing high-purity, low-carbon ferrochrome having a high chromium content of 70% to 95%. .

[問題点を解決するための手段及び作用]本発明による
クロノ、含有率の高い低炭素フェロクロムの製造方法は
、低炭素フェロクロムを固体窒化法により窒化して窒化
フェロクロムを得る第1の工程と、前記窒化フェロクロ
ムを酸処理して脱鉄する第2の工程と、脱鉄された前記
窒化フェロクロム3真空加熱して脱窒する第3の工程と
、を有することを特徴とする。
[Means and effects for solving the problems] The method for producing low-carbon ferrochrome with a high content according to the present invention includes a first step of nitriding low-carbon ferrochrome by a solid-state nitriding method to obtain nitrided ferrochrome; The present invention is characterized by comprising a second step of deironating the ferrochrome nitride by acid treatment, and a third step of denitrifying the deironated ferrochrome nitride 3 by vacuum heating.

第1の工程で得られる窒化フェロクロムは、Crが85
〜95%の窒化物相と、 Fe、Si、Coおよび5〜
20%のCrを含む金属相の2相からなっている。
The ferrochrome nitride obtained in the first step has Cr of 85
~95% nitride phase with Fe, Si, Co and 5~
It consists of two phases: a metallic phase containing 20% Cr.

この窒化フェロクロムは第2の工程の酸処理工程で前記
金属相は効率よく除去されて、Cr含有率の高い窒化フ
ェロクロム得ることができる。第3の工程で、酸処理さ
れた前記窒化フェロクロムを真空中で加熱することによ
り、下記の反応により脱窒されるとともに、その他のC
10等の不純物成分が除去される。
The metal phase of this ferrochrome nitride is efficiently removed in the second acid treatment step, making it possible to obtain ferrochrome nitride with a high Cr content. In the third step, by heating the acid-treated ferrochrome nitride in vacuum, it is denitrified by the following reaction and other C
Impurity components such as 10 are removed.

Cr2N(s) →2Cr(s)目/2Nz(g) 。Cr2N(s) → 2Cr(s)th/2Nz(g).

C(s)40(s) →Co(g) 上記の式で、(S)は固体、(g)は気体を表す。C(s) 40(s) → Co(g) In the above formula, (S) represents a solid and (g) represents a gas.

こうして得られた低炭素フェロクロムは高純度の、高ク
ローム含有率をもつ低炭素フェロクロムである。
The low carbon ferrochrome thus obtained is a high purity, low carbon ferrochrome with a high chromium content.

[実施例] 本実施例においては、原料となる低炭素フェロクロムは
、Cr、50%以上、C,1%以下のものが使用される
。Crが50%以下の場合は!!!2処理で除去するF
eの量が多くなって効率が悪く、Cが1%を超えると窒
化が円滑に進まない、前記低炭素フェロクロムは、機械
的に破砕して5mm以下の粒度にされ、これを真空加熱
炉を用いて固体窒化法により窒化される。このとき真空
加熱炉は、真空度を0.ITorr、温度を1000℃
〜1300℃として、窒素ガスが導入され、窒化が行わ
れれる。
[Example] In this example, the low carbon ferrochrome used as a raw material contains 50% or more of Cr and 1% or less of C. If Cr is less than 50%! ! ! F to be removed in 2 treatments
The low carbon ferrochrome is mechanically crushed to a particle size of 5 mm or less and then heated in a vacuum heating furnace. It is nitrided by the solid-state nitriding method. At this time, the vacuum heating furnace has a vacuum degree of 0. ITorr, temperature 1000℃
At a temperature of ~1300°C, nitrogen gas is introduced to perform nitriding.

こうして得られた窒化フェロクロムは、Nを約7%含む
もので、走査電子盟微鏡による観察によると、Cr85
%〜95%の窒化物相と、CrlO%〜20 %を含み
その他Si、Co !−含むFe主体の金属相との2相
からなつ′〔いる、この窒化フェロクロム<:3+am
以下に破砕してPi9り5埋することにより、前記金属
相は大部分除去され、窒化物相だけが回収される。
The thus obtained ferrochromium nitride contains approximately 7% N, and according to observation using a scanning electron microscope, Cr85
% to 95% of nitride phase and CrlO to 20% and other Si, Co! - This ferrochrome nitride is composed of two phases, including a metal phase mainly composed of Fe.
By crushing and burying Pi in the following steps, most of the metal phase is removed and only the nitride phase is recovered.

酸処理された窒化物を温度1150〜1350℃で真空
加熱−することによりC「の含有率が70!!5〜95
°、1の低炭素フェロクロムが塊状で得られる。この時
の酸処理および真空加熱の工程で、C,N、O,Si、
Coが低減されて高純度のものとすることができる。
By vacuum heating the acid-treated nitride at a temperature of 1150 to 1350°C, the content of C' can be reduced to 70!!5 to 95.
°, 1 low carbon ferrochrome is obtained in bulk. In the acid treatment and vacuum heating steps at this time, C, N, O, Si,
The Co content can be reduced and the purity can be increased.

本発明の好ましい具体例を数値を挙げて説明する0表1
に示す組成で、粒度3mm以下の低炭素フェロクロム、
30.0kgを真空加熱炉で1150℃、24 Hrの
窒化処理を行い、窒化フェロクロムを32.3kgを得
た。この窒化フェロクロムを解砕して3+a腸以下とし
、これを15.0kgとって。
Table 1 illustrating preferred specific examples of the present invention with numerical values
Low carbon ferrochrome with a composition shown in and a particle size of 3 mm or less,
30.0 kg was subjected to nitriding treatment at 1150° C. for 24 hours in a vacuum heating furnace to obtain 32.3 kg of ferrochrome nitride. This ferrochrome nitride was crushed to a size of 3+a or less, and 15.0 kg of this was taken.

60、Rの3N、H2So4水溶液で撹拌しながら、4
8Hr酸処理を行った。その後、水洗乾燥して得られた
10.5kgの窒化フェロクロムの成分を表1に示した
。さらに、これにカーボンブラックo、4wt、%加え
て、粉砕した。この粉砕した窒化フェロクロム、10.
0kgを1250℃で248r真空処理を行って脱窒し
、表1に示すクロム含有率の高い低炭素フェロクロムが
塊状で得られた。ここに述べた具体例を以下に具体例1
として引用する。なお、表1に記載のFCrはフェロク
ロムの略記で、表2、表6についても同様どする。
60, with stirring in a 3N, H2So4 aqueous solution of R, 4
Acid treatment was performed for 8 hours. Table 1 shows the components of 10.5 kg of ferrochrome nitride obtained by washing with water and drying. Further, 4 wt.% of carbon black was added thereto and pulverized. This crushed ferrochrome nitride, 10.
0 kg was subjected to vacuum treatment at 1250° C. for 248 r to denitrify it, and low carbon ferrochrome with a high chromium content shown in Table 1 was obtained in the form of a lump. The specific example described here is shown below as specific example 1.
Quote as. Note that FCr in Table 1 is an abbreviation for ferrochrome, and the same applies to Tables 2 and 6.

表  1 次に、具体的な数値例を挙げて説明する。Table 1 Next, explanation will be given using specific numerical examples.

試@1:工業用と(7て容鴇に得られる低炭素フェロク
ロム(Cr含有率、60%−70%)は靭性に富み、強
度が高いのでこれを破砕して粉末を得ることは困難で、
通常、1i11械的破砕で得られる粒度は小さくとも1
+ua以上である。これを窒化処理して得られる窒化フ
ェロクロムは、窒素含有彼は8%以下、窒化クロムの形
態はCr2Nで粉砕可能である。この窒化フェロクロム
を粉砕して粒度を0.3mm以下とし、これを再度80
0 ’C乃至12 f) 0℃の温度で窒化処理を行う
と、窒素含有率は10%〜13%まで高くなり、またこ
の窒化物相の形態はCrNとなる。このCrNと前述の
Cr2Nを比較するど、窒化物相中に固溶するFeの巣
はCrNの方が少ない、したがって、窒化物相のJ[!
tをCrNとした方が、酸処理によってFeを除去し鴇
<、Cr含有率の高い低炭素フェロクロムを得ることが
できる。
Trial @1: Low-carbon ferrochrome (Cr content, 60%-70%) obtained for industrial use and production is very tough and strong, so it is difficult to crush it to obtain powder. ,
Usually, the particle size obtained by 1i11 mechanical crushing is at least 1
+ua or more. Ferrochrome nitride obtained by nitriding this has a nitrogen content of 8% or less, and the form of chromium nitride can be crushed with Cr2N. This ferrochrome nitride is crushed to a particle size of 0.3 mm or less, and then crushed again at 80 mm.
0'C to 12f) When nitriding is performed at a temperature of 0°C, the nitrogen content increases to 10% to 13%, and the form of this nitride phase becomes CrN. Comparing this CrN and the above-mentioned Cr2N, we find that CrN has fewer Fe nests dissolved in solid solution in the nitride phase, so J[!
When t is set to CrN, Fe can be removed by acid treatment and low carbon ferrochrome with a high Cr content can be obtained.

試@1の好ましい具体例はつぎの通りである。Preferred specific examples of Trial @1 are as follows.

前述の具体@1の第1工程で得られた窒化フエロクロム
を粉砕し、0.3mm以下として1000℃、24 )
1rの窒化処理をおこなった。ここで得られた窒化物の
成分を表2に示す、この窒化物を−0,3Hに解砕し、
3 N、)HCI中に24Hr反応させた。得られた酸
処理後の窒化物の組成を表2に示した。
The ferrochrome nitride obtained in the first step of the above-mentioned Gutai@1 was crushed to a size of 0.3 mm or less at 1000°C, 24)
A 1r nitriding treatment was performed. The components of the nitride obtained here are shown in Table 2. This nitride was crushed to -0.3H,
Reacted for 24 Hr in 3N,) HCI. The composition of the obtained nitride after acid treatment is shown in Table 2.

これをカーボン0.7wt%と混合し、1250°C5
24firの真空処理を行って脱窒したものの成分を同
じく表2に示す。
This was mixed with 0.7 wt% carbon and heated to 1250°C5.
Table 2 also shows the components of the denitrified product subjected to 24-fir vacuum treatment.

このように、原料である低炭素フェロクロムを窒化した
窒化フェロクロムを粉砕、再窒化し、これを具体例1と
同様にして第2、第3の工程を経て得られる低炭素フェ
ロクロムは約93%までクロム含有量が向上されること
が表2に示されている。
In this way, the low carbon ferrochrome that is the raw material is nitrided, the nitrided ferrochrome is crushed and re-nitrided, and then the same process as in Example 1 is carried out to pass through the second and third steps.The low carbon ferrochrome obtained is approximately 93%. Table 2 shows that the chromium content is improved.

表2 試験2:第1の工程において低炭素フェロクロムの粒度
が31111を越えると、窒化処理の時間の延長、窒化
率の低下が顕著になる。第2の工程において窒化フェロ
クロムの粒度を3+am以下とすると、酸処理による金
属相の除去の効率が向上され、粒度が0.3111+a
未満では酸処理で窒化物相の一部が溶出してCr成分の
歩留が低下する。酸処理において必要な酸量は、例えば
塩酸の場合、次の反応式 %式%() によって定量的に計算される。すなわち、前式において
消費されるHCIの10〜30%の過剰な酸が必要とな
る。また酸処理における酸水溶液濃度については、1N
未満では酸水溶液の皿が大きくなり、製造コストに影響
する。また3Ntt越えると、 Crの歩留が低下する
とともに、溶出した金属相の塩たとえばFeCl□、 
FeSO4などが析出して、これが酸処理によって回収
しようとする窒化物相の粒子に固着し、洗浄、回収の操
作に支障をきたす虞がある。
Table 2 Test 2: When the particle size of the low carbon ferrochrome exceeds 31111 in the first step, the nitriding time becomes longer and the nitriding rate decreases significantly. In the second step, when the particle size of ferrochrome nitride is 3+am or less, the efficiency of removing the metal phase by acid treatment is improved, and the particle size is 0.3111+am.
If it is less than that, a part of the nitride phase will be eluted by the acid treatment, and the yield of Cr component will decrease. For example, in the case of hydrochloric acid, the amount of acid required for acid treatment is quantitatively calculated using the following reaction formula: %(). That is, an excess acid of 10 to 30% of the HCI consumed in the previous formula is required. In addition, regarding the acid aqueous solution concentration in acid treatment, 1N
If it is less than that, the acid aqueous solution tray becomes large, which affects the manufacturing cost. Moreover, if it exceeds 3Ntt, the yield of Cr decreases and the eluted metal phase salts such as FeCl□,
There is a possibility that FeSO4 and the like will precipitate and adhere to the nitride phase particles to be recovered by the acid treatment, thereby interfering with the cleaning and recovery operations.

酸水溶液と窒化フェロクロムの重量比は、窒化フェロク
ロムが多いと前述の塩が水溶液中の溶解度以上に生成し
て析出する。逆に少ないと酸水溶液の量が不当に多過ぎ
ることになることから実験的に決められたものである0
以上の説明から明らかなように、酸処理の酸濃度および
窒化フェロクロムの量を調整することによって、C「含
有率を調整することができる。
As for the weight ratio of the acid aqueous solution and the ferrochrome nitride, if the ferrochrome nitride is too large, the above-mentioned salt will be formed in an amount exceeding its solubility in the aqueous solution and will precipitate. On the other hand, if it is too small, the amount of acid aqueous solution will be unreasonably large, so it was determined experimentally.
As is clear from the above explanation, the C content can be adjusted by adjusting the acid concentration in the acid treatment and the amount of ferrochrome nitride.

酸処理の条件について検討した試験について説明する。A test in which acid treatment conditions were investigated will be explained.

この結果を表3にまとめて示しである。The results are summarized in Table 3.

この表で、試験N011、〜N025にについては、表
2の再窒化を行った窒化フェロクロムの粉末をを用いて
、HCI溶液で行ったものである。試験No、1とNo
、3の結果を比較すると、酸濃度を高くするとクロム歩
留が低下し、また低すぎると反応に長時間を要しかつ反
応に用いる酸の旦が増加し、経済的には好ましくないこ
とがわかる。この観点から酸濃度の範囲が1〜3Nと決
められた。また試験No、2. No、4. No、5
については酸Jl(m、c)と試料であるフェロクロム
の重i (g)との比を変えて検討したもので、酸Iが
多いとCr歩留が低下し、逆に酸量が少ないと脱鉄が不
十分となる。なお、表3で、試@No、4. No、5
以外の試料のff1iは、すべて100gである。この
ように酸処理条件としては1N〜3Nで処理する場合酸
水溶液量を100重量%に対して窒化フェロクロム外比
8〜25%重量%が好ましく25%超では脱鉄が不十分
となり、また8%未満では不当に酸水溶液量が多くなり
経済的に好ましくない。
In this table, tests N011 to N025 were conducted in an HCI solution using the re-nitrided ferrochrome nitride powder shown in Table 2. Exam No. 1 and No.
Comparing the results of 3 and 3, it can be seen that if the acid concentration is too high, the chromium yield will decrease, and if it is too low, the reaction will take a long time and the amount of acid used for the reaction will increase, which is economically unfavorable. Recognize. From this point of view, the range of acid concentration was determined to be 1 to 3N. Also, test No. 2. No, 4. No, 5
was studied by changing the ratio of acid Jl (m, c) to the weight i (g) of the ferrochrome sample. Iron removal becomes insufficient. In addition, in Table 3, trial @No, 4. No, 5
The ff1i of all samples other than 1 is 100 g. In this way, when the acid treatment conditions are 1N to 3N, the external ratio of ferrochrome nitride is preferably 8 to 25% by weight relative to 100% by weight of the acid aqueous solution, and if it exceeds 25%, iron removal will be insufficient; If it is less than %, the amount of the acid aqueous solution will be unduly large, which is economically unfavorable.

表 3 本:試験Na4は試料の重量は50g。Table 3 Book: Test Na4 has a sample weight of 50g.

試験Na5は試料の重量は200g。For test Na5, the sample weight was 200g.

その他は試料の重量は100gである。Otherwise, the weight of the sample is 100 g.

次に、酸処理前の窒化フェロクロムの粒度の好ましい範
囲にって、検討した結果について説明する1表3の試@
No、6乃至No、IOがこの検討に対応するもので、
ちる。
Next, we will explain the results of the study in terms of the preferred range of particle size of ferrochrome nitride before acid treatment.
No. 6 to No. IO correspond to this consideration,
Chiru.

51以下の低炭素フェロクロムを窒化して、窒素が6.
4%の窒化フェロクロムとし、これを破砕して試@No
、6乃至10の試料の欄に示を粒度範囲(IllI!1
単位で、たとえば5/3は粒径5III11乃至3mm
、−は以下を示す、以下同じ)としてそれぞれ3N硫酸
水溶液で酸処理を行った。酸処理後のCr歩留をみると
、0.074■以」二では90%以上で、0.074a
v未満ではCrの歩留の低下が顕著になる。また3mm
以」二では反応に時間がががり、経済的に好ましくない
By nitriding low carbon ferrochrome of 51 or less, nitrogen becomes 6.
Make 4% ferrochrome nitride, crush it and try it @No.
, the particle size range (IllI!1
For example, 5/3 is a particle size of 5III11 to 3 mm.
, - indicates the following, the same applies hereinafter), and acid treatment was performed with a 3N sulfuric acid aqueous solution. Looking at the Cr yield after acid treatment, it is 90% or more for 0.074a or more, and 0.074a
When the value is less than v, the Cr yield decreases significantly. Also 3mm
In the second case, the reaction takes time and is economically unfavorable.

試@3.工業的に用いられる酸の種類は種々あるが、経
済的に用いられるものとしては、llCl。
Trial @3. There are various types of acids that are used industrially, but one that is economically used is llCl.

)1.SO4の2種が考えられる。この中、((C1の
場合、酸夕5理後の水洗、乾燥に際して塩素は容易に除
去できるが、比較的安価のH2SO,で行う場合に、製
品中のSを低減する方法に関するもので、アンモニア水
で洗浄するこによりSを容易に除去することを、見出し
たものである。
)1. Two types of SO4 are considered. Among these, (in the case of (C1), chlorine can be easily removed by washing with water and drying after 5 treatments in an acid bath, but this relates to a method for reducing S in the product when using relatively inexpensive H2SO. It has been discovered that S can be easily removed by washing with aqueous ammonia.

具体例1にしたがって行った酸り1哩後、酸をデカンテ
ーションによって除去し、20gの水を加えてて攪拌し
て再びデカンテーションを行い、この操作32回実施し
lコ。この711 Nのアンモニア水、1Nの塩酸水溶
液および水の3種類の78液をそれぞれ20Qを入れて
攪拌後、デカンテーションして濾過をを行った。これを
乾燥した結果、得られた窒化物のS成分を表4に示した
。この表に示されるように、アンモニア水を用いて洗浄
することにより粒子等に付着した5o42″イオン分水
溶液中に溶出し易くシ、結果的に乾燥品の、S成分の混
入を防止できる。
After 1 hour of acidification according to Example 1, the acid was removed by decantation, 20 g of water was added, stirred and decanted again, and this operation was repeated 32 times. Three types of 78 liquids, 711N ammonia solution, 1N hydrochloric acid aqueous solution, and water, were each added with 20Q and stirred, then decanted and filtered. Table 4 shows the S component of the nitride obtained as a result of drying this. As shown in this table, by washing with aqueous ammonia, 5o42'' ions attached to particles etc. can be easily eluted into the aqueous solution, and as a result, contamination of the S component in the dried product can be prevented.

表4 試験4: 第3の工程において、炭素の添加はC(s)
 + O−◆Co(g)  の反応によってOを除去す
るなめである。また、粒度、温度の範囲は製品中の、C
,O,Nを低減するためで、粒度が0.3mm超、温度
が1100℃未満では、前記C,O,Nの低減が不十分
で、温度が1400℃ではCrの揮発による歩留の低下
と、真空加熱する装置の耐熱性に問題と生じるおそれが
ある。
Table 4 Test 4: In the third step, the addition of carbon is C(s)
It is a lick that removes O by the reaction of +O-◆Co(g). In addition, the particle size and temperature range are
, O, and N. If the particle size is more than 0.3 mm and the temperature is less than 1100°C, the reduction of C, O, and N will be insufficient, and if the temperature is 1400°C, the yield will decrease due to volatilization of Cr. This may cause problems with the heat resistance of the vacuum heating device.

炭素の添加の効果について検討した結果を表5に示しで
ある。試@No、1. No、2は酸処理した窒化物に
炭材を加えず、そのまま真空処理したものであるが、窒
素含有量は減少できても、酸処理中に混入した酸素は除
去出来ないことがわかる。試験No、3〜No、7は脱
窒前に存在する酸素に対して次の反応に必要な炭素を添
加し脱窒したものである。
Table 5 shows the results of examining the effect of adding carbon. Try @No, 1. In No. 2, the acid-treated nitride was vacuum-treated without adding any carbonaceous material, but it can be seen that even though the nitrogen content could be reduced, the oxygen mixed in during the acid treatment could not be removed. In Tests No. 3 to No. 7, denitrification was performed by adding carbon necessary for the next reaction to oxygen existing before denitrification.

試@No、3〜5は粒度について検討したもので、粒度
が粗いとC10がともに残留し、0.3mm以下にする
ことが好ましい。また、試験No、5〜No、9は脱窒
温度による変化を検討したもので、表5に示したように
脱窒温度は1150℃〜1350℃が好まシ、<、14
00℃以上ではCr歩留が悪化し、また低温ではC,N
、Oが残り易くなる。
Trials Nos. 3 to 5 were examined regarding particle size. If the particle size is coarse, C10 remains together, so it is preferable to set the particle size to 0.3 mm or less. In addition, Tests No. 5 to No. 9 examined changes due to denitrification temperature, and as shown in Table 5, the denitrification temperature is preferably 1150°C to 1350°C.
At temperatures above 00°C, the Cr yield deteriorates, and at low temperatures, C, N
, O tends to remain.

表5 試@5: 本発明の具体例1の方法によって得られるク
ロム含有率の高い低炭素フェロクロムは、従来の方法に
より製造された低炭素フェロクロムより破砕・粉砕が容
易であるので、これを粉末状とし、溶接棒または粉末冶
金の分野に添加材として提供されるものである。上記粉
砕の試験を行った結果を表6に示す、2種類の試料、す
なわち、■具体例1の方法によって得られるクロム含有
率の高い低炭素フェロクロム、■同じく具体例1におけ
る出発原料である低炭素フェロクロムを採取し、すべて
同じ条件で粉砕してその粒度分布を比較したものである
。粉砕の条件は、71のSUSのポットとその中に媒体
として入れた鉄20φのロッド35kgをもつ振動ミル
で、粒度3/1の各試料5kgを装入し、アルゴン雰囲
気とした後、粉砕時間は30分とした0本発明を粉砕し
た試料(Not)の酸素含有量は、0.15wL%であ
り、市販の粉末(酸素含有量は、0.3wt%以上)と
比較し、酸素含有量を低く押さえられるという特徴があ
る。
Table 5 Trial @ 5: The low carbon ferrochrome with a high chromium content obtained by the method of Example 1 of the present invention is easier to crush and crush than the low carbon ferrochrome produced by the conventional method. It is provided as an additive in the field of welding rods and powder metallurgy. The results of the above pulverization test are shown in Table 6. Two types of samples were prepared: (1) low-carbon ferrochrome with a high chromium content obtained by the method of Example 1; Carbon ferrochrome was collected and crushed under the same conditions, and the particle size distribution was compared. The pulverization conditions were a vibration mill with a 71 SUS pot and a 35kg iron 20φ rod placed in it as a medium. 5kg of each sample with a particle size of 3/1 was charged, an argon atmosphere was created, and the pulverization time was set. The oxygen content of the sample (Not) obtained by pulverizing the present invention for 30 minutes is 0.15 wL%, and compared with commercially available powder (oxygen content of 0.3 wt% or more), the oxygen content is It has the characteristic of being able to keep the pressure low.

このように、本実施例で得られた高クロム含有低炭素フ
ェロクロムは経済的に粉砕され、その粒度、組成は十分
で、溶接棒または粉末冶金の添加材として使用できるも
のである。
Thus, the high-chromium-containing, low-carbon ferrochrome obtained in this example is economically ground, has sufficient particle size and composition, and can be used as a welding rod or as an additive in powder metallurgy.

表6 [発明の効果] 本発明によれば、窒化処理して窒化物相と金属相の2相
とし、この金属相を酸処理により除去した後、脱窒処理
を行うので、クロム含有率の高い低炭素フェロクロムを
得ることができる。
Table 6 [Effects of the Invention] According to the present invention, the nitriding treatment is performed to form two phases, the nitride phase and the metal phase, and the metal phase is removed by the acid treatment, and then the denitrification treatment is performed, so that the chromium content can be reduced. Highly low carbon ferrochrome can be obtained.

Claims (7)

【特許請求の範囲】[Claims] (1)低炭素フェロクロムを固体窒化法により窒化して
窒化フェロクロムを得る第1の工程と、前記窒化フェロ
クロムを酸処理して脱鉄する第2の工程と、脱鉄された
前記窒化フェロクロムを真空加熱して脱窒する第3の工
程とを有するクロム含有率の高い低炭素フェロクロムの
製造方法。
(1) A first step of obtaining nitrided ferrochrome by nitriding low-carbon ferrochrome by a solid-state nitriding method, a second step of deironating the nitrided ferrochrome by acid treatment, and a vacuum treatment of the deironated nitrided ferrochrome. and a third step of heating and denitrification.
(2)第1の工程において、1回窒化した窒化フェロク
ロムを破砕・粉砕した後、2回目の窒化を行うことを特
徴とする請求項1記載のクロム含有率の高い低炭素フェ
ロクロムの製造方法。
(2) The method for producing low-carbon ferrochrome with a high chromium content according to claim 1, characterized in that in the first step, the nitrided ferrochrome that has been nitrided once is crushed and pulverized, and then the second nitridation is performed.
(3)第1の工程において、粒度が3mm以下の低炭素
フェロクロムを窒化して、窒化フェロクロムとし、1N
乃至3Nの酸水溶液100重量%に対して前記窒化フェ
ロクロムを外比8乃至25重量%の割合で処理すること
を特徴とする請求項1記載のクロム含有率の高い低炭素
フェロクロムの製造方法。
(3) In the first step, low carbon ferrochrome with a particle size of 3 mm or less is nitrided to produce ferrochrome nitride, and 1N
2. The method for producing low-carbon ferrochrome with a high chromium content according to claim 1, characterized in that the ferrochrome nitride is treated at a ratio of 8 to 25% by weight relative to 100% by weight of an aqueous acid solution of 3N to 3N.
(4)酸処理前の窒化フェロクロムの粒度を0.3乃至
3mmとすることを特徴とする請求項3記載のクロム含
有率の高い低炭素フェロクロムの製造方法。
(4) The method for producing low-carbon ferrochrome with a high chromium content according to claim 3, characterized in that the particle size of the nitrided ferrochrome before acid treatment is 0.3 to 3 mm.
(5)第2の工程において、酸処理は、H_2SO_4
の水溶液を使用し、アンモニア水で洗浄することを特徴
とする請求項1記載のクロム含有率の高い低炭素フェロ
クロムの製造方法。
(5) In the second step, the acid treatment is H_2SO_4
2. The method for producing low-carbon ferrochrome with a high chromium content according to claim 1, which comprises using an aqueous solution of and washing with aqueous ammonia.
(6)第3の工程において、窒化フェロクロムに炭材を
添加して、粉砕および混合を行い、粒度0.3mm以下
、温度1150℃〜1300℃で脱窒することを特徴と
する請求項1記載のクロム含有率の高い低炭素フェロク
ロムの製造方法。
(6) In the third step, a carbonaceous material is added to the ferrochrome nitride, and the ferrochrome nitride is pulverized and mixed, and denitrification is carried out at a particle size of 0.3 mm or less and a temperature of 1150°C to 1300°C. A method for producing low carbon ferrochrome with a high chromium content.
(7)低炭素フェロクロムを固体窒化法により窒化して
窒化フェロクロムを得る第1の工程と、前記窒化フェロ
クロムを酸処理して脱鉄する第2の工程と、脱鉄された
前記窒化フェロクロムを真空加熱して脱窒する第3の工
程と、脱窒された前記されたフェロクロムをクロムを不
活性雰囲気で粉砕する第4の工程と、を有するクロム含
有率の高い低炭素フェロクロムの製造方法。
(7) A first step of obtaining nitrided ferrochrome by nitriding low carbon ferrochrome by a solid-state nitriding method, a second step of deironating the nitrided ferrochrome by acid treatment, and a vacuum treatment of the deironated nitrided ferrochrome. A method for producing low-carbon ferrochrome with a high chromium content, comprising a third step of denitrifying by heating, and a fourth step of pulverizing the denitrified ferrochrome in an inert atmosphere.
JP28517388A 1988-11-11 1988-11-11 Method for producing low carbon ferrochrome having high chromium content Expired - Fee Related JPH0660368B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP28517388A JPH0660368B2 (en) 1988-11-11 1988-11-11 Method for producing low carbon ferrochrome having high chromium content
US07/428,582 US5123957A (en) 1988-11-11 1989-10-30 Method for manufacturing low carbon ferrochrome with high chromium content
ZA898497A ZA898497B (en) 1988-11-11 1989-11-08 Method for manufacturing low carbon ferrochrome with high chromium content
DE89120889T DE68909009T2 (en) 1988-11-11 1989-11-10 Process for the production of ferrochrome with low carbon and high chromium content.
EP89120889A EP0371299B1 (en) 1988-11-11 1989-11-10 Method for manufacturing low carbon ferrochrome with high chromium content
CA002002790A CA2002790A1 (en) 1988-11-11 1989-11-10 Method for manufacturing low carbon ferrochrome with high chromium content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28517388A JPH0660368B2 (en) 1988-11-11 1988-11-11 Method for producing low carbon ferrochrome having high chromium content

Publications (2)

Publication Number Publication Date
JPH02133541A true JPH02133541A (en) 1990-05-22
JPH0660368B2 JPH0660368B2 (en) 1994-08-10

Family

ID=17688043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28517388A Expired - Fee Related JPH0660368B2 (en) 1988-11-11 1988-11-11 Method for producing low carbon ferrochrome having high chromium content

Country Status (2)

Country Link
JP (1) JPH0660368B2 (en)
ZA (1) ZA898497B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508072A (en) * 2014-01-20 2017-03-23 イートン コーポレーションEaton Corporation Vacuum circuit breaker with arc-resistant central shield

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327382A (en) * 1993-05-18 1994-11-29 Hideyo Tatetsu Knot-reinforced finish line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508072A (en) * 2014-01-20 2017-03-23 イートン コーポレーションEaton Corporation Vacuum circuit breaker with arc-resistant central shield

Also Published As

Publication number Publication date
JPH0660368B2 (en) 1994-08-10
ZA898497B (en) 1990-08-29

Similar Documents

Publication Publication Date Title
US3899284A (en) Form of ammonium tetramolybdate and method of preparation
JPH03122205A (en) Manufacture of ti powder
JPH02133541A (en) Manufacture of low-carbon ferrochrome having high chrome content
CN114749655B (en) High-purity tantalum powder and preparation method thereof
JPH0339426A (en) Manufacture of metallic niobium
JP3379957B2 (en) Preparation method of niobium nitride
JPS63282217A (en) Manufacture of high-purity metal chromium
JPH10298613A (en) Phosphorus-containing iron powder
WO2002072473A1 (en) Method for producing tungsten carbide and tungsten carbide produced by said method
JPH0742528B2 (en) Method for producing high purity, high chromium content alloy
JPH064897B2 (en) High-purity, high-chromium alloy manufacturing method
EP0651682A1 (en) Nickel alloy for hydrogen battery electrodes
US4792351A (en) Hydrometallurgical process for producing irregular morphology powders
JPS63161101A (en) Production of low-oxygen metallic chromium power
US5123957A (en) Method for manufacturing low carbon ferrochrome with high chromium content
JPH04160124A (en) Production of high-purity metal chromium
Gupta et al. Bomb reduction of tantalum pentoxide by calcium metal
JP2650697B2 (en) Production method of high purity metallic chromium
JPS62207805A (en) Production of titanium-containing alloy powder
US2829041A (en) Method for reducing the carbon content of carbon-containing ferrochromium
JPH03170640A (en) Manufacture of high purity high chromium alloy
JPH0215618B2 (en)
US591355A (en) Henri moissan
JPH04235229A (en) Production of high purity metallic chromium
WO2017164898A1 (en) Method of treating unrefined tungstic acid to produce alloy grade tungsten for use in tungsten bearing steels and nickel based superalloys

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees