JPS63282217A - Manufacture of high-purity metal chromium - Google Patents

Manufacture of high-purity metal chromium

Info

Publication number
JPS63282217A
JPS63282217A JP11487187A JP11487187A JPS63282217A JP S63282217 A JPS63282217 A JP S63282217A JP 11487187 A JP11487187 A JP 11487187A JP 11487187 A JP11487187 A JP 11487187A JP S63282217 A JPS63282217 A JP S63282217A
Authority
JP
Japan
Prior art keywords
powder
metal
metal chromium
vacuum
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11487187A
Other languages
Japanese (ja)
Other versions
JPH0379412B2 (en
Inventor
Kaoru Araki
荒木 薫
Takanori Yoshizawa
啓典 吉沢
Kenichi Kobayashi
賢一 小林
Hideo Haga
秀夫 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP11487187A priority Critical patent/JPS63282217A/en
Publication of JPS63282217A publication Critical patent/JPS63282217A/en
Publication of JPH0379412B2 publication Critical patent/JPH0379412B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively manufacture high-purity metal chromium reduced in respective contents of S, O, N, etc., by adding a powder of easily sulfidizable metal to a powder of metal chromium containing large amounts of impurities, by mixing the above, and by subjecting the resulting mixture to heat treatment in vacuum. CONSTITUTION:A powder of easily sulfidizable metal is added to a powder of metal chromium containing large amounts of impurities, and they are mixed. It is preferable that the grain size of the above metal chromium powder is regulated to <=about 100 mesh in order to increase the contact surface. Further, it is preferable to use Sn, Ni, Cu, and Hg as the powdered easily fulfidizable metal mentioned above, and proper ratio of the powdered crude metal chromium to the powdered easily sulfidizable metal is about 1:0.5-1:2. Subsequently, the above-mentioned powder mixture is heated in vacuum. As to heating conditions, it is suitable to carry out holding in vacuum at about 1,200-1,500 deg.C for about 4hr. It is more desirable that the above mixture is heated with the addition of carbon material, or, after the above heat treatment, the mixture is further heated in a hydrogen atmosphere to undergo reduction treatment. In this way, high-purity metal chromium suitable for use in the fields of electronic industries and for superalloy, etc., can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高純度金属クロムの製造方法に関し、特にS
、0.N含有量の低い金属クロムを製造する方法であっ
て、電子工業の分野や耐食耐熱合金(スーパーアロイ)
の製造の分野における原料として好適な高純度金属クロ
ムを有利に製造する技術についての提案である。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing high-purity metallic chromium, and in particular to a method for producing high-purity metallic chromium.
, 0. A method for producing metallic chromium with low N content, which is used in the electronic industry and corrosion-resistant and heat-resistant alloys (superalloys).
This is a proposal for a technology for advantageously producing high-purity metallic chromium, which is suitable as a raw material in the field of production.

(従来の技術) 金属クロムの製造方法としては、Crt(SO4)3の
電解、あるいはCr、01のAlテルミット還元法が知
ら五ている。これら既知の製造方法によって得られた金
属クロムは、S、O,Nの含有量が高く電子材料用には
不向きである。すなわち、前記電解法は、電解液にCr
t (SOn)3を使用しているため、金属クロム中の
Sが200〜300ppmも含まれており、また水溶液
電解であるため0を5000〜10000 ppm。
(Prior Art) Five known methods for producing metallic chromium include electrolysis of Crt(SO4)3 and Al thermite reduction of Cr and 01. Metallic chromium obtained by these known production methods has a high content of S, O, and N and is unsuitable for electronic materials. That is, in the electrolytic method, Cr is added to the electrolytic solution.
Since t (SOn)3 is used, 200 to 300 ppm of S is contained in the metal chromium, and since it is an aqueous solution electrolysis, the amount of S is 5000 to 10000 ppm.

Nを200〜500ppmも含有している。一方、テル
ミット法では、原料のCr、0.の析出に硫酸を使用す
ることや、反応時に原料中のSのほとんどが金属クロム
中に留まるため、金属クロム中のS分は200〜400
Ppmもある。また、O含有量については、還元材のA
Nの配合を増量することにより低下させることが可能で
あるが、過剰分のAlが金属クロム中に残ることからA
Iの配合を低めにする必要があり、その結果0含有量は
3000〜4000ppmと高い。さらに、N含有量も
約200ppmと高い。
It also contains 200 to 500 ppm of N. On the other hand, in the thermite method, the raw material Cr, 0. Because sulfuric acid is used for precipitation and most of the S in the raw material remains in the metal chromium during the reaction, the S content in the metal chromium is between 200 and 400.
There is also PPM. In addition, regarding the O content, A of the reducing agent
It is possible to reduce the amount of N by increasing the content of N, but since the excess amount of Al remains in the metal chromium, the
It is necessary to lower the content of I, and as a result, the 0 content is as high as 3000 to 4000 ppm. Furthermore, the N content is also high at about 200 ppm.

上記の各方法で製造された金属クロムは、上述の如(い
ずれもS、O,Hの含有量が多く、使途に適合する金属
クロムを得るためにはこれらの不純物元素は除去されね
ばならない。そのため従来、真空炭素還元法、あるいは
水素還元法などにより脱ガス処理を施すことが試みられ
た。かかる真空炭素還元法は粉砕した金属クロムに炭素
粉を加えて真空中で加熱することにより、金属クロム中
の酸素をCOとして除去する方法であり、また、水素雰
囲気還元法は、粉砕した金属クロムを水素雰囲気で加熱
することにより酸素をH,Oとして除去する方法である
The metallic chromium produced by each of the above methods has a high content of S, O, and H, as described above, and these impurity elements must be removed in order to obtain metallic chromium suitable for the intended use. Therefore, attempts have been made to perform degassing treatment by vacuum carbon reduction method or hydrogen reduction method.In such vacuum carbon reduction method, carbon powder is added to crushed metallic chromium and heated in vacuum. This is a method of removing oxygen in chromium as CO, and the hydrogen atmosphere reduction method is a method of removing oxygen as H and O by heating pulverized metal chromium in a hydrogen atmosphere.

(発明が解決しようとする問題点) 上記従来技術は、真空中、水素雰囲気中で加熱すること
から、S≦50ppm 、 N < 10ppmを実現
できるが、電子材料の分野で要請されるようなS≦10
ppmの金属クロムを得るまでには至っていないのが実
情である。
(Problems to be Solved by the Invention) The above-mentioned conventional technology can achieve S≦50ppm and N<10ppm because it is heated in vacuum and in a hydrogen atmosphere. ≦10
The reality is that we have not yet reached the point where we can obtain ppm metallic chromium.

本発明の目的は、S、O,N等の不純物含有量がもっと
低い高純度な金属クロムを安価に製造できる方法を開発
するところにある。
An object of the present invention is to develop a method that can inexpensively produce high-purity metallic chromium with a lower content of impurities such as S, O, and N.

(問題点を解決するための手段) 上述の目的を達成する課題解決手段として本発明は、 ■ 基本的には、粗金属クロム粉に対して、Sn。(Means for solving problems) As a problem-solving means for achieving the above-mentioned object, the present invention has the following features: ■Basically, Sn to coarse metal chromium powder.

Ni、 Cu、 Hgなどの易硫化金属粉を加えて真空
中で加熱することにより、主として低S金属クロムを製
造する方法を提案する。そして、付随的に低0゜低Nを
同時に実現することとした。
We propose a method for producing mainly low-S metallic chromium by adding easily sulfurized metal powder such as Ni, Cu, Hg, etc. and heating it in vacuum. Additionally, it was decided to achieve low 0° and low N at the same time.

■ そして、さらに低いレベルのO,Nを実現する方法
として本発明は、上記■の処理に加えて真空炭素還元法
と水素雰囲気還元法とを合わせて実施する方法を提案す
る。これらの方法によれば、得られる金属クロムは不純
物が極めて低いものとなり、上述の使途によく適合する
製品となる。
(2) As a method for achieving even lower levels of O and N, the present invention proposes a method in which a vacuum carbon reduction method and a hydrogen atmosphere reduction method are combined in addition to the treatment (2) above. According to these methods, the resulting metallic chromium has extremely low impurities, resulting in a product that is well suited for the above-mentioned uses.

(作 用) 本発明製造方法の下で使用する出発原料である粗金属ク
ロムは、100メツシユ以下に粉砕したものを用いる。
(Function) The crude metal chromium, which is the starting material used in the production method of the present invention, is ground to 100 meshes or less.

100メソシユ以下の粉にする理由は、金属クロムと易
硫化金属の接触を良くし反応性を高めるためである。
The reason why the powder is 100 mesosius or less is to improve the contact between the metal chromium and the easily sulfurized metal and increase the reactivity.

本発明においては、脱硫を目的として易硫化金属を混合
するが、好適なものとしてはSn、 Ni、 Cu。
In the present invention, easily sulfurizing metals are mixed for the purpose of desulfurization, and preferred examples include Sn, Ni, and Cu.

Hgなどを挙げることができる。これらは硫化物を生成
し易い金属であり、金属クロム粉(M、Cr)中のSと
反応し、SnS、 NiS、 Cub、 HgSとなっ
て脱硫(≦10 ppm)に寄与する。
Examples include Hg. These are metals that easily generate sulfides, and react with S in metal chromium powder (M, Cr) to become SnS, NiS, Cub, and HgS, contributing to desulfurization (≦10 ppm).

粗金属クロム粉(M、Cr)と易硫化金属(Ds、M)
との混合に当たっては、バインダ°−3例えばPVAを
添加し、阿、Cr :Ds、M= 1 : 0.5〜1
 : 2程度の割合に混合して製団する。混合割合をか
ように限定する理由は、易硫化金属をSに対して過少に
配合するとメタル中のSの残留が多く、逆に過剰に配合
するとメタル中にSnが残留し金属クロムの純度が低下
するためである。
Crude metal chromium powder (M, Cr) and easily sulfurized metal (Ds, M)
When mixing with the binder °-3, for example, PVA is added, A, Cr: Ds, M = 1: 0.5-1
: Mix at a ratio of about 2 and make a dough. The reason why the mixing ratio is limited in this way is that if the easily sulfurized metal is mixed in too little with respect to S, there will be a lot of S remaining in the metal, whereas if it is mixed in excess, Sn will remain in the metal and the purity of the metal chromium will decrease. This is because it decreases.

製団した上記の混合物は、真空中で1200〜1500
℃の温度域に保持して4時間加熱する。温度、時間を限
定する理由は、温度が上記の範囲よりも低いと反応が遅
く、一方、高すぎるとCrの蒸発損失が大きくなるから
であり、また1200〜1500℃の温度域の場合4H
rで平衡となるためである。
The prepared above mixture was heated to 1200 to 1500 in vacuum.
Heat for 4 hours while maintaining the temperature in the temperature range of ℃. The reason for limiting the temperature and time is that if the temperature is lower than the above range, the reaction will be slow, while if it is too high, the evaporation loss of Cr will increase.
This is because equilibrium occurs at r.

(実施例) 史上 Aβテルミット反応によって得られた表1に示す成分の
粗金属クロムをトップグラインダーにて100メツシユ
以下に粉砕し、Sn、 Ni、 Cu、 Hgをそれぞ
れ金属クロム中のSに対して原子比で1.0の割合で配
合した。これらをそれぞれ製団して0.2トールの真空
度、1350℃で4Hr加熱した。得られた金属クロム
の分析値を表2に示す。この分析値から判るように、金
属クロム中のSは5硫化金属を原子比1:1で配合する
ことにより10 ppm以下となる。
(Example) Crude metallic chromium with the components shown in Table 1 obtained by historical Aβ thermite reaction was ground into 100 meshes or less using a top grinder, and Sn, Ni, Cu, and Hg were each added to S in metallic chromium. They were blended at an atomic ratio of 1.0. These were respectively prepared and heated at 1350° C. for 4 hours under a vacuum of 0.2 torr. Table 2 shows the analytical values of the obtained metallic chromium. As can be seen from this analytical value, the S content in metallic chromium is reduced to 10 ppm or less by blending metal pentasulfide at an atomic ratio of 1:1.

表1(ppm) 表2       (ppm) ±1 Alテルミット反応によって得られた表3に示す成分の
粗金属クロムをトップグラインダーにて100メツシユ
以下に粉砕し、Cを金属クロム中の0に対して原子比で
0.9となるように配合し、同時ニSnヲ金属りロム中
のSに対して原子比でOll、0.2.0の割合で配合
した。これらを混合製団して0.2トールの真空度、1
350℃で4Hr加熱した。
Table 1 (ppm) Table 2 (ppm) ±1 Crude metallic chromium with the components shown in Table 3 obtained by the Al thermite reaction was ground to 100 meshes or less using a top grinder, and C was compared to 0 in metallic chromium. They were blended at an atomic ratio of 0.9, and at the same time, they were blended at an atomic ratio of 0.2.0 to S in the Sn metal laminate. These were mixed and prepared under a vacuum degree of 0.2 torr and 1
It was heated at 350°C for 4 hours.

得られた金属クロムの分析値を表4に示す。この分析値
から判るように、金属クロム中のSはSnを原子比1:
1で配合すれば10 ppm以下となる。但し、過剰分
のSnは金属クロム中に残る。また、Cによる脱O効果
、真空加熱による脱N効果も同時に進行しているのが確
認された。
Table 4 shows the analytical values of the obtained metallic chromium. As can be seen from this analysis value, the atomic ratio of S in metallic chromium to Sn is 1:
If it is blended at 1, the concentration will be 10 ppm or less. However, an excess amount of Sn remains in the metal chromium. It was also confirmed that the O-removal effect due to C and the N-removal effect due to vacuum heating were progressing simultaneously.

±1 クロムミョウバンの電解によって得られた表5に示す成
分の粗金属クロムをトップグラインダーにて100メツ
シユ以下に粉砕し、Snを金属クロム中のSに対して原
子比でOll、0.2.0の割合に配合した。これらを
混合、製団して0.2トールの真空度、1350℃で4
Hr加熱し、脱S、脱Nを行った。その後、水素雰囲気
中の1500℃で4Hr加熱し脱Oした。得られた金属
クロムの分析値を表6に示す。分析値から金属クロム中
のSは配合したSnに対して原子比でほぼ1:1で減少
していることが分かる。但し、過剰のSnがあると金属
クロム中に残る。また、水素による脱O効果、真空加熱
による脱N効果も確認された。
±1 Crude metallic chromium having the components shown in Table 5 obtained by electrolyzing chromium alum was ground to 100 mesh or less using a top grinder, and the atomic ratio of Sn to S in the metallic chromium was Oll, 0.2. It was blended at a ratio of 0. These were mixed and made into a mass at 0.2 torr vacuum and 1350°C.
The mixture was heated with Hr to remove S and N. Thereafter, O was removed by heating at 1500° C. for 4 hours in a hydrogen atmosphere. Table 6 shows the analytical values of the obtained metallic chromium. It can be seen from the analytical values that S in metallic chromium is reduced in an atomic ratio of approximately 1:1 with respect to blended Sn. However, if there is an excess of Sn, it will remain in the metal chromium. Additionally, the O removal effect due to hydrogen and the N removal effect due to vacuum heating were also confirmed.

■モ 表6       (ppm) (発明の効果) 以上説明したように本発明によれば、電子工業の分野で
用いられる耐食耐熱合金用原料として好適なS、0.N
含有量が極めて少ない高純度金属クロムを有利に製造す
ることができる。
■Mo Table 6 (ppm) (Effects of the Invention) As explained above, according to the present invention, S, 0. N
High purity metallic chromium with an extremely low content can be advantageously produced.

Claims (1)

【特許請求の範囲】 1、不純物を多く含む金属クロム粉に易硫化金属粉を加
えて混合し、その後この混合物を真空中で加熱すること
を特徴とする高純度金属クロムの製造方法。 2、上記易硫化金属粉としてSn、Ni、Cu、Hgを
用いることを特徴とする特許請求の範囲第1項に記載の
製造方法。 3、不純物を多く含む金属クロム粉に易硫化金属粉およ
び炭材を加えて混合し、その後この混合物を真空中で加
熱することを特徴とする高純度金属クロムの製造方法。 4、上記易硫化金属粉としてSn、Ni、Cu、Hgを
用いることを特徴とする特許請求の範囲第3項に記載の
製造方法。 5、不純物を多く含む金属クロム粉に易硫化金属粉を加
えて混合し、次いでこの混合物を真空中で加熱し、さら
に水素雰囲気中に移して加熱することを特徴とする高純
度金属クロムの製造方法。 6、上記易硫化金属粉としてSn、Ni、Cu、Hgを
用いることを特徴とする特許請求の範囲第5項に記載の
製造方法。
[Claims] 1. A method for producing high-purity metallic chromium, which comprises adding and mixing easily sulfurized metal powder to metallic chromium powder containing a large amount of impurities, and then heating this mixture in a vacuum. 2. The manufacturing method according to claim 1, wherein Sn, Ni, Cu, and Hg are used as the easily sulfurized metal powder. 3. A method for producing high-purity metallic chromium, which comprises adding and mixing easily sulfurized metallic powder and carbonaceous material to metallic chromium powder containing many impurities, and then heating this mixture in a vacuum. 4. The manufacturing method according to claim 3, wherein Sn, Ni, Cu, and Hg are used as the easily sulfurized metal powder. 5. Production of high-purity metallic chromium, which is characterized by adding and mixing easily sulfurized metallic powder to metallic chromium powder containing many impurities, then heating this mixture in a vacuum, and further transferring it to a hydrogen atmosphere and heating it. Method. 6. The manufacturing method according to claim 5, wherein Sn, Ni, Cu, and Hg are used as the easily sulfurized metal powder.
JP11487187A 1987-05-13 1987-05-13 Manufacture of high-purity metal chromium Granted JPS63282217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11487187A JPS63282217A (en) 1987-05-13 1987-05-13 Manufacture of high-purity metal chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11487187A JPS63282217A (en) 1987-05-13 1987-05-13 Manufacture of high-purity metal chromium

Publications (2)

Publication Number Publication Date
JPS63282217A true JPS63282217A (en) 1988-11-18
JPH0379412B2 JPH0379412B2 (en) 1991-12-18

Family

ID=14648773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11487187A Granted JPS63282217A (en) 1987-05-13 1987-05-13 Manufacture of high-purity metal chromium

Country Status (1)

Country Link
JP (1) JPS63282217A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160124A (en) * 1990-10-23 1992-06-03 Japan Metals & Chem Co Ltd Production of high-purity metal chromium
JPH0610075A (en) * 1992-06-29 1994-01-18 Japan Metals & Chem Co Ltd Method and apparatus for producing high purity metallic chromium
WO2000007760A1 (en) * 1998-08-06 2000-02-17 Eramet Marietta Inc. Purification process for chromium
CN102808092A (en) * 2012-09-14 2012-12-05 苏州晶纯新材料有限公司 Method for preparing ultra low-oxygen chromium sheets
CN102876905A (en) * 2012-09-12 2013-01-16 朱刚强 Method for producing high-purity metal chromium by using single vacuum furnace
CN103952574A (en) * 2014-04-30 2014-07-30 中国科学院过程工程研究所 Method for producing high-purity metal chromium by reducing anhydrous chromium chloride through utilizing metal magnesium
CN110453095A (en) * 2019-09-17 2019-11-15 江苏隆达超合金航材有限公司 The technique for removing impurity element in electrolytic metal chromium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939784A (en) * 1958-09-26 1960-06-07 Union Carbide Corp Process for elimination of sulfur from metals
JPS5956540A (en) * 1982-08-20 1984-04-02 セ・デラシヨ Manufacture of high purity metal or alloy
JPS6247437A (en) * 1985-08-26 1987-03-02 Toyo Soda Mfg Co Ltd Manufacture of metallic chromium with very low nitrogen content

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939784A (en) * 1958-09-26 1960-06-07 Union Carbide Corp Process for elimination of sulfur from metals
JPS5956540A (en) * 1982-08-20 1984-04-02 セ・デラシヨ Manufacture of high purity metal or alloy
JPS6247437A (en) * 1985-08-26 1987-03-02 Toyo Soda Mfg Co Ltd Manufacture of metallic chromium with very low nitrogen content

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160124A (en) * 1990-10-23 1992-06-03 Japan Metals & Chem Co Ltd Production of high-purity metal chromium
JPH0610075A (en) * 1992-06-29 1994-01-18 Japan Metals & Chem Co Ltd Method and apparatus for producing high purity metallic chromium
WO2000007760A1 (en) * 1998-08-06 2000-02-17 Eramet Marietta Inc. Purification process for chromium
US6106765A (en) * 1998-08-06 2000-08-22 Eramet Marietta Inc. Purification process for chromium
CN102876905A (en) * 2012-09-12 2013-01-16 朱刚强 Method for producing high-purity metal chromium by using single vacuum furnace
CN102808092A (en) * 2012-09-14 2012-12-05 苏州晶纯新材料有限公司 Method for preparing ultra low-oxygen chromium sheets
CN103952574A (en) * 2014-04-30 2014-07-30 中国科学院过程工程研究所 Method for producing high-purity metal chromium by reducing anhydrous chromium chloride through utilizing metal magnesium
CN103952574B (en) * 2014-04-30 2015-08-19 中国科学院过程工程研究所 A kind of method utilizing magnesium metal reduction anhyd chromic chloride to produce high-purity metal chromium
CN110453095A (en) * 2019-09-17 2019-11-15 江苏隆达超合金航材有限公司 The technique for removing impurity element in electrolytic metal chromium

Also Published As

Publication number Publication date
JPH0379412B2 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
EP0447388B1 (en) Procedure for manufacturing of finegrain, sinteractive nitride- and carbonitride-powders of titanium
CA1185097A (en) Process for preparing metals from their fluorine- containing compounds
US5092921A (en) Method for producing high-purity metallic chromium
JPS63282217A (en) Manufacture of high-purity metal chromium
DE69920925T2 (en) PROCESS FOR GENERATING PURE CHROMIUM
DE2238473A1 (en) PROCESS FOR MANUFACTURING A WEAR-RESISTANT SINTER METAL ON AN IRON BASIS
AU2006307648A1 (en) Process for the preparation of an electrolyte
US5259866A (en) Method for producing high-purity metallic chromium
DE2255977A1 (en) METALLIC COPPER REFINING METHOD
JPH04160124A (en) Production of high-purity metal chromium
JPS63199832A (en) Manufacture of high-purity metallic chromium
WO1999041417B1 (en) Method for producing high-purity molybdenum chemicals from molybdenum sulfides
US2221061A (en) Process of making iron and nickel alloys
US3914113A (en) Titanium carbide preparation
CN113897485B (en) Method for enriching scandium from niobium-titanium ore and application of silicon slag
JPH1053414A (en) Production of metal disulfide and formation of bimetal trisulfide by further treatment thereof
JPH0339426A (en) Manufacture of metallic niobium
US4149875A (en) Purification of nickel and cobalt metal powders by a caustic wash
JP2650697B2 (en) Production method of high purity metallic chromium
JPH0681052A (en) Production of metal chromium
JPH02133541A (en) Manufacture of low-carbon ferrochrome having high chrome content
JPH04235230A (en) Production of high purity metallic chromium
JPH04235229A (en) Production of high purity metallic chromium
US1913833A (en) Method of producing and refining tungsten steel
JPH064897B2 (en) High-purity, high-chromium alloy manufacturing method