JPH04235232A - Production of high strength titanium alloy - Google Patents

Production of high strength titanium alloy

Info

Publication number
JPH04235232A
JPH04235232A JP189691A JP189691A JPH04235232A JP H04235232 A JPH04235232 A JP H04235232A JP 189691 A JP189691 A JP 189691A JP 189691 A JP189691 A JP 189691A JP H04235232 A JPH04235232 A JP H04235232A
Authority
JP
Japan
Prior art keywords
powder
titanium alloy
temp
titanium
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP189691A
Other languages
Japanese (ja)
Inventor
Hiroo Suzuki
洋夫 鈴木
Makoto Takeuchi
誠 竹内
Katsura Tsuchiya
土屋 桂
Hiroshi Tanaka
弘志 田中
Kazuo Fujisawa
藤沢 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP189691A priority Critical patent/JPH04235232A/en
Publication of JPH04235232A publication Critical patent/JPH04235232A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high strength titanium alloy capable of withstanding use for automobile parts, marine or ship parts, parts for general structural use, etc. CONSTITUTION:A titanium powder having <=0.001%, by weight, of chlorine content, a powder of master alloy consisting of Al and V, and a powder consisting of Fe powder are mixed so that a composition consisting of, by weight, 5.5-6.5% Al, 3.5-4.5% V, 0.3-<1.0% Fe, and the balance Ti is obtained. The resulting powder mixture is compacted to >=60% density by means of pressing at room temp. or cold isostatic pressing(CIP), burnt at 1100-1500 deg.C for >=30min, and further subjected, after burning, to hot isostatic pressing(HIP) treatment at a temp. between (beta-transformation temp. -150 deg.C) and (beta-transformation temp. +250 deg.C). By this method, the titanium alloy of the component series which cannot be produced by the conventional melting method owing to solidification segregation can be obtained by a new production method without recourse to the melting method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は自動車用部品、海洋ない
し船舶用部品、および一般構造用部品等の切削加工の困
難なTi合金部材の粉末冶金による製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing Ti alloy members, which are difficult to cut, such as automobile parts, marine or ship parts, and general structural parts, by powder metallurgy.

【0002】0002

【従来の技術】自動車用エンジン部材の一つであるコネ
クティングロッドは、従来鉄鋼材料を切削加工して用い
られてきた。最近の燃費向上、軽量化、高効率化等の目
的に沿って、鉄鋼材料に代わってチタン合金材での各種
部品の開発が進んでいる。しかしながら、従来のチタン
合金部品は真空アーク溶解炉(VAR)による溶解に始
まって、鍛造、熱間圧延、熱処理等の各工程を経た後、
機械加工を施して製造しており、高価な工程を用いるこ
と、工程が複雑なことなどから必然的に製品価格も高く
、自動車部品としての汎用が難しかった。
2. Description of the Related Art Connecting rods, which are one of the engine parts for automobiles, have conventionally been used by cutting steel materials. In line with recent objectives such as improving fuel efficiency, reducing weight, and increasing efficiency, various parts are being developed using titanium alloy materials instead of steel materials. However, conventional titanium alloy parts begin with melting in a vacuum arc melting furnace (VAR), then go through various processes such as forging, hot rolling, and heat treatment.
It is manufactured through mechanical processing, which requires expensive and complicated processes, which inevitably leads to high product prices, making it difficult to use it as a general-purpose automobile part.

【0003】Ti−6Al−4Vは強度延性のバランス
が良く、最も多く使用されているチタン合金であり、自
動車部品の有力な候補材料である。しかしながら近年さ
らに高強度材料が要求されつつある。この要求に応える
従来型合金として、Ti−10V−2Fe−3Alをは
じめとするnearβ型チタン合金があるが、高強度特
性を得るためには複雑かつ精密な熱処理が必要である。 簡便な強度向上策としてはTi−6Al−4VにFeを
微量添加する方法が有効である。しかしながら、従来の
溶解法ではFeの凝固偏析が顕著に生じてしまい、材質
が安定しないという問題点があった。
Ti-6Al-4V has a good balance of strength and ductility, is the most commonly used titanium alloy, and is a promising candidate material for automobile parts. However, in recent years, even higher strength materials have been required. Conventional alloys that meet this demand include near β type titanium alloys such as Ti-10V-2Fe-3Al, but complex and precise heat treatment is required to obtain high strength properties. As a simple measure for improving strength, it is effective to add a small amount of Fe to Ti-6Al-4V. However, the conventional melting method has the problem that solidification segregation of Fe occurs significantly and the material quality is unstable.

【0004】また、従来からのチタン合金の粉末冶金法
の1つである合金粉末法は、一旦溶解した材料を粉体化
処理して原料とするため必然的に製造価格が上昇し、凝
固偏析の問題は解決されない。そのため溶解工程を介さ
ない方法での高強度チタン合金の製造工程の開発が期待
されている。なお、チタン合金の素粉末混合法について
は特開昭62−4804号公報に開示されている。
In addition, the alloy powder method, which is one of the conventional powder metallurgy methods for titanium alloys, inevitably increases the manufacturing price because the melted material is pulverized and used as a raw material, and the solidification segregation problem is not resolved. Therefore, it is expected to develop a manufacturing process for high-strength titanium alloys that does not involve a melting process. Incidentally, a method for mixing raw powder of titanium alloy is disclosed in JP-A-62-4804.

【0005】[0005]

【発明が解決しようとする課題】本発明は自動車用部品
等の使用に耐え得る高強度チタン合金の溶解法によらな
い新たな高能率の製造方法を提供ことを目的とするもの
である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a new high-efficiency method for manufacturing a high-strength titanium alloy that can withstand use as automobile parts, etc., and does not rely on melting methods.

【0006】[0006]

【課題を解決するための手段・作用】本発明の着眼点は
、本発明者等が長年にわたり研究してきた素粉末法によ
る合金製造の技術にある。すなわち本発明は、従来の溶
解に代わって所定の合金成分となるよう予め機械的に混
合してなる混合粉末を、金型プレス、冷間静水圧プレス
等で所定の形状に圧粉成形し、さらに高温下で熱処理す
ることにより、合金化と焼結とを同一工程で行うことを
骨子とするものである(これがいわゆる素粉末法である
)。さらに、本発明においては強度、延性、靱性を向上
させるため、高温静水下における圧下(熱間静水圧プレ
ス;HIP)を行う。
[Means and Effects for Solving the Problems] The focus of the present invention is on the technology of producing alloys by the raw powder method, which the present inventors have been researching for many years. That is, in the present invention, instead of conventional melting, a mixed powder that has been mechanically mixed in advance to form a predetermined alloy component is compacted into a predetermined shape using a mold press, cold isostatic press, etc. The main idea is to perform alloying and sintering in the same process by further heat treating at a high temperature (this is the so-called elementary powder method). Furthermore, in the present invention, in order to improve strength, ductility, and toughness, rolling under high temperature still water (hot isostatic pressing; HIP) is performed.

【0007】以上の方法によれば、チタンの添加元素を
任意の重量比で容易に添加することができ、かつ溶解法
および合金粉末法では凝固偏析のために添加することが
できないか、または添加量に制限のある元素も添加が可
能となる。また以上の方法によれば、溶解、鍛造ないし
熱間圧延といった高価な工程を経ることなく、自動車用
部品等の製造が可能となる。
[0007] According to the above method, it is possible to easily add additional elements of titanium in any weight ratio, and addition is not possible in the melting method and alloy powder method due to solidification segregation, or the addition of titanium is difficult. It is also possible to add elements whose amounts are limited. Further, according to the above method, it is possible to manufacture automobile parts and the like without going through expensive processes such as melting, forging, or hot rolling.

【0008】本発明において、チタン粉末中の塩素含有
量を0.001%(重量%、以下同じ)以下にした理由
はHIP処理により密度を100%にするためであり、
またそれによって高強度を得るためである。Feを0.
3〜1.0%未満と限定した理由は、0.3%未満では
強化作用が生じないためであり、1.0%以上では焼結
時のFeの拡散が不十分となり、βフレックの原因とな
ったり、またβ相が多量に生成して機械的性質にばらつ
きが生じるためである。
[0008] In the present invention, the reason why the chlorine content in the titanium powder is set to 0.001% (wt%, same hereinafter) or less is to make the density 100% by HIP treatment.
This is also to obtain high strength. Fe is 0.
The reason for limiting the content to less than 3 to 1.0% is that if it is less than 0.3%, no reinforcing effect will occur, and if it is more than 1.0%, the diffusion of Fe during sintering will be insufficient, which may cause β flex. This is because a large amount of β phase is generated, causing variations in mechanical properties.

【0009】プレス後の密度を60%以上にする理由は
、これ未満では健全な粉末成形体が得られないからであ
る。焼成温度を限定した理由は、1100℃未満では合
金元素の拡散が不足し、1500℃超では結晶粒が成長
し機械的特性を悪化させるためである。焼成時間を30
分以上に限定した理由は、この時間未満では合金元素の
拡散が不足するためである。
The reason why the density after pressing is set to 60% or more is that if it is less than this, a healthy powder compact cannot be obtained. The reason for limiting the firing temperature is that below 1100°C, diffusion of alloying elements is insufficient, and above 1500°C, crystal grains grow and deteriorate mechanical properties. Baking time: 30
The reason why the time is limited to 1 minute or longer is that if the time is shorter than this, the diffusion of the alloying elements will be insufficient.

【0010】AlとVよりなる母合金粉末を混合原料と
して使用した理由は、V40Al60の予め合金化され
た安価な汎用品が存在し、VおよびAl単独で使用した
場合の焼結時のVの拡散不足や、Alの溶出が防止でき
るからである。HIP処理の温度を限定した理由は、β
変態温度−150℃未満ではHIP後の密度が100%
にならず、β変態温度+250℃超では結晶粒が成長し
強度特性を低下させるためである。
[0010] The reason for using a master alloy powder consisting of Al and V as a mixed raw material is that there is a pre-alloyed inexpensive general-purpose product of V40Al60, and when V and Al are used alone, the amount of V during sintering is low. This is because insufficient diffusion and elution of Al can be prevented. The reason for limiting the temperature of HIP treatment is β
When the transformation temperature is below -150℃, the density after HIP is 100%.
This is because, if the β-transformation temperature exceeds +250° C., crystal grains will grow and the strength properties will deteriorate.

【0011】[0011]

【実施例】3種類の粉末、すなわち、その組成が純度9
9%以上で、かつ塩素含有量が0.0008%のチタン
粉末と、その組成がアルミニウム60%、バナジウム4
0%の添加用母合金粉末、および鉄粉末とを用意した。 次に、チタン粉末、添加用母合金粉末、および鉄粉末を
表1に示した混合比で機械的に混合した。比較のためチ
タン粉末と添加用母合金粉末を混合したものを従来法原
料粉末として使用した。混合粉末を所定の形状の弾力性
のある型に装入、充填した。充填された粉末を冷間静水
圧プレスにより圧粉成形した。成形後の密度はいずれも
85%であった。圧粉体を、真空度10−4〜10−6
torr、1300℃で2時間焼結処理した。次いで9
00℃、1000kgf/cm2 で2時間の熱間静水
圧プレス処理をした。
[Example] Three types of powder, i.e., the composition is purity 9
Titanium powder with a chlorine content of 9% or more and a chlorine content of 0.0008%, and its composition is 60% aluminum and 4% vanadium.
A 0% additive master alloy powder and iron powder were prepared. Next, titanium powder, additive master alloy powder, and iron powder were mechanically mixed at the mixing ratio shown in Table 1. For comparison, a mixture of titanium powder and additive master alloy powder was used as the conventional raw material powder. The mixed powder was charged and filled into an elastic mold having a predetermined shape. The filled powder was compacted by cold isostatic pressing. The density after molding was 85% in all cases. The green compact is placed under a vacuum degree of 10-4 to 10-6.
sintering at 1300° C. for 2 hours. then 9
Hot isostatic pressing was performed at 00°C and 1000 kgf/cm2 for 2 hours.

【0012】0012

【表1】[Table 1]

【0013】従来法および本発明の方法で作った合金に
ついてそれぞれFe濃度、β変態温度、引張特性を表2
に示した。
Table 2 shows the Fe concentration, β transformation temperature, and tensile properties of the alloys made by the conventional method and the method of the present invention.
It was shown to.

【0014】[0014]

【表2】[Table 2]

【0015】表2から明らかなように本発明の方法で作
った合金は、従来材に比べ強度が高く、かつ延性が変化
しないものとなる。
As is clear from Table 2, the alloy made by the method of the present invention has higher strength than conventional materials and has no change in ductility.

【0016】[0016]

【発明の効果】以上の説明から明らかなように、本発明
では冷間で成形した混合粉末を高温下で真空焼結を行い
、熱間静水圧プレス処理を加えることにより、自動車用
部品等の使用に耐え得る高強度チタン合金(例えば、従
来の溶解法においては凝固偏析のために製造できない成
分系のチタン合金)を、溶解法によらない新たな製造法
により得ることができる。
[Effects of the Invention] As is clear from the above explanation, in the present invention, cold-molded mixed powder is vacuum sintered at high temperature, and hot isostatic pressing is applied to produce automotive parts, etc. A high-strength titanium alloy that can withstand use (for example, a titanium alloy whose components cannot be manufactured by conventional melting methods due to solidification segregation) can be obtained by a new manufacturing method that does not rely on melting methods.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量%で塩素含有量が0.001%以
下のチタン粉末、AlとVよりなる母合金粉末、および
Fe粉末よりなる粉末を、重量%でAl5.5〜6.5
%、V3.5〜4.5%、Fe0.3〜1.0%未満、
残部Tiとなるように混合し、室温にてプレスまたは冷
間静水圧プレス(CIP)で密度60%以上に成形した
後、1100℃以上1500℃以下の温度で30分以上
の焼成を行い、焼成後さらにβ変態温度−150℃から
β変態温度+250℃の温度で熱間静水圧プレス(HI
P)処理を施すことを特徴とする高強度チタン合金の製
造方法。
1. Titanium powder with a chlorine content of 0.001% or less by weight, a master alloy powder consisting of Al and V, and a powder consisting of Fe powder, with an Al content of 5.5 to 6.5% by weight.
%, V3.5-4.5%, Fe0.3-1.0%,
After mixing so that the remainder is Ti and forming it to a density of 60% or more by pressing or cold isostatic pressing (CIP) at room temperature, baking is performed at a temperature of 1100°C or more and 1500°C or less for 30 minutes or more. After that, hot isostatic pressing (HI
P) A method for producing a high-strength titanium alloy, which is characterized by subjecting it to a treatment.
JP189691A 1991-01-11 1991-01-11 Production of high strength titanium alloy Withdrawn JPH04235232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP189691A JPH04235232A (en) 1991-01-11 1991-01-11 Production of high strength titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP189691A JPH04235232A (en) 1991-01-11 1991-01-11 Production of high strength titanium alloy

Publications (1)

Publication Number Publication Date
JPH04235232A true JPH04235232A (en) 1992-08-24

Family

ID=11514350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP189691A Withdrawn JPH04235232A (en) 1991-01-11 1991-01-11 Production of high strength titanium alloy

Country Status (1)

Country Link
JP (1) JPH04235232A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080390A1 (en) * 2011-11-29 2013-06-06 東邦チタニウム株式会社 α+β OR β TITANIUM ALLOY AND METHOD FOR PRODUCING SAME
JP2014513197A (en) * 2010-09-27 2014-05-29 パブリックストックカンパニー “ヴイエスエムピーオー アヴィスマ コーポレーション” (4.0-6.0)% Al- (4.5-6.0)% Mo- (4.5-6.0)% V- (2.0-3.6)% Method for melting near β-type titanium alloy comprising Cr- (0.2-0.5)% Fe- (0.1-2.0)% Zr
CN105834431A (en) * 2016-04-11 2016-08-10 西安欧中材料科技有限公司 Preparation method of high-uniformity Ti-6Al-4V alloy powder metallurgic block

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513197A (en) * 2010-09-27 2014-05-29 パブリックストックカンパニー “ヴイエスエムピーオー アヴィスマ コーポレーション” (4.0-6.0)% Al- (4.5-6.0)% Mo- (4.5-6.0)% V- (2.0-3.6)% Method for melting near β-type titanium alloy comprising Cr- (0.2-0.5)% Fe- (0.1-2.0)% Zr
WO2013080390A1 (en) * 2011-11-29 2013-06-06 東邦チタニウム株式会社 α+β OR β TITANIUM ALLOY AND METHOD FOR PRODUCING SAME
US9969004B2 (en) 2011-11-29 2018-05-15 Toho Titanium Co., Ltd. α+β or β titanium alloy and method for producing same
CN105834431A (en) * 2016-04-11 2016-08-10 西安欧中材料科技有限公司 Preparation method of high-uniformity Ti-6Al-4V alloy powder metallurgic block

Similar Documents

Publication Publication Date Title
US3950166A (en) Process for producing a sintered article of a titanium alloy
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
US5000910A (en) Method of manufacturing intermetallic compound
JPS591778B2 (en) Manufacturing method of coarse-grained superalloy blocks by powder metallurgy
US4131450A (en) Process for manufacturing cobalt-base reduced powder
US4049429A (en) Ferritic alloys of low flow stress for P/M forgings
US3700434A (en) Titanium-nickel alloy manufacturing methods
JPH04235232A (en) Production of high strength titanium alloy
US4428778A (en) Process for producing metallic chromium plates and sheets
US4370299A (en) Molybdenum-based alloy
GB2048955A (en) Titanium Nitride Strengthened Alloys
JPS5935642A (en) Production of mo alloy ingot
CN113088758A (en) Production method of TB3 titanium alloy disc wire for fasteners
JPH02290933A (en) Manufacture of titanium alloy having high fatigue resistance
US5411700A (en) Fabrication of gamma titanium (tial) alloy articles by powder metallurgy
WO2003037552A1 (en) Methods of forming articles from alloys of tin and/or titanium
JPS5819738B2 (en) Koumitsudoshiyouketsukouno Seizouhouhou
JPS62188735A (en) Manufacture of tini alloy wire or plate
JP2908018B2 (en) Method for producing high hardness sintered member and metal powder mixture
JP2691713B2 (en) Method for producing Cr-Ni-based stainless steel having excellent hot workability
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPH05263181A (en) Manufacture of fe base sintered alloy member having high strength and high toughness
JP2735132B2 (en) Manufacturing method of high density Elinvar type Fe-based sintered alloy
JPH04308064A (en) Material having high electric resistance and production thereof
JPH02205646A (en) Conductive sintered spring alloy and its manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514