JPH0741348A - Production of super fluidized concrete - Google Patents

Production of super fluidized concrete

Info

Publication number
JPH0741348A
JPH0741348A JP17298393A JP17298393A JPH0741348A JP H0741348 A JPH0741348 A JP H0741348A JP 17298393 A JP17298393 A JP 17298393A JP 17298393 A JP17298393 A JP 17298393A JP H0741348 A JPH0741348 A JP H0741348A
Authority
JP
Japan
Prior art keywords
specific gravity
concrete
coarse aggregate
powder
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17298393A
Other languages
Japanese (ja)
Inventor
Toshihiro Kojima
利広 小島
Atsumoto Ueda
厚元 植田
Noriyuki Koyama
宣幸 小山
Yukio Tanaka
幸生 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP17298393A priority Critical patent/JPH0741348A/en
Publication of JPH0741348A publication Critical patent/JPH0741348A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density

Abstract

PURPOSE:To produce a super fluidized concrete excellent in material separation resistance and obviating the tamping. CONSTITUTION:The difference between the specific gravity of a coarse aggregate and that of a mortal part composed of cement, an inorganic powder, a fine aggregate, a mixing agent and water is controlled to <=0.15g/cm<3>. The super fluidized concrete extremely excellent in fluidity and large in separation resistance is obtained by making the difference between the specific gravity of the coarse aggregate and that of the mortal <=0.15g/cm<3>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超流動コンクリートの製
造方法に係り、特に、土木、建築工事におけるコンクリ
ートとして、また、コンクリート2次製品用のコンクリ
ートとして有用な、流動性に富み、材料分離の問題のな
い締固め不要超流動コンクリートの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing superfluid concrete, and in particular, it is useful as a concrete for civil engineering and construction work, and as a concrete for secondary concrete products. The present invention relates to a method of producing compaction-free superfluid concrete without problems.

【0002】[0002]

【従来の技術】締固め不要の超流動コンクリートにおい
ては、コンクリートの流動性が高いために、粗骨材がモ
ルタル部から容易に分離する傾向を示す。このため、こ
の分離を低減する方策として、セルロースエーテルやア
クリルアミド等の水溶性合成高分子や天然多糖類の分離
低減剤を添加する方法(特開平1−160852号公
報、同4−367550号公報)、或いは、セメントや
混和剤の粉体量を多く設定すると共に、高性能減水剤を
混和し、セメントペーストの粘度を高める方法が採用さ
れている。
2. Description of the Related Art In superfluid concrete which does not require compaction, coarse aggregate tends to be easily separated from a mortar part because of its high fluidity. Therefore, as a measure for reducing this separation, a method of adding a water-soluble synthetic polymer such as cellulose ether or acrylamide or a separation reducing agent for natural polysaccharides (JP-A-1-160852 and 4-637550). Alternatively, a method of increasing the powder amount of cement or an admixture and admixing a high-performance water reducing agent to increase the viscosity of the cement paste is adopted.

【0003】[0003]

【発明が解決しようとする課題】上記従来の方法のう
ち、分離低減剤を添加する方法では分離低減剤が高価で
あるため、材料コストが高くつく上に、分離低減剤の使
用によりコンクリートの粘度が高くなり打設速度が遅く
なることから、効率が悪いといった欠点がある。
Among the above-mentioned conventional methods, the method of adding a separation reducing agent is expensive, so that the material cost is high and the viscosity of concrete is increased by the use of the separation reducing agent. However, there is a drawback in that the efficiency is poor because the driving speed becomes high and the casting speed becomes slow.

【0004】また、粉体量を多くする方法においては、
粉体量を多く設定しても流動性を確保する必要上、分離
を有効に防止し得る粉体量とすることはできず、やはり
分離が生じ易いという問題がある。
Further, in the method of increasing the amount of powder,
Even if a large amount of powder is set, it is necessary to secure fluidity, so that the amount of powder cannot effectively prevent separation, and there is a problem that separation easily occurs.

【0005】本発明は上記従来の問題点を解決し、材料
分離抵抗性に優れた、締固め不要超流動コンクリートを
製造する方法を提供することを目的とする。
It is an object of the present invention to solve the above-mentioned conventional problems and to provide a method for producing compaction-free superfluid concrete having excellent material separation resistance.

【0006】[0006]

【課題を解決するための手段】請求項1の超流動コンク
リートの製造方法は、セメント、無機系粉末、細骨材、
粗骨材、混和剤及び水を混練して超流動コンクリートを
製造する方法において、該粗骨材の比重と、セメント、
無機系粉末、細骨材、混和剤及び水で構成されるモルタ
ル部の比重との差を0.15g/cm3 以下とすること
を特徴とする。
A method for producing superfluid concrete according to claim 1 is directed to cement, inorganic powder, fine aggregate,
In the method for producing superfluid concrete by kneading coarse aggregate, an admixture and water, the specific gravity of the coarse aggregate, cement,
The difference from the specific gravity of the mortar part composed of the inorganic powder, fine aggregate, admixture, and water is 0.15 g / cm 3 or less.

【0007】請求項2の超流動コンクリートの製造方法
は、請求項1に記載の方法において、細骨材の少なくと
も一部として、比重が3.00g/cm3 以上で粒径が
2.5mm以下の無機物質粒子を用いることを特徴とす
る。
The method for producing superfluid concrete according to claim 2 is the method according to claim 1, wherein at least a part of the fine aggregate has a specific gravity of 3.00 g / cm 3 or more and a particle size of 2.5 mm or less. Inorganic substance particles are used.

【0008】請求項3の超流動コンクリートの製造方法
は、請求項1又は2に記載の方法において、無機系粉末
の少なくとも一部として、比重が3.30g/cm3
上の無機物質粉末を用いることを特徴とする。
The method for producing superfluid concrete according to claim 3 is the method according to claim 1 or 2, wherein an inorganic substance powder having a specific gravity of 3.30 g / cm 3 or more is used as at least a part of the inorganic powder. It is characterized by

【0009】以下に本発明を詳細に説明する。なお、本
発明において、粗骨材とモルタル部との比重差とは、粗
骨材の比重からモルタル部の比重を差し引いた値の絶対
値を指し、以下において、比重の単位(g/cm3 )は
省略して示す。
The present invention will be described in detail below. In the present invention, the specific gravity difference between the coarse aggregate and the mortar portion refers to the absolute value of the value obtained by subtracting the specific gravity of the mortar portion from the specific gravity of the coarse aggregate, and in the following, the unit of specific gravity (g / cm 3 ) Is omitted.

【0010】本発明においては、セメント、無機系粉
末、細骨材、粗骨材、混和剤及び水を混練してコンクリ
ートを製造するに当り、粗骨材と粗骨材以外のモルタル
部との比重の差を0.15以下とする。
In the present invention, when cement, inorganic powder, fine aggregate, coarse aggregate, admixture, and water are kneaded to produce concrete, a coarse aggregate and a mortar part other than the coarse aggregate are mixed. The difference in specific gravity is 0.15 or less.

【0011】このように比重調整を行なうためには、次
の又はの方法を採用するのが好ましい。 比重調整用粒子として、比重が3.00以上の無機
物質よりなり、粒径が2.5mm以下の無機物質粒子を
細骨材の一部もしくは全部として使用する。 比重調整用粉末として、比重が3.30以上の無機
物質粉末を無機系粉末の一部もしくは全部として使用す
る。
In order to adjust the specific gravity as described above, it is preferable to adopt the following method or. As particles for adjusting specific gravity, inorganic material particles having a specific gravity of 3.00 or more and a particle diameter of 2.5 mm or less are used as a part or all of the fine aggregate. As the specific gravity adjusting powder, an inorganic substance powder having a specific gravity of 3.30 or more is used as a part or the whole of the inorganic powder.

【0012】上記、の比重調整用粒子又は粉末とし
ては、コンクリートの凝結時間を著しく変化させないも
のであり、なおかつ、コンクリートの異状膨張等を誘引
しない、コンクリートの耐久性に悪影響を及ぼさない物
質であれば良く、特に制限はないが、例えば、製鋼スラ
グ、製銅スラグ、褐鉄鉱、ページャイト、バライト、磁
鉄鉱、フェロフォスフェラス等の1種又は2種以上の粒
子又は粉末を用いることができる。
The above-mentioned specific gravity adjusting particles or powders are those which do not significantly change the setting time of concrete, and do not induce abnormal expansion of concrete, etc. and do not adversely affect the durability of concrete. Although there is no particular limitation, it is possible to use, for example, one or more particles or powders of steelmaking slag, coppermaking slag, limonite, pageite, barite, magnetite, ferrophospherus, etc.

【0013】なお、本発明において、セメントとしては
ポルトランドセメントの他、混合セメント等を使用する
ことができる。
In the present invention, as the cement, mixed cement or the like can be used in addition to Portland cement.

【0014】また、無機系粉末としては前述の比重調整
用粉末の他、高炉スラグ粉末やフライアッシュ、石灰石
粉末、砕石粉等の1種又は2種以上を用いることができ
る。
As the inorganic powder, one or more kinds of blast furnace slag powder, fly ash, limestone powder, crushed stone powder and the like can be used in addition to the above-mentioned specific gravity adjusting powder.

【0015】また、細骨材、粗骨材としては、一般にコ
ンクリートに使用されるものであれば良く、特に限定さ
れない。
The fine aggregate and coarse aggregate are not particularly limited as long as they are those generally used for concrete.

【0016】混和剤としては、高性能減水剤、高性能A
E減水剤、水溶性高分子の増粘剤及び消泡剤等を単独も
しくは組み合せて使用することができる。
As the admixture, high-performance water reducing agent, high-performance A
E Water-reducing agent, water-soluble polymer thickener, defoaming agent and the like can be used alone or in combination.

【0017】本発明において、粗骨材とモルタル部との
比重差が0.15以下であれば、そのコンクリート配合
には特に制限はないが、一般には、セメントと無機系粉
末の合計量が500kg/m3 以上の配合が好ましい。
In the present invention, as long as the difference in specific gravity between the coarse aggregate and the mortar part is 0.15 or less, the concrete composition is not particularly limited, but generally the total amount of cement and inorganic powder is 500 kg. / M 3 or more is preferable.

【0018】[0018]

【作用】ストークス領域において液体中を直径dの球形
粒子が沈降する場合の沈降速度は下記式で表される。
When the spherical particles of diameter d settle in the liquid in the Stokes region, the settling velocity is expressed by the following formula.

【0019】[0019]

【数1】 [Equation 1]

【0020】この式において沈降速度ω0 を0とする条
件は、 液体比重(ρ)=固体密度(σ)となる場
合、 固体粒子径d→0、 液体の動粘性係数ν→
∞の3条件である。コンクリート中のペースト部又はモ
ルタル部が液体として挙動すると仮定すると、粗骨材の
分離沈降を抑制するためには、ペースト部、モルタル部
の動粘性係数を大きくする方法と、モルタル部の比重と
粗骨材の比重を同等にする方法の2方法が考えられ、超
流動コンクリートにおいて分離低減剤を混和する方法は
ペースト部、モルタル部の動粘性係数を高くするもので
ある。
In this equation, the condition for setting the sedimentation velocity ω 0 to 0 is that when the liquid specific gravity (ρ) = solid density (σ), the solid particle diameter d → 0, the kinematic viscosity coefficient ν →
There are three conditions of ∞. Assuming that the paste part or mortar part in concrete behaves as a liquid, in order to suppress the separation and settling of coarse aggregate, a method of increasing the kinematic viscosity coefficient of the paste part and mortar part, and the specific gravity and coarseness of the mortar part Two methods of making the specific gravities of the aggregates the same can be considered, and the method of mixing the separation reducing agent in superfluid concrete is to increase the kinematic viscosity coefficient of the paste portion and the mortar portion.

【0021】一方、本発明者らは、コンクリートの打設
速度が速く、しかも材料分離のない超流動コンクリート
を製造するために、種々の検討を行なった結果、モルタ
ル部の比重と粗骨材の比重とを同等にすることが可能で
あることを確認し、分離抵抗性の高い超流動コンクリー
トを得るに至った。
On the other hand, the inventors of the present invention have conducted various studies in order to produce superfluid concrete having a high concrete pouring speed and no material separation, and as a result, the specific gravity of the mortar part and the coarse aggregate It was confirmed that it is possible to make the specific gravity equal, and we have obtained superfluid concrete with high separation resistance.

【0022】因みに、従来の一般的な超流動コンクリー
トでは、粗骨材とモルタル部との比重差は0.4〜0.
6程度である。これに対して、本発明方法に従って、粗
骨材とモルタル部との比重差を0.15以下とすること
により、流動性が著しく良好であると共に分離抵抗性の
高い超流動コンクリートが得られる。
Incidentally, in the conventional general superfluid concrete, the difference in specific gravity between the coarse aggregate and the mortar part is 0.4 to 0.
It is about 6. On the other hand, according to the method of the present invention, by setting the difference in specific gravity between the coarse aggregate and the mortar part to 0.15 or less, superfluid concrete having extremely good fluidity and high separation resistance can be obtained.

【0023】請求項2、3の方法によれば、容易に粗骨
材とモルタル部との比重差を0.15以下に調整するこ
とができる。
According to the methods of claims 2 and 3, the specific gravity difference between the coarse aggregate and the mortar portion can be easily adjusted to 0.15 or less.

【0024】[0024]

【実施例】以下に実験例、実施例及び比較例を挙げて本
発明をより具体的に説明するが、本発明はその要旨を超
えない限り、以下の実施例に限定されるものではない。
なお、用いた主な材料及びその比重は下記表1の通りで
ある。また、水としては上水道水を用いた。高性能AE
減水剤としてはポリカルボン酸系のものを、また、分離
低減剤としてはセルロースエーテルを用いた。
EXAMPLES The present invention will be described in more detail below with reference to experimental examples, examples and comparative examples, but the present invention is not limited to the following examples unless it exceeds the gist.
The main materials used and their specific gravities are shown in Table 1 below. Also, tap water was used as water. High performance AE
A polycarboxylic acid type was used as the water reducing agent, and cellulose ether was used as the separation reducing agent.

【0025】[0025]

【表1】 [Table 1]

【0026】実験例1 表1に示す比重3.62の製銅スラグを目開き5mm,
2.5mm,1.2mm,0.6mm,0.3mmのふ
るいを用いて各粒群毎に試料をふるいとった。普通ポル
トランドセメント1重量部に対し、水を0.3重量部、
高性能AE減水剤を0.02重量部、各粒群の製銅スラ
グを1重量部加え、ミキサーにて混練し、各々モルタル
を作製した。モルタルは混練後、ただちに直径10c
m、高さ20cmの型枠に流し込んだ。
Experimental Example 1 A copper-made slag having a specific gravity of 3.62 shown in Table 1 was opened by 5 mm,
The samples were sieved for each grain group using 2.5 mm, 1.2 mm, 0.6 mm and 0.3 mm sieves. 0.3 parts by weight of water for 1 part by weight of ordinary Portland cement,
0.02 parts by weight of a high-performance AE water reducing agent and 1 part by weight of copper slag of each particle group were added and kneaded with a mixer to prepare mortars. The mortar has a diameter of 10c immediately after kneading.
It was poured into a m-shaped mold having a height of 20 cm.

【0027】モルタルの材令7日に硬化体を流し込み方
向に切断し、製銅スラグの重力方向での分布を調べた。
その結果、粒径2.5mmを超える粒群では、製銅スラ
グが重力方向に沈降しており、上部はペースト層となっ
ていた。しかしながら、粒径2.5mm以下の粒群で
は、分離沈降の度合いは小さく、特に、粒径1.2mm
以下の粒群では分離は全く観察されなかった。
On the 7th day of the age of the mortar, the hardened material was cut in the pouring direction and the distribution of the copper slag in the gravity direction was examined.
As a result, in the particle group having a particle size of more than 2.5 mm, the copper slag was settled in the direction of gravity, and the upper part was a paste layer. However, the degree of separation and sedimentation is small in the group of particles having a particle size of 2.5 mm or less, and in particular, the particle size of 1.2 mm.
No segregation was observed in the following grain groups.

【0028】この実験結果から、細骨材として用いる製
銅スラグの粒径は2.5mm以下、特に1.2mm以下
であることが好ましいことがわかる。
From the results of this experiment, it is understood that the grain size of the copper slag used as the fine aggregate is preferably 2.5 mm or less, particularly 1.2 mm or less.

【0029】実施例1〜6、比較例1〜5 表2に示す配合のコンクリートを練り混ぜた。なお、細
骨材の製銅スラグとしては、実験例1の結果から粒径
2.5mm以下の粒群を使用した。各々のコンクリート
について、スランプフローを測定した結果、いずれの配
合においても60〜70cmの範囲内であった。また、
各コンクリートの粗骨材とモルタル部との比重差は表3
に示す通りであった。
Examples 1 to 6 and Comparative Examples 1 to 5 Concrete having the composition shown in Table 2 was kneaded. As the copper slag made of fine aggregate, particles having a particle diameter of 2.5 mm or less were used from the results of Experimental Example 1. As a result of measuring the slump flow of each concrete, it was within the range of 60 to 70 cm in all the formulations. Also,
Table 3 shows the difference in specific gravity between the coarse aggregate and mortar of each concrete.
It was as shown in.

【0030】図1に示す型枠1のホッパー2にコンクリ
ートを入れ、投入口3を開いてから、出口4にコンクリ
ートが到達するまでの所要時間を測定した。結果を表3
に示す。表3に示す通り、比較例4、5では、分離低減
剤を使用しており、充填に要する時間が長いが、全ての
配合において十分な充填性が認められた。充填試験を行
なった試験体は硬化後、切断線Lに沿って切断して、材
料の分離状態を観察した。
Concrete was put in the hopper 2 of the mold 1 shown in FIG. 1, and the time required from the opening of the charging port 3 to the arrival of the concrete at the outlet 4 was measured. The results are shown in Table 3.
Shown in. As shown in Table 3, in Comparative Examples 4 and 5, the separation reducing agent was used and the time required for filling was long, but sufficient filling properties were observed in all the formulations. After curing, the test body subjected to the filling test was cut along the cutting line L to observe the separated state of the material.

【0031】その結果、表3に示す如く、比較例2、3
では、型枠1の出口4付近で明らかに粗骨材が少なく、
分離状態となっていた。一方、実施例5、6及び比較例
1では、細骨材の製銅スラグの割合を変えることによ
り、モルタル部の比重と粗骨材の比重との差を0.01
〜0.23まで変化させており、比重差0.23の比較
例1では分離状態が観察されたが、実施例5、6では分
離はみられなかった。実施例1は、製銅スラグ粉末を用
いて比重調整をしており、これも分離はなかった。これ
らの結果から、モルタル部と粗骨材の比重差が0.15
以内であれば、優れた材料分離抵抗性を示すことが確認
された。実施例2、3は、セメントにそれぞれ高炉スラ
グ粉末、フライアッシュを混合しても作製可能であるこ
と、また、実施例4は、比較例4、5に対して、分離低
減剤の添加量を少なくしても、分離のない、しかも打設
速度の速い超流動コンクリートが得られることを示して
いる。
As a result, as shown in Table 3, Comparative Examples 2 and 3
Then, there is obviously less coarse aggregate near the exit 4 of the form 1,
It was in a separated state. On the other hand, in Examples 5 and 6 and Comparative Example 1, the difference between the specific gravity of the mortar part and the specific gravity of the coarse aggregate was 0.01 by changing the ratio of the copper slag made of fine aggregate.
The separation state was observed in Comparative Example 1 having a specific gravity difference of 0.23, but no separation was observed in Examples 5 and 6. In Example 1, the specific gravity was adjusted using the copper slag powder, and there was also no separation. From these results, the specific gravity difference between the mortar and the coarse aggregate is 0.15
It was confirmed that when the content was within the range, excellent material separation resistance was exhibited. Examples 2 and 3 can be produced by mixing cement with blast furnace slag powder and fly ash, respectively, and Example 4 is different from Comparative Examples 4 and 5 in that the addition amount of the separation reducing agent is changed. It shows that superfluid concrete without separation and with high pouring speed can be obtained at least.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】以上詳述した通り、本発明の超流動コン
クリートの製造方法によれば、流動性が著しく良好で打
設速度が速い締固め不要コンクリートであって、材料の
分離抵抗性の高い超流動コンクリートが提供される。
As described in detail above, according to the method for producing superfluid concrete of the present invention, compaction-free concrete having remarkably good fluidity and high pouring speed, and having high material separation resistance. Superfluid concrete is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例において用いた型枠を示す斜視図であ
る。
FIG. 1 is a perspective view showing a mold used in Examples.

【符号の説明】[Explanation of symbols]

1 型枠 2 ホッパー 3 投入口 4 出口 1 Formwork 2 Hopper 3 Input port 4 Exit

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 18:14 18:08) (72)発明者 小山 宣幸 福岡県北九州市八幡西区洞南町1番地1 三菱マテリアル株式会社九州事業所開発研 究部内 (72)発明者 田中 幸生 福岡県北九州市八幡西区洞南町1番地1 三菱マテリアル株式会社九州事業所開発研 究部内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location C04B 18:14 18:08) (72) Inventor Nobuyuki Koyama 1 No. 1 Dongnan-cho, Hachimansai-ku, Kitakyushu, Fukuoka Prefecture Mitsubishi Materials (72) Inventor, Yukio Tanaka, 1-chome, Konan-cho, Yawatanishi-ku, Kitakyushu, Fukuoka Prefecture Mitsubishi Materials Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セメント、無機系粉末、細骨材、粗骨
材、混和剤及び水を混練して超流動コンクリートを製造
する方法において、 該粗骨材の比重と、セメント、無機系粉末、細骨材、混
和剤及び水で構成されるモルタル部の比重との差を0.
15g/cm3 以下とすることを特徴とする超流動コン
クリートの製造方法。
1. A method for producing superfluid concrete by kneading cement, inorganic powder, fine aggregate, coarse aggregate, admixture and water, wherein specific gravity of the coarse aggregate, cement, and inorganic powder, The difference from the specific gravity of the mortar composed of fine aggregate, admixture and water is 0.
A method for producing superfluid concrete, which is 15 g / cm 3 or less.
【請求項2】 請求項1に記載の方法において、細骨材
の少なくとも一部として、比重が3.00g/cm3
上で粒径が2.5mm以下の無機物質粒子を用いること
を特徴とする超流動コンクリートの製造方法。
2. The method according to claim 1, wherein at least a part of the fine aggregate is inorganic material particles having a specific gravity of 3.00 g / cm 3 or more and a particle diameter of 2.5 mm or less. Method for producing superfluid concrete.
【請求項3】 請求項1又は2に記載の方法において、
無機系粉末の少なくとも一部として、比重が3.30g
/cm3 以上の無機物質粉末を用いることを特徴とする
超流動コンクリートの製造方法。
3. The method according to claim 1 or 2, wherein
Specific gravity of 3.30 g as at least a part of the inorganic powder
A method for producing superfluid concrete, which comprises using an inorganic substance powder having a density of at least 1 / cm 3 .
JP17298393A 1993-07-13 1993-07-13 Production of super fluidized concrete Withdrawn JPH0741348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17298393A JPH0741348A (en) 1993-07-13 1993-07-13 Production of super fluidized concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17298393A JPH0741348A (en) 1993-07-13 1993-07-13 Production of super fluidized concrete

Publications (1)

Publication Number Publication Date
JPH0741348A true JPH0741348A (en) 1995-02-10

Family

ID=15951999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17298393A Withdrawn JPH0741348A (en) 1993-07-13 1993-07-13 Production of super fluidized concrete

Country Status (1)

Country Link
JP (1) JPH0741348A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8016652B2 (en) 2004-11-02 2011-09-13 Toshitaka Tanaka Airflow diffuser (diffuser fan) and air conditioner
JP2012201558A (en) * 2011-03-25 2012-10-22 Sumitomo Metal Mining Engineering Co Ltd Copper-slag-containing fine aggregate for concrete, and concrete construction method using the same
JP2019210200A (en) * 2018-06-08 2019-12-12 住友大阪セメント株式会社 High strength concrete composition and high strength concrete hardened body
JP2020158330A (en) * 2019-03-26 2020-10-01 住友大阪セメント株式会社 Self-compacting concrete and method for producing the same
CN114315266A (en) * 2021-12-14 2022-04-12 上海建工建材科技集团股份有限公司 Low-fiber-doped high-density self-compacting rock-fill concrete material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8016652B2 (en) 2004-11-02 2011-09-13 Toshitaka Tanaka Airflow diffuser (diffuser fan) and air conditioner
US8562398B2 (en) 2004-11-02 2013-10-22 Toshitaka Tanaka Airflow diffuser (diffuser fan) and air conditioner
JP2012201558A (en) * 2011-03-25 2012-10-22 Sumitomo Metal Mining Engineering Co Ltd Copper-slag-containing fine aggregate for concrete, and concrete construction method using the same
JP2019210200A (en) * 2018-06-08 2019-12-12 住友大阪セメント株式会社 High strength concrete composition and high strength concrete hardened body
JP2020158330A (en) * 2019-03-26 2020-10-01 住友大阪セメント株式会社 Self-compacting concrete and method for producing the same
CN114315266A (en) * 2021-12-14 2022-04-12 上海建工建材科技集团股份有限公司 Low-fiber-doped high-density self-compacting rock-fill concrete material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4834574B2 (en) Cement composition for high fluidity concrete and high fluidity concrete composition
JP3230390B2 (en) Method for producing cement composition
JP4384902B2 (en) Manufacturing method of mortar and concrete
TWI778211B (en) High-strength grouting material composition, high-strength grouting mortar using the same, and manufacturing method of high-strength grouting mortar
JPH07267697A (en) Hydraulic composition
KR0145101B1 (en) Method of manufacturing high flowing cement
JPH0986976A (en) High fluidity cement composition
JPH0741348A (en) Production of super fluidized concrete
JP3558973B2 (en) Long-term preservable concrete compounding composition having thixotropic properties, method for producing the same, and method for producing concrete using the same
JP3001664B2 (en) Concrete composition
JPH0687635A (en) Hydraulic cement
JPH107448A (en) Grout composition
JP3749270B2 (en) Mixing design method for compaction-free concrete in air
JP4994080B2 (en) Cement composition and method for producing the same
JPH0780695B2 (en) Hydraulic cement
JP2001206754A (en) Highly flowable concrete
JP4520067B2 (en) Hydraulic composition
JP7134668B2 (en) Cement-based solidifying material composition
JP3215733B2 (en) Method for producing concrete or mortar molding
JP2001226958A (en) Steel pipe concrete pile
JPH10287455A (en) Cement admixture and cement composition
JP2002137952A (en) Hydraulic composition
JP3746566B2 (en) Semi-flexible pavement structure, manufacturing method thereof, and cement injection material used therefor
JP2001214604A (en) Grouting material for flowable grout pad construction method
JP2866330B2 (en) High specific gravity concrete compact for wave extinction

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003