KR0145101B1 - Method of manufacturing high flowing cement - Google Patents

Method of manufacturing high flowing cement

Info

Publication number
KR0145101B1
KR0145101B1 KR1019950054482A KR19950054482A KR0145101B1 KR 0145101 B1 KR0145101 B1 KR 0145101B1 KR 1019950054482 A KR1019950054482 A KR 1019950054482A KR 19950054482 A KR19950054482 A KR 19950054482A KR 0145101 B1 KR0145101 B1 KR 0145101B1
Authority
KR
South Korea
Prior art keywords
concrete
powder
water
reducing agent
flow
Prior art date
Application number
KR1019950054482A
Other languages
Korean (ko)
Other versions
KR970026986A (en
Inventor
안상기
엄태용
Original Assignee
유성용
동아건설산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유성용, 동아건설산업주식회사 filed Critical 유성용
Priority to KR1019950054482A priority Critical patent/KR0145101B1/en
Publication of KR970026986A publication Critical patent/KR970026986A/en
Application granted granted Critical
Publication of KR0145101B1 publication Critical patent/KR0145101B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/068Specific natural sands, e.g. sea -, beach -, dune - or desert sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/44Thickening, gelling or viscosity increasing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

목적 : 고유동의 콘크리트를 제공Purpose: To provide high flow concrete

구성 : 고유동콘크리트 1㎥당 보통시멘트 250∼280㎏과 플라이에쉬 80∼110㎏, 물 170∼185, 잔골재 및 굵은골재 310∼340㎏과, 단위 수량의 0.2∼0.4%의 증점제 및 결합재양의 1.0∼2.0%의 고성능 AE감수제의 첨가와 함께 결합제 중량비 3∼8%의 석분을 사용하여 첨가하는 비로 배합한다.Composition: 250 to 280 kg of normal cement, 80 to 110 kg of fly ash, 170 to 185 of water, fine aggregate and 310 to 340 kg of coarse aggregate, and 0.2 to 0.4% of thickener and binder It is mix | blended in the ratio which adds 1.0 to 2.0% of high performance AE reducing agent, and uses 3 to 8% of stone powders of the binder weight ratio.

Description

고유동콘크리트의 제조방법Manufacturing method of high flow concrete

본 발명은 콘크리트의 제조 방법에 있어서, 특히 고유동성(高 流動性)콘크리트의 제조 방법에 관한 것이다.TECHNICAL FIELD This invention relates to the manufacturing method of high flow concrete especially in the manufacturing method of concrete.

지금까지 건설기술의 발달에 따라 고밀도, 고배근등의 새로운 시공 기술에 대한 요구와 함께 건설 기술자에 대한 사회인식의 저하와 3D의 기피 및 숙련공의 노령화가 점차 가속됨에 따라 고유동콘크리트의 개발 및 실용화가 절실히 요구되고 있다.Until now, with the development of construction technology, the demand for new construction technology such as high density and high reinforcement, along with the deterioration of social perception of construction engineers, the avoidance of 3D and the aging of skilled workers have accelerated the development and commercialization of high flow concrete. Is urgently needed.

물론 고유동콘크리트에 대한 개발은 약 10여년전부터 이루어져 왔으나 배합방법이나 이른 따른 물리적 성질에 대한 정확한 정보는 아직까지 제공되고 있지 않으며, 또한 현장에 대한 시공 실적 역시 국 내외를 불문하고 미비한 실정이 현실이다.Of course, the development of high-flow concrete has been made for about 10 years, but the exact information on the mixing method and the physical properties are not provided until now, and the construction performance on the site is also insufficient in Korea and abroad. .

본 발명은 상기와 같은 원인이 기존의 고유동콘크리트는 유동성을 증대시키기 위하여 시멘츠와 같은 분체를 대량으로 사용하게 됨에 따라 시공비가 상승되는 등의 문제에 기인한다는 점을 감안하여 보통 강도에서도 뛰어난 시공성을 가지는 고유동콘크리트를 제조하는데 목적이 있다. 상기와 같은 목적을 달성하기 위하여 국내에서 생산되는 불순물이 적은 양질의 방해석 결정으로 이루어진 단일 광물조성으로 되는 석분을 첨가하여 제조함을 특징으로 하여, 이와 같이 제조되는 본 발명 고유 동콘크리트는 경제적이면서도 시공성이나 내구성이 우수함을 확인할 수 있었다.The present invention is excellent in the general strength, considering that the above-mentioned causes are due to problems such as the construction cost is increased due to the use of a large amount of powder such as cements in order to increase the fluidity of the conventional high flow concrete The purpose is to produce a high flow concrete having a. In order to achieve the above object, it is characterized in that it is prepared by adding the stone powder of a single mineral composition consisting of high-quality calcite crystals with low impurities produced in Korea, the intrinsic copper concrete produced in this way is economical and constructability It was confirmed that the durability is excellent.

상기한 석분은 입도가 #300번체를 통과하는 고분말도의 분말이며 이와 같은 석분은 콘크리트의 공극을 채워줌으로서 충전성을 향상하면서도 목적하는 유동성을 확보할 수 있는 특징이 있다.The above-mentioned stone powder is a powder having a high powder degree that passes through the particle size # 300, and such a powder powder has a feature of ensuring the desired fluidity while improving the filling property by filling the pores of concrete.

콘크리트구조물의 신뢰성 향상, 시공의 효율증가, 합리화등을 목적으로 다짐이 불필요한 고유동콘크리트는 미경화(未硬化) 상태에서 바이브레이터(진동 다지기)를 사용하지 않고도 거푸집 구석 구석까지 스스로 충전하는 유동성(변형성)과 유동시 재료분비에 의한 폐쇄등을 일으키지 않고도 철근 사이를 통과할 수 있는 재료 분리 저항성을 가지도록 점성이 우수한 콘크리트를 얻기 위해서는 사용하는 재료의 선정과 이와 같은 재료를 적절하게 조절하는 배합설계가 뒤따라야 한다.High-flow concrete, which does not require compaction for the purpose of improving the reliability of concrete structures, increasing the efficiency of construction, and rationalization, has the flexibility to fill the corners of the formwork without using a vibrator (vibration compaction) in the uncured state. In order to obtain high viscosity concrete to have a material separation resistance that can pass between reinforcing bars without causing closure due to material release during flow) It must follow.

본 발명은 상기와 같은 조건을 해결하기 위하여 다음과 같은 점에 유의하여야 함을 알고 이를 해결한 것이다. 즉,In order to solve the above conditions, the present invention is to be noted that the following points should be noted and solved. In other words,

첫째, 고유동콘크리트에 공통되는 재료 배합성의 특징은First, the characteristics of material blendability common to high flow concrete

1) 분체량(시민테, 혼화제)이 많다.1) A large amount of powder (cimine, admixture).

2) 물-분체비(W/P)가 적다.2) Low water-powder ratio (W / P).

3) 분말도가 낮은 분체를 이용하는 경우가 많다.3) Powders with low powderyness are often used.

4) 고성능 공기연행제(감수제)를 사용한다는 점이다.4) It uses high performance air entrainer.

상기와 같은 점은 좁은 간격을 통과하는 모르타르의 폐쇄에 미치는 세골재의 영향은 모르타르중의 세골재 체적농도(세골재 용적비)가 일정한 값(폐쇄한계 세골재 농도)이상이 되면, 유동폐쇄가 발생하게 되고 따라서 거푸집 구석 구석가지 충전 가능한 고유동콘크리트가 되기 위하여는 모르타르중의 세골재 체적 농도를 일정 값 이하로 억제하여야 하며, 또 그 값을 사용하는 세골재의 입도나 물-분체비, 분체의 종류, 분말도에 따라 다르며, 콘크리트가 유동시 재료분리에 의한 유동폐쇄를 일으키지 않고 철근 사이를 통과하기 위해서는 모르타르가 적절한 분리 저항성(점성)을 가져야 하는 문제를 해결해야 한다.As mentioned above, the effect of fine aggregates on the closing of mortar through a narrow gap is such that when the fine aggregate volume concentration (fine aggregate volume ratio) in the mortar is higher than a certain value (close limit fine aggregate concentration), flow closure will occur and thus form In order to be filled with high-flow concrete that can be filled in every corner, the volume of fine aggregate in mortar must be kept below a certain value, and depending on the particle size, water-powder ratio, type of powder, and powder of fine aggregate In order for concrete to flow between reinforcing bars without causing flow closure due to material separation during flow, the mortar must have an appropriate separation resistance (viscosity).

둘째, 혼화제의 특성으로 고려해야할 사항으로서 고성능감수제의 사용을 들 수 있는 바, 고성능감수제는 물-분체비가 적은 조건에서 높은 유동성이 요구되는 것이므로 사용되는 종류로는 나프탈린계, 폴리칼본산계 등이 사용되고 있으며, 보통 포틀랜드 시멘트 단독으로 사용된 예는 찾아 볼 수가 없다. 이는 보통 포틀랜드 시멘트의 입도 분포의 폭이 좁으므로 동일 작업성을 가지는 콘크리트를 얻기 위하여 많은 물이 필요하여 배합 가능한 물-시멘트의 한도가 높아지며, 일반적인 고성능감수제는 시멘트중의 C3A, C4AF에 우선적으로 흡착하므로 C3S등의 실리케이트사의 감수제 흡착량이 상대적으로 감소하여 분산력이 적은 등의 이유에 의해 낮은 물-시멘트비에서 높은 유동성을 발휘하기 위해 고성능감수제와 배합이 양호한 고로슬래그 미분말이나 플라이애쉬등이 이용된다.Second, the characteristics of admixtures include the use of a high performance water reducing agent. The high performance water reducing agent requires high fluidity under low water-powder ratio. Thus, naphthalinic acid and polycarboxylic acid are used. It is in use, and there are no examples of ordinary use of Portland cement alone. Since the particle size distribution of portland cement is usually narrow, a lot of water is required to obtain concrete having the same workability, so that the limit of water-cement that can be blended is increased, and general high performance reducing agents are C 3 A and C 4 AF in cement. Since the adsorption amount of silicate such as C 3 S is reduced preferentially, the blast furnace slag fine powder or fly ash, which is well blended with the high performance water reducing agent, to exhibit high fluidity at low water-cement ratio due to the low dispersion force. Etc. are used.

이와 같은 고유동콘크리트용의 화학혼화제의 요구되는 성능으로는 다음과 같은 점을 들 수 있다.The performance required for such chemically admixtures for high dynamic concrete is as follows.

가) 미경화 콘크리트의 경우A) For unhardened concrete

- 우수한 유동화 성능-Excellent fluidization performance

- 유동성의 유지 성능(공기량, 분리저항성 포함)-Maintenance performance of fluidity (including air volume and separation resistance)

- 적절한 응결시험, 블리딩율-Proper condensation test, bleeding rate

- 양호한 펌프압송성-Good pump pressure

나) 경화 콘크리트의 경우B) in the case of hardened concrete

- 역학적 성질(압축강도, 휨강도, 인장강도, 영 계수등)에 악영향을 미치는 않는 것.-Does not adversely affect the mechanical properties (compressive strength, flexural strength, tensile strength, Young's modulus, etc.).

- 건조수축, 크리프에 악영향을 미치지 않은 것.-No negative effects on dry shrinkage or creep.

내구성(내동해성, 내투수성, 중성화에 대한 저항성등)이 우수한 것.Excellent durability (freeze resistance, water permeability, resistance to neutralization, etc.).

이상과 같은 요구 성능에 따르는 화학혼화제로 AE감수제와 고성능감수제의 병용이나 고성능AE감수제를 사용할 수도 있지만 응결 시간을 고려하고 폴리칼본산계의 고성능감수제를 들 수가 있다.As the chemical admixture according to the above required performance, a combination of an AE water reducing agent and a high performance water reducing agent or a high performance AE water reducing agent may be used, but a high performance water reducing agent based on polycarboxylic acid may be given in consideration of the setting time.

셋째, 분체 재료에 있어서는 1) 고로 슬래그, 2) 플라이 애쉬, 3) 석회석 분말등을 들 수 있는데, 알려져 있는 바와 같이 고로(高爐)법에 의한 제련시 선철을 제조하는 과정에서 부산물로 발생되는 고온 용융상태(1,500℃정도)의 고로슬래그를 물로 급냉하여 수쇄하여 얻어지는 비정질의 슬래그는 수산화칼슘등의 알카라 존재하에서 물과 반응하는 잠재 수경성이 있다. 특히 수쇄슬래그를 미분쇄하여 수화 활성을 높은 것이 고로 슬래그 미분말로서 잠재 수경성이 있고, 고분말도의 고로슬래그 미세분말의 유동학적 특성은 분말도가 크며, 입자간의 평균 거리가 짧으므로 입자의 전단 저항에 의하여 점성이 크게 되므로 모르타르의 분리저항성이 크다는 장점이 있지만 국내에서 생산되는 고로슬래그 미분말은 생산 제품의 품질변동이 심하여 일정한 고유동콘크리트의 품질 확보가 어려운 문제점이 있다.Third, powder materials include 1) blast furnace slag, 2) fly ash, and 3) limestone powder. As is known, the high temperature generated as a by-product during the production of pig iron during smelting by the blast furnace method is known. The amorphous slag obtained by quenching the blast furnace slag in the molten state (about 1,500 ° C.) with water and crushing it is latent hydraulic which reacts with water in the presence of alkali such as calcium hydroxide. Particularly, the finely ground crushed slag powder has high hydration activity, and thus the latent hydraulic properties of the blast furnace slag fine powder are high, and the rheological properties of the blast furnace slag fine powder with high powder degree are large in powder and the average distance between particles is short. Due to the large viscosity, the separation resistance of the mortar has an advantage, but the blast furnace slag powder produced in Korea has a problem that it is difficult to secure the quality of the constant high-flow concrete due to the severe variation in the quality of the produced product.

그리고 석탄 화력 발전소 등에서 미분말 석탄을 연소하는 과정에서 부산물로 발생하는 플라이애쉬는 시멘트가 수화시 생성하는 수산화칼슘과 상온에서 서서히 화합하여 불용성의 안정한 규산화캄슘 등을 만드는 포졸란반응을 일으키며, 양질의 플라이애쉬는 입자가 구상이어서 볼베어링 효과에 의하여 콘크리트의 유동성이 향상되지만 역시 플라이애쉬 역시 제품 품질이 안정되어 있지 못할 수 있다는 점과 플라이애쉬 입자의 공기 흡착에 의해 공기량 조절이 어려운 점 등의 문제가 있고, 또한 콘크리트의 강도 증진과, 레오로지 성질의 개선 등을 목적으로 석회석 미분말 등의 불활성 광물질로 되는 미분말이 시멘트이 첨가재료로서 이용되고 있으나 최근에는 온도 균열이 문제가 되는 대형 구조물에 고유동콘크리트를 적용한 경우에 광물질 미분말을 이용하는 것이 주목된다.Fly ash, which is generated as a by-product from the combustion of fine powder coal in coal-fired power plants, causes pozzolanic reactions that slowly combine with calcium hydroxide produced during hydration at room temperature to form insoluble stable calcium silicate. Since the particles are spherical, the fluidity of concrete is improved by the ball bearing effect, but also fly ash may not be stable in product quality and air volume is difficult to control due to air adsorption of fly ash particles. For the purpose of enhancing the strength of concrete and improving the rheological properties, fine powder, which is an inert mineral such as limestone powder, is used as an additive material, but recently, when high-flow concrete is applied to large structures where temperature cracking is a problem. Mineral fine powder It is noted that use.

상기와 같은 석회석은 주로 방해석(6방정계)으로 되어 있으나, 더러는 에라거나이트(조약돌 : 斜方晶系)의 경우도 있으며, 석회석은 화학적으로 탄산칼슘(CaCO3)이며, 조성성분은 CaO 56.03%, CO2가 43.97%로 이루어져 있다.Limestone as described above is mainly composed of calcite (hexagonal system), but in some cases, it may be eragonite (cobblestone: 斜 方 晶 系), limestone is chemically calcium carbonate (CaCO 3 ), the composition is CaO 56.03 %, CO 2 is 43.97%.

넷째, 분리저감제(증점제)에 있어, 본 발명에서와 같은 고유동콘크리트에 이용되는 분리저감제는 셀루로우스계 수용성고분자, 폴리아크릴아미드계 수용성고분자, 발효기술에 의해 제조된 바이오 폴리머로 크게 분류되는데 여기에 흡수 폴리머와 특수 무기분말을 조합하거나 감수제와 수용성고분자를 포함하는 것 등을 들 수가 있다.Fourth, in the separation reducing agent (thickener), the separation reducing agent used in the high flow concrete as in the present invention is a cellulose-based water-soluble polymer, a polyacrylamide-based water-soluble polymer, a biopolymer manufactured by fermentation technology. These may be combined with absorbent polymers and special inorganic powders, or include water soluble polymers and water soluble polymers.

분리저감제의 기본적인 특성은 페이스트, 모르타르의 점성을 높이고 재료 분리 저항성을 개선하여 충전성을 높이는 것이지만 분리저감제의 종류에 따라 중점기구, 레오로지특성(항복 값, 소성점도)등에 차이가 있다. 셀루로우스계, 아크릴계등은 물에 용해하여 점성을 높이는 등의 공통적인 특성이 있다.The basic characteristics of the separation reducing agent are to increase the viscosity of paste and mortar and to improve the separation resistance of the material, thereby increasing the filling property. However, the type of separation reducing agent differs in the key point mechanism and rheology characteristics (yield value, plastic viscosity). Cellulose, acrylic, and the like have common characteristics such as dissolving in water to increase the viscosity.

다섯째, 배합수는 콘크리트의 구성재료 중에서도 변형 및 유동이 쉬운 재료로서 고체입자 사이의 간극에 존재하며, 수량의 증대는 변형, 유동이 쉽도록 재료의 증대를 의미하는 것은 아니며, 고체 입자간의 상대효과를 크게하는 효과가 있다. 미경화 콘크리트중의 물은 변형 유동에 기여하여 자유 운동하는 물 이외의 고체 입자의 주변에서 그 운동에 제한을 받는 물이 존재하며, 후자는 고체입자와의 사이에 상대속도가 발생한 경우에 고체입자의 하나로 운동하며, 고체입자 상호간의 간극에서 자유로이 운동하지 못하는 물을 구속수라 한다.Fifth, the blended water is present in the gap between solid particles as a material that is easy to deform and flow among the constituent materials of concrete, and the increase in quantity does not mean an increase of material to facilitate deformation and flow. It is effective to enlarge. The water in the unhardened concrete is confined to the deformation flow, and there is water that is limited to its movement around solid particles other than freely moving water. The latter is solid particles when a relative velocity occurs between them. Water that does not move freely in the gap between solid particles is called restraint water.

일반적으로 콘크리트중에 자유수가 많은 콘크리트는 변형, 유동이 쉽다. 그러나 분체량에 대하여 자유수량이 많게 되면, 페이스트의 점성이 저하하여 입경이 큰 입자가 직접 접촉, 충돌하는 빈도가 증가하여 고체입자에 의한 변형, 유동이 증대한다. 페이스트(모르타르)에 적절한 유동성을 부여하기 위해서도 자유수량을 제어할 필요가 있다.In general, concrete having a large number of free water is easy to deform and flow. However, when the amount of free water increases with respect to the amount of powder, the viscosity of the paste decreases, and the frequency of direct contact and collision of particles with large particle diameters increases, thereby increasing deformation and flow by solid particles. In order to impart proper fluidity to the paste (mortar), it is necessary to control the free amount.

여섯째, 재료의 배합에 있어 고유동콘크리트는 분체량의 증가로 분리저감제를 이용하여 재료분리 저항성을 확보하며, 보통 콘크리트에 비하여 점성이 커서 믹서의 배합시 부하는 보통 콘크리트에 비하여 크고 또 부하전류값이 일정하게 되는데 필요한 시간도 길다. 따라서 믹서의 종류, 배합용량, 배합시간을 충분히 검토할 필요가 있다. 또 배합에 사용될 믹서의 선택, 배합량, 배합시간을 고려해야 한다. 그리고 배합시 재료의 투입 방법에 있어서도 충분히 사전 검토해야 할 문제다. 따라서 본 발명에 있어서는 강제 이축믹서를 사용하고, 배합량은 공칭 용량의 60-90%정도로하고, 배합시간은 보통 콘크리트에 비하여 길게 그리고 재료의 투입에 있어서는 일괄투입방법과 모르타르를 먼저 배합하고 조골재를 마지막으로 투입하며, 증점제는 손으로 직접 투입할 수도 있다.Sixth, the high flow concrete in the mixing of materials ensures the material separation resistance by using the separation reducing agent due to the increase of the powder content. The time required for the value to be constant is also long. Therefore, it is necessary to fully examine the type, blending capacity, and blending time of the mixer. In addition, consideration should be given to the selection of the mixer to be used for the compounding, the amount to be mixed, and the mixing time. And it is a problem to consider beforehand also in the input method of a material at the time of compounding. Therefore, in the present invention, a forced biaxial mixer is used, and the compounding amount is about 60-90% of the nominal capacity, and the mixing time is longer than that of the concrete, and in the case of the input of materials, the batch input method and the mortar are mixed first, and then the coarse aggregate is finished. The thickener can also be added directly by hand.

본 발명 실시예에 사용되는 시멘트는 보통 포틀랜드 시멘트를 사용했으며 그 화학적 성질과 물리적 성질은 아래 표1, 2와 같다.The cement used in the embodiment of the present invention usually used Portland cement, and its chemical and physical properties are shown in Tables 1 and 2 below.

본 발명 실시예에서 사용한 굵은 골재는 최대 치수가 19㎜의 쇄석을 사용하였으며, 잔골재는 한강산 강모래를 사용한 것이다. 골재의 물리적 성질을 표3으로 표시했다.The coarse aggregate used in the embodiment of the present invention used a crushed stone having a maximum dimension of 19 mm, the fine aggregate is to use the Han River mountain sand. The physical properties of the aggregates are shown in Table 3.

한편 본 발명 실시예에 사용된 플라이 애쉬는 장기 강도의 증진 및 볼 에어링 효과에 의한 유동성을 증진시키기 위하여 국내에서 생산된 플라이 애쉬를 사용한 것이며, 플라이 애쉬의 물리적, 화학적 성분을 표4에 표시 했다.Meanwhile, the fly ash used in the embodiment of the present invention uses a fly ash produced in Korea to enhance long-term strength and fluidity due to ball airing effect, and the physical and chemical components of the fly ash are shown in Table 4.

본 발명 실시예에서 사용된 석분은 적절한 워커빌리티와 블리딩 효과를 위하여 #300체를 통과흔 초미립분의 분말을 사용하였으며, 이는 석회의 첨가량의 증가하는데 따라 블리딩이 감소하는 경향을 보이며, 초미립의 석분이 첨가될수록 블리딩은 감소하고 또 석분이 첨가량이 증가하는데 따라 미분말에 의한 점성의 증가에 의해 워커블한 콘크리트를 얻을 수가 있었다. 사용한 석회석 분말의 화학적 특성을 표5에 표시했다.The powder used in the examples of the present invention used a powder of trace ultrafine powder that passed through # 300 sieve for proper workability and bleeding effect, which showed a tendency of bleeding to decrease as the amount of lime added increased. As stone powder was added, bleeding decreased, and as the amount of stone powder was increased, workable concrete could be obtained due to the increase in viscosity due to fine powder. Table 5 shows the chemical properties of the limestone powders used.

본 실시예서 단위수량을 감소시키고 고유동콘크리트 제조시 슬럼프조절을 위하여 고성능AE감수제를 사용했다. 그 특성을 표6에 표시했다.In this example, a high performance AE water reducing agent was used to reduce the unit quantity and to control the slump when manufacturing high flow concrete. The characteristics are shown in Table 6.

본 발명 실시예의 고유동성을 높이게 됨에 따라 재료분리가 일어날 가능성이 크므로 이를 방지하기 위하여 증점제를 사용했다. 증점제의 성상을 표7에 표시했다.In order to increase the high fluidity of the embodiments of the present invention, since a material separation is likely to occur, a thickener was used to prevent this. The properties of the thickeners are shown in Table 7.

[실시예]EXAMPLE

아래와 같은 배합비로 하여 믹서기에 일괄 투입한 후 1분간 건비빔하고 물과 혼화제를 투입한 뒤 5분간 믹싱했다.The mixture was added to a blender at the following mixing ratio, followed by dry mixing for 1 minute, mixing with water and admixture, and then mixing for 5 minutes.

고유동 콘크리트 1㎥당 보통시멘트 250∼280㎏과 플라이애쉬 80∼110㎏, 물170∼185, 잔골재 310∼340㎏과 단위 수량의 0.2∼0.4%의 중점제를 첨가하고, 결합재 양의 1.0∼2.0%의 고성능AE감수제와 함께 결합재 중량비로 3∼8%의 석분을 배합비로 했다.250 to 280 kg of normal cement, 80 to 110 kg of fly ash, 170 to 185 of water, 310 to 340 kg of fine aggregate and 0.2 to 0.4% of medium quantity of medium is added per 1.0m3 of high flow concrete. 3 to 8% of stone powder was used as a compounding ratio with the high performance AE water reducing agent of 2.0%.

상기한 실시예에 의거 얻어진 고유동콘크리트를 KSF 2405의 규정에 따라 10×20㎝의 몰드를 사용하여 압축강도시험용 공시체를 제작하고 KSF 2404에 따라 슬럼프시험을 실시하고 충전성을 알아보기 위하여 U형 충전시험과 같이 KS규정에 없는 시험은 국내외 연구자료 및 논문을 참고로 하여 가장 적절한 실험을 실시한 결과를 아래 표에 표시했으며 재령 91일에 압축강도는 283㎏/㎠였다.The high flow concrete obtained according to the above embodiment was manufactured using a mold of 10 × 20 cm according to KSF 2405 to prepare a specimen for compressive strength test, and subjected to a slump test according to KSF 2404 to examine the filling property. For tests not included in KS regulations such as filling test, the results of the most appropriate experiments are shown in the table below with reference to domestic and international research data and thesis. The compressive strength was 283㎏ / ㎠ at 91 days of age.

표8. 고유동콘크리트의 시험결과Table 8. Test results of high flow concrete

상기 설명한 바와 같이 본 발명에 의하면 종래의 고유동콘크리트의 제조방법에서 시멘트등의 분체를 많이 사용하여 유동성을 증진함으로서 분체량의 과다에 따른 수화열의 증가로 대형 구조물의 적용에 많은 문제점이 야기되고 제조 단가의 상승으로 실용화에 결정적 장애가 있었음에 비해 본 발명에 있어서 #300체를 통과하는 초미립의 석분을 이용하여 고유동콘크리트를 제조하는 것이므로 시멘트등의 분체량을 증가 시키지 아니하고도 콘크리트의 유동성 및 충전성이 향상되면서도 공극을 미세화하여 브리딩의 감소 및 강도증진과 수화열 저감에 따라 내구성이 향상되는 효과를 얻을 수가 있어서 경제적이며, 산업적으로 유용한 발명이다.As described above, according to the present invention, many problems are caused in the application of large structures by increasing the heat of hydration due to the excessive amount of powder by increasing the fluidity by using a lot of powders such as cement in the conventional manufacturing method of high flow concrete. Compared to the fact that there was a decisive obstacle to practical use due to the increase in unit cost, the present invention manufactures high-flow concrete using ultra-fine grains that pass through # 300 sieve, so that the fluidity and filling of concrete without increasing the amount of powder such as cement It is an economical and industrially useful invention because it is possible to obtain an effect of improving durability by improving the properties and reducing the bleeding and increasing the strength and reducing the heat of hydration by improving the voids.

Claims (2)

필요로 하는 고유동콘크리트 1㎥당 보통시멘트 250∼280㎏과 플라이애쉬 80∼110㎏, 물 170∼185, 잔골재 및 굵은 골재 310∼340㎏과, 단위 수량의 0.2∼0.4%의 증점제 및 결합재양의 1.0∼2.0%의 고성능AE감수제의 첨가와 함께 결합재 중량비 3∼8%의 석분이 비로 배합하는 것을 특징으로 하는 고유동콘크리트의 제조방법.250 to 280 kg of ordinary cement, 80 to 110 kg of fly ash, 170 to 185 of water, fine aggregate and 310 to 340 kg of coarse aggregate, and 0.2 to 0.4% of thickener and binder A method for producing a high-flow concrete, characterized in that the addition of 1.0 to 2.0% of the high performance AE reducing agent with 3% to 8% of the binder weight ratio. 청구의 범위 제1항 기재의 석분은 #300체를 통과하는 방해서 또는 에라거나이트로되는 석분임을 특징으로 하는 고유동콘크리트의 제조방법.Claim 1 Claim 1 stone powder according to claim 1 is a method for producing a high-flowing concrete, characterized in that the stone powder is made by interfering with the # 300 sieve or eragonite.
KR1019950054482A 1995-12-22 1995-12-22 Method of manufacturing high flowing cement KR0145101B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950054482A KR0145101B1 (en) 1995-12-22 1995-12-22 Method of manufacturing high flowing cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950054482A KR0145101B1 (en) 1995-12-22 1995-12-22 Method of manufacturing high flowing cement

Publications (2)

Publication Number Publication Date
KR970026986A KR970026986A (en) 1997-06-24
KR0145101B1 true KR0145101B1 (en) 1998-07-15

Family

ID=19443089

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950054482A KR0145101B1 (en) 1995-12-22 1995-12-22 Method of manufacturing high flowing cement

Country Status (1)

Country Link
KR (1) KR0145101B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374412B1 (en) * 2000-03-09 2003-03-04 삼표산업 주식회사 Grout Composition Containing Fly Ash
KR100421752B1 (en) * 2001-03-30 2004-03-10 금호이엔씨 주식회사 composition and manufacturing method of underwater non segregation high strength concrete
KR101018007B1 (en) * 2008-08-22 2011-03-02 한국화학연구원 Method for manufacturing concrete using coal ash as binder
KR101223161B1 (en) * 2011-01-05 2013-01-17 삼성물산 주식회사 High-Flowability and Low- Strength Concrete for Backfill
KR101524771B1 (en) * 2012-12-27 2015-06-01 주식회사 케미콘 Concrete Additive Composition having High Early Strength

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362088B1 (en) * 1999-12-01 2002-11-23 한일시멘트 (주) Composition for tunnel mortar
KR100363709B1 (en) * 1999-12-24 2003-02-07 김재욱 concrete surface preparation compound and installation by using portland cement and epoxy resin
KR100362013B1 (en) * 1999-12-30 2002-11-23 주식회사 일광지오라인 Liquified fly-ash mortar stabilization
KR20020042573A (en) * 2002-05-01 2002-06-05 김상철 Mixing Technology of High-Flowing Concrete Using Stone Powder
GB0409307D0 (en) * 2003-07-29 2004-06-02 Samsung Kwangju Electronics Co Robot cleaner equipped with negative-ion generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100374412B1 (en) * 2000-03-09 2003-03-04 삼표산업 주식회사 Grout Composition Containing Fly Ash
KR100421752B1 (en) * 2001-03-30 2004-03-10 금호이엔씨 주식회사 composition and manufacturing method of underwater non segregation high strength concrete
KR101018007B1 (en) * 2008-08-22 2011-03-02 한국화학연구원 Method for manufacturing concrete using coal ash as binder
KR101223161B1 (en) * 2011-01-05 2013-01-17 삼성물산 주식회사 High-Flowability and Low- Strength Concrete for Backfill
KR101524771B1 (en) * 2012-12-27 2015-06-01 주식회사 케미콘 Concrete Additive Composition having High Early Strength

Also Published As

Publication number Publication date
KR970026986A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
KR100928841B1 (en) Cement composition for grout and grout material using the same
JP5165873B2 (en) Reinforcement joint filling method using filler for reinforcing steel joints
EP1876153A1 (en) Ultrahigh-strength fiber-reinforced cement composition, ultrahigh-strength fiber-reinforced mortar or concrete, and ultrahigh-strength cement admixture
CN111620624B (en) Self-compacting concrete and preparation method thereof
KR101591275B1 (en) Ultra-high strength concrete for improving construct ability, and manufacturing method for the same
KR0145101B1 (en) Method of manufacturing high flowing cement
KR101839661B1 (en) Method for producing hydrated solidified body, and hydrated solidified body
WO2022229432A1 (en) Binder composition comprising pozzolanic material and fine filler
JPH0680456A (en) Fluid hydraulic composition
JP5041656B2 (en) High specific gravity concrete, manufacturing method thereof, high specific gravity concrete molded body for wave countermeasures and high specific gravity concrete molded body for radiation shielding
JPH07267697A (en) Hydraulic composition
KR100486642B1 (en) Cement clinker and cement containing the same
JP5688069B2 (en) Cement composition, mortar or concrete using the same
JP2002179451A (en) Concrete or mortar using slag aggregate
JP2003137618A (en) Blast furnace slag fine powder containing inorganic admixture, blast furnace cement, and method of producing them
JP2015124097A (en) Concrete composition and method for production thereof
KR20040084533A (en) Cement admixture composite for high flowability concrete fabrication
JP4350967B2 (en) Method for producing hardened slag
KR20190046456A (en) Method for constructing mass concrete of architecture having improved chracteristics using two types of concrete composition mixture
WO2005003060A1 (en) Chemical admixture for cementitious compositions
KR102546250B1 (en) Building materials
JP7134668B2 (en) Cement-based solidifying material composition
JP7333019B2 (en) Cement composition and method for producing hardened cement
JP7081939B2 (en) concrete
JP4182150B2 (en) Permeable solid and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130527

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20140427

Year of fee payment: 17

LAPS Lapse due to unpaid annual fee