JP2012201558A - Copper-slag-containing fine aggregate for concrete, and concrete construction method using the same - Google Patents
Copper-slag-containing fine aggregate for concrete, and concrete construction method using the same Download PDFInfo
- Publication number
- JP2012201558A JP2012201558A JP2011068285A JP2011068285A JP2012201558A JP 2012201558 A JP2012201558 A JP 2012201558A JP 2011068285 A JP2011068285 A JP 2011068285A JP 2011068285 A JP2011068285 A JP 2011068285A JP 2012201558 A JP2012201558 A JP 2012201558A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- fine aggregate
- copper slag
- volume
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、土木建築物などの主要材料であるコンクリートの主原料である細骨材及びそれを用いたコンクリート施工方法に関するものであり、特に銅スラグを含有する細骨材及びそれを用いたコンクリート施工方法に関する。 The present invention relates to a fine aggregate which is a main raw material of concrete which is a main material for civil engineering buildings and the like, and a concrete construction method using the same, and in particular, a fine aggregate containing copper slag and concrete using the same. It relates to the construction method.
コンクリートは、その経済性や施工性、強度、耐久性などから土木建築物の主要材料として広く用いられている。コンクリートは、粗骨材(砂利)、細骨材(砂)、セメント、水を主原料とし、これをよく混合して泥しょう状態とした生コンクリートを型枠の中に流し込み(通常、打ち込みという)、硬化させたものである。粗骨材はおよそ粒径が50mm以下の骨材を、細骨材はおよそ粒径が5mm以下の骨材をいう。 Concrete is widely used as a main material for civil engineering buildings because of its economic efficiency, workability, strength, and durability. Concrete is composed of coarse aggregate (gravel), fine aggregate (sand), cement, and water as main raw materials, and this is mixed into a muddy state and poured into a formwork (usually referred to as pouring) ), Cured. Coarse aggregate is an aggregate having a particle size of about 50 mm or less, and fine aggregate is an aggregate having a particle size of about 5 mm or less.
細骨材としての砂は、例えば、砂岩を砕いて得られる砂岩砕砂などが知られている。砂は、コンクリート用細骨材に求められる特性である、強度(硬度)、物理的・化学的安定性、無害、適正な粒径、付着力の大きな表面組成、所要の重量等の性質を併せ持つので細骨材として好適に使用される。 For example, sandstone crushed sand obtained by crushing sandstone is known as the fine aggregate. Sand has properties required for fine aggregate for concrete, such as strength (hardness), physical and chemical stability, harmlessness, proper particle size, surface composition with high adhesion, and required weight. Therefore, it is preferably used as a fine aggregate.
しかしながら、細骨材として砂のみを用いたコンクリートにおいては、乾燥収縮が生じ易いという問題点があることが知られている。このため、例えば、下記の特許文献1のように、収縮低減効果のある石灰石骨材を所定の割合で併用することが行われているが、石灰石骨材はコストが高いという問題がある。一方、銅スラグなどのスラグ細骨材なども代替細骨材として使用されてきている。これらの代替細骨材は砂とは特性が異なるため、通常砂の一部を代替して使用される。 However, it is known that concrete using only sand as a fine aggregate has a problem that drying shrinkage easily occurs. For this reason, for example, as in Patent Document 1 below, limestone aggregate having a shrinkage reduction effect is used in combination at a predetermined ratio, but limestone aggregate has a problem of high cost. On the other hand, slag fine aggregates such as copper slag have been used as alternative fine aggregates. Since these alternative fine aggregates have different characteristics from sand, they are usually used in place of part of the sand.
このとき、銅スラグのように砂と比べて比重の重い代替細骨材を用いる場合には、ブリーディングも抑制する必要がある。ブリーディングとは、コンクリートを型枠に打設した後、材料が分離して練混ぜ水の一部がコンクリート上面に上昇する現象であり、このコンクリート打設面に上昇してきた余剰水、即ちブリーディング水はコンクリート構造物に欠陥部をつくる恐れがあると同時に、コンクリートの打設現場における施工の妨げとなり、ワーカビィリィティ(施工性)の低下に繋がる。このため、コンクリートの製造に際しては、できるだけブリーディングを少なくする必要がある。 At this time, when using an alternative fine aggregate having a higher specific gravity than sand, such as copper slag, it is also necessary to suppress bleeding. Bleeding is a phenomenon in which after the concrete is placed on the mold, the material is separated and a part of the mixed water rises to the upper surface of the concrete, and surplus water that has risen on the concrete placement surface, that is, bleeding water. May cause defects in the concrete structure, and at the same time, hinders construction at the concrete placement site and leads to a decrease in workability (constructability). For this reason, in the production of concrete, it is necessary to reduce bleeding as much as possible.
本発明は、かかる事情に鑑みてなされたものであり、その目的とするところは、乾燥収縮とブリーディングの両方を同時に抑制でき、特に、従来の砂と同程度の施工性を維持できるコンクリート用細骨材、及び、それを用いたコンクリート施工方法を提供することにある。 The present invention has been made in view of such circumstances, and the object of the present invention is to be able to suppress both drying shrinkage and bleeding at the same time, and in particular, to maintain a workability comparable to that of conventional sand. An object of the present invention is to provide an aggregate and a concrete construction method using the same.
本発明では、具体的に以下のようなものを提供する。 The present invention specifically provides the following.
(1) 銅スラグを、全細骨材に対して15容積%以上45容積%以下含有し、
前記銅スラグの粒度分類がJIS A5011−3における1.2mm銅スラグ細骨材(CUS1.2)である銅スラグ含有コンクリート用細骨材。
(1) Copper slag is contained at 15 volume% or more and 45 volume% or less with respect to all fine aggregates,
The copper slag containing fine aggregate for concrete whose copper slag particle size classification is 1.2 mm copper slag fine aggregate (CUS1.2) in JIS A5011- 3.
(2) 前記銅スラグを、全細骨材に対して35容積%以上45容積%以下含有する(1)記載の銅スラグ含有コンクリート用細骨材。 (2) The copper fine slag-containing concrete aggregate according to (1), wherein the copper slag is contained in an amount of 35% by volume to 45% by volume with respect to the total fine aggregate.
(3) 細骨材として石灰細骨材を実質的に含有しない(1)又は(2)記載の銅スラグ含有コンクリート用細骨材。 (3) The fine aggregate for concrete containing copper slag according to (1) or (2), which contains substantially no lime fine aggregate as the fine aggregate.
(4) 硬化前のコンクリート用配合材料において、粒度分類がJIS A5011−3における1.2mm銅スラグ細骨材(CUS1.2)である銅スラグを、全細骨材に対して15容積%以上45容積%以下含有させることで、コンクリートの乾燥収縮を抑制するとともに、前記コンクリート配合材料のブリーディングを抑制するコンクリート施工方法。 (4) 15% by volume or more of copper slag, which is 1.2 mm copper slag fine aggregate (CUS1.2) according to JIS A5011-3, in the mixed material for concrete before hardening The concrete construction method which suppresses the drying shrinkage | contraction of concrete and suppresses the bleeding of the said concrete compounding material by containing 45 volume% or less.
(5) 前記銅スラグを、全細骨材に対して35容積%以上45容積%以下含有させる(4)記載のコンクリート施工方法。 (5) The concrete construction method according to (4), wherein the copper slag is contained in an amount of 35% to 45% by volume with respect to all fine aggregates.
本発明の銅スラグ含有コンクリート用細骨材によれば、乾燥収縮とブリーディングの両方を同時に抑制でき、特に、従来の砂と同程度の施工性を維持できるコンクリート用細骨材、及び、それを用いたコンクリート施工方法を提供できる。 According to the copper slag-containing concrete fine aggregate of the present invention, it is possible to simultaneously suppress both drying shrinkage and bleeding, and in particular, it is possible to maintain a workability comparable to that of conventional sand, and The concrete construction method used can be provided.
以下、本発明の銅スラグ含有コンクリート用細骨材(以下単に銅スラグともいう)、及び、それを用いたコンクリート施工方法について更に詳細に説明する。コンクリート用配合材料としては、銅スラグ、銅スラグ以外の他の細骨材、粗骨材、セメント、水、その他の材料、が挙げられる。以下順に説明する。 Hereinafter, the fine aggregate for copper slag-containing concrete of the present invention (hereinafter also simply referred to as copper slag) and a concrete construction method using the same will be described in more detail. Examples of the compounding material for concrete include copper slag, fine aggregate other than copper slag, coarse aggregate, cement, water, and other materials. This will be described in order below.
[銅スラグ]
本発明においては、所定の銅スラグを一部代替細骨材として使用する。銅スラグは銅精錬に伴って生成され、銅を精錬する工程において銅精鉱中の鉄分と石灰石、珪石等が結合してなるもので、FeO、SiO2、CaOを主体とする溶融スラグを、水冷却により水砕破砕物としたものである。銅スラグ組成の一例としては、酸化鉄(FeO)45〜55質量%、珪酸(SiO2)30〜36質量%、酸化カルシウム(CaO)2〜7質量%、酸化アルミニウム(Al2O2)3〜6質量%、である。強度が高く、物理的・化学的に安定で、主な用途はセメント原料、土木工事用原料(中詰め材など)、サンドブラスト用研磨剤、コンクリート用細骨材である。銅スラグをコンクリート用骨材として利用する場合の規格は、JIS A5011−3「コンクリート用骨材 第3部 銅スラグ」(1997年)に規定されている。
[Copper slag]
In the present invention, a predetermined copper slag is partially used as an alternative fine aggregate. Copper slag is produced along with copper refining. In the process of refining copper, iron in the copper concentrate and limestone, silica, etc. are combined. It is made into a granulated material by cooling. An example of the copper slag composition, iron oxide (FeO) 45 to 55 wt%, silicate (SiO 2) 30 to 36 wt%, calcium oxide (CaO) 2 to 7 wt%, aluminum oxide (Al2O 2) 3~6 % By mass. It has high strength and is physically and chemically stable. Its main uses are cement raw materials, civil engineering materials (filling materials, etc.), sandblasting abrasives, and concrete fine aggregates. The standard for using copper slag as an aggregate for concrete is defined in JIS A5011- 3 “Concrete Aggregate Part 3, Copper Slag” (1997).
本発明に用いる銅スラグの粒度は、JIS A5011−3における1.2mm銅スラグ細骨材の粒度分布に適合するものであり、一般にはCUS1.2と呼ばれているものである。JIS A5011−3におけるふるい分け試験は更にJIS A1102(骨材のふるい分け試験方法)に規定されており、呼び寸法10mm、5mm、2.5mm、1.2mm、0.6mm、0.3mm、0.15mmのふるいによる試験方法であり、それぞれのふるいを通るものの質量%が規定されている。
The particle size of the copper slag used in the present invention conforms to the particle size distribution of the 1.2 mm copper slag fine aggregate in JIS A5011- 3 and is generally called CUS1.2. The screening test in JIS A5011- 3 is further defined in JIS A1102 (Aggregate screening test method).
JIS A5011−3における銅スラグ細骨材の粒度による区分は、CUS5、CUS2.5、CUS1.2、CUS5−0.3の4水準に分類されているが、このうち本発明においてはCUS1.2を用いる。粒度がCUS1.2より大きいと、後述する実施例で示すようにブリーディング量が上昇して施工性が低下する。 Classification according to the particle size of copper slag fine aggregate in JIS A5011- 3 is classified into four levels of CUS5, CUS2.5, CUS1.2, and CUS5-0.3. Is used. When the particle size is larger than CUS1.2, the bleeding amount is increased and the workability is lowered as shown in Examples described later.
銅スラグの含有量は、全細骨材に対して15容積%以上45容積%以下であり、好ましくは20容積%以上40容積%以下、または、好ましくは35容積%以上45容積%以下である。15容積%以上であることにより乾燥収縮の効果を充分に発揮し、45容積%以下とすることでブリーディングも抑制できる。 The content of copper slag is 15 volume% or more and 45 volume% or less, preferably 20 volume% or more and 40 volume% or less, or preferably 35 volume% or more and 45 volume% or less with respect to the total fine aggregate. . When it is 15% by volume or more, the effect of drying shrinkage is sufficiently exhibited, and when it is 45% by volume or less, bleeding can be suppressed.
なお、後述する実施例からも明らかなように、CUS1.2のブリーディング量は、CUS2.5と比べて、含有量増加によるブリーディング量の増加量が少なくなり、銅スラグを含有しない場合のブリーディングとあまり差がなく、通常のコンクリートのブリーディング量と同程度になる。従来、銅スラグの含有量が増加するにつれて、硬化する前の生コンクリートにおいてブリーディングが増加することが従来知られている。このブリーディングの絶対値は粒度によって異なるものの、含有量増加とブリーディング増加の関係はどの粒度においても起こりえると考えられていた。このために、ブリーディング抑制の観点からは例えば40容積%もの多量の代替細骨材の適用は困難と考えられていた。しかしながら、本発明者らの検討によると、粒度CUS1.2になると、このブリーディング量が含有量に依存しなくなることが判明した。この理由は定かでないが、銅スラグの含有量増加とブリーディング増加との上記依存性が成立しない領域が粒度CUS1.2に特異的に存在する点を見出したことに本発明の特徴があると言ってもよい。このため、粒度CUS1.2を用いることで多量の代替細骨材の適用が可能となり、結果として乾燥収縮の抑制と施工性の維持の両立を図ることに成功した。なお、この点は後述の実施例にて詳細に説明する。 As is clear from the examples described later, the bleeding amount of CUS1.2 is less than that of CUS2.5, and the amount of increase in bleeding amount due to the increase in content is reduced, and bleeding when copper slag is not contained. There is not much difference, and it is about the same as the amount of normal concrete bleeding. Conventionally, it is known that bleeding increases in the ready-mixed concrete before hardening as the copper slag content increases. Although the absolute value of this bleeding varies depending on the particle size, it has been considered that the relationship between the increase in content and the increase in bleeding can occur at any particle size. For this reason, from the viewpoint of suppressing bleeding, it has been considered difficult to apply a large amount of substitute fine aggregate of, for example, 40% by volume. However, according to the study by the present inventors, it has been found that when the particle size is CUS1.2, the bleeding amount does not depend on the content. Although the reason for this is not clear, it is said that the present invention is characterized by the fact that a region where the above-described dependency between the increase in copper slag content and the increase in bleeding is not established exists in the grain size CUS1.2. May be. For this reason, it became possible to apply a large amount of alternative fine aggregate by using the particle size CUS1.2, and as a result, succeeded in achieving both suppression of drying shrinkage and maintenance of workability. This point will be described in detail in an embodiment described later.
[他の細骨材]
他の細骨材としては、従来公知の川砂、海砂、砂岩砕砂などを用いることができ特に限定されない。なお、石灰を主体とした細骨材である石灰細骨材は乾燥収縮に効果的であるが、コストが高い。本発明においては石灰細骨材を用いなくても乾燥収縮抑制とブリーディング抑制が可能であるので、石灰細骨材を用いなくてもよい。
[Other fine aggregates]
As other fine aggregates, conventionally known river sand, sea sand, sandstone crushed sand and the like can be used, and are not particularly limited. Note that lime fine aggregate, which is a fine aggregate mainly composed of lime, is effective for drying shrinkage, but is expensive. In the present invention, dry shrinkage can be suppressed and bleeding can be suppressed without using lime fine aggregate, and therefore lime fine aggregate need not be used.
[粗骨材]
粗骨材としても特に限定されず、従来公知の砂利や砕石などが適宜使用できる。
[Coarse aggregate]
The coarse aggregate is not particularly limited, and conventionally known gravel or crushed stone can be appropriately used.
[セメント及び水]
これらも特に限定されず、従来公知のセメントと水が適宜使用できる。なお、本発明においては、吸水性の低い銅スラグを混入した分、コンクリートの単位水量(コンクリート1m3当たりの必要水量)が減少する。このためセメント量が少なくなり発熱量が減少するので、硬化後のひび割れが生じ難くなる。なお、この場合においてもコンクリート強度等においては影響がない。
[Cement and water]
These are not particularly limited, and conventionally known cement and water can be appropriately used. In the present invention, the amount of concrete unit water (required amount of water per 1 m 3 of concrete) is reduced by the amount of mixed copper slag with low water absorption. For this reason, the amount of cement is reduced and the calorific value is reduced, so that cracks after hardening are less likely to occur. In this case, there is no influence on the concrete strength or the like.
[その他の材料]
必要に応じて、その他の材料として、本発明の効果を損なわない範囲で、例えば、減水剤(AE剤)などを適宜加えてもよい。
[Other materials]
As needed, for example, a water reducing agent (AE agent) or the like may be added as other materials as long as the effects of the present invention are not impaired.
[コンクリートの施工方法]
上記の材料を混練配合したコンクリート配合材料、すなわち硬化する前の生コンクリートにおいて、本発明においては、特にブリーディングにおいて良好な性状を与えることができる。このため施工性に優れた生コンクリートを提供できる。なお、本発明における施工条件は、従来の銅スラグを用いない砂細骨材のみの場合に極めて近く、その取り扱いに特殊性がないという優れたものである。以下、実施例を用いてこの点につき更に詳細に説明する。
[Concrete construction method]
In the present invention, a concrete blending material obtained by kneading and blending the above materials, that is, ready-mixed concrete before being cured, can give good properties particularly in bleeding. For this reason, ready-mixed concrete excellent in workability can be provided. In addition, the construction conditions in this invention are very close to the case of only the fine sand aggregate which does not use the conventional copper slag, and it is excellent that there is no special property in the handling. Hereinafter, this point will be described in more detail using examples.
なお、本発明は、上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲で変形・改良等は、本発明に含まれるものである。 Note that the present invention is not limited to the above-described embodiment, and modifications and improvements are included in the present invention as long as the object of the present invention can be achieved.
以下、実施例により、本発明を更に詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention does not receive a restriction | limiting at all by these description.
<製造例>
下記の実施例1から3及び比較例1から4の細骨材を用いて、それぞれ対応する製造実施例1から3及び製造比較例1から4のコンクリート配合材料を作成した。なお、粗骨材として硬質砂岩を用い、セメントとしてポルトランドセメントを用い、W/C(水セメント比)=50%、S/a(細骨材率)=48.5%となるように配合した。
実施例1:砂岩砕砂の80容積%+銅スラグCUS1.2の20容積%
実施例2:砂岩砕砂の70容積%+銅スラグCUS1.2の30容積%
実施例3:砂岩砕砂の60容積%+銅スラグCUS1.2の40容積%
比較例1:砂岩砕砂の100容積%
比較例2:砂岩砕砂の80容積%+銅スラグCUS2.5の20容積%
比較例3:砂岩砕砂の70容積%+銅スラグCUS2.5の30容積%
比較例4:砂岩砕砂の60容積%+銅スラグCUS2.5の40容積%
<Production example>
Using the fine aggregates of Examples 1 to 3 and Comparative Examples 1 to 4 below, corresponding concrete blending materials of Production Examples 1 to 3 and Production Comparative Examples 1 to 4 were prepared. Hard sandstone was used as the coarse aggregate, Portland cement was used as the cement, and W / C (water cement ratio) = 50% and S / a (fine aggregate ratio) = 48.5%. .
Example 1: 80% by volume of sandstone crushed sand + 20% by volume of copper slag CUS1.2
Example 2: 70% by volume of sandstone crushed sand + 30% by volume of copper slag CUS1.2
Example 3: 60% by volume of sandstone crushed sand + 40% by volume of copper slag CUS1.2
Comparative Example 1: 100% by volume of crushed sandstone
Comparative example 2: 80% by volume of sandstone crushed sand + 20% by volume of copper slag CUS2.5
Comparative example 3: 70% by volume of sandstone crushed sand + 30% by volume of copper slag CUS2.5
Comparative example 4: 60% by volume of sandstone crushed sand + 40% by volume of copper slag CUS2.5
<試験例1>
[乾燥収縮量]
製造実施例1から3及び製造比較例1から4のコンクリート配合材料をJIS A 1132:2006で作成し、JIS A 1129−3:2001によって乾燥収縮量(単位μm)を測定した。その結果を表1に示す。
<Test Example 1>
[Dry shrinkage]
The concrete blend materials of Production Examples 1 to 3 and Production Comparative Examples 1 to 4 were prepared according to JIS A 1132: 2006, and the amount of dry shrinkage (unit: μm) was measured according to JIS A 1129-3: 2001. The results are shown in Table 1.
表1から解かるように、銅スラグを含有しない製造比較例1に比べて、製造実施例1から3においては乾燥収縮が抑制されている。なお、CUS量20%の製造実施例1より、CUS40%の製造実施例3の抑制効果が高い。また、製造実施例3の乾燥抑制効果は、CUS2.5の製造比較例2から4と比べても遜色ないことが理解できる。 As can be seen from Table 1, drying shrinkage is suppressed in Production Examples 1 to 3 as compared to Production Comparative Example 1 that does not contain copper slag. In addition, the inhibitory effect of the manufacturing example 3 of CUS40% is higher than the manufacturing example 1 of CUS amount 20%. Moreover, it can be understood that the drying suppression effect of Production Example 3 is comparable to CUS2.5 Production Comparison Examples 2 to 4.
<試験例2>
[ブリーディング量]
実施例1から3及び比較例1、2、4のコンクリート配合材料(生コンクリート)について、JIS A 1123:2003によってブリーディング量を測定した(単位cm3/mm2)。その結果を図1に示す。
<Test Example 2>
[Bleeding amount]
About the concrete compounding materials (green concrete) of Examples 1 to 3 and Comparative Examples 1, 2, and 4, the bleeding amount was measured according to JIS A 1123: 2003 (unit: cm 3 / mm 2 ). The result is shown in FIG.
図1から解かるように、CUS2.5の銅スラグを含有する比較例2や4においては、含有率が高いと急激にブリーディング量が増加する(特に比較例4参照)。一方、本発明の実施例1から3は、CUS量が異なっていてもブリーディング量が安定して低くなっており、このことから従来の銅スラグを含有しない比較例1と同等の施工性を有していることが理解できる。なお、実際の施工を行ったところ、比較例4はポンプ圧送時の詰まりが発生して施工性が悪かった。これに対して実施例1から3では銅スラグなしの比較例1とほぼ同様の施工性が得られた。 As can be seen from FIG. 1, in Comparative Examples 2 and 4 containing CUS2.5 copper slag, the bleeding amount increases abruptly when the content ratio is high (see particularly Comparative Example 4). On the other hand, in Examples 1 to 3 of the present invention, the bleeding amount is stably low even if the CUS amount is different, and from this, the workability equivalent to that of Comparative Example 1 not containing conventional copper slag is obtained. I can understand that In addition, when actual construction was performed, in Comparative Example 4, clogging occurred during pumping, and workability was poor. On the other hand, in Examples 1 to 3, workability substantially the same as that of Comparative Example 1 without copper slag was obtained.
Claims (5)
前記銅スラグの粒度分類がJIS A5011−3における1.2mm銅スラグ細骨材(CUS1.2)である銅スラグ含有コンクリート用細骨材。 Copper slag is contained in an amount of 15% to 45% by volume with respect to the total fine aggregates,
The copper slag containing fine aggregate for concrete whose copper slag particle size classification is 1.2 mm copper slag fine aggregate (CUS1.2) in JIS A5011- 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011068285A JP5676332B2 (en) | 2011-03-25 | 2011-03-25 | Fine aggregate for concrete containing copper slag and concrete construction method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011068285A JP5676332B2 (en) | 2011-03-25 | 2011-03-25 | Fine aggregate for concrete containing copper slag and concrete construction method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012201558A true JP2012201558A (en) | 2012-10-22 |
JP5676332B2 JP5676332B2 (en) | 2015-02-25 |
Family
ID=47182916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011068285A Active JP5676332B2 (en) | 2011-03-25 | 2011-03-25 | Fine aggregate for concrete containing copper slag and concrete construction method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5676332B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014210681A (en) * | 2013-04-18 | 2014-11-13 | 三菱マテリアル株式会社 | Fine copper slag aggregate having suppressed bleeding and its concrete |
CN104370567A (en) * | 2014-10-11 | 2015-02-25 | 叶香雄 | Antibacterial thermal-insulation board |
JP2020011871A (en) * | 2018-07-19 | 2020-01-23 | 住友金属鉱山株式会社 | Concrete having durability |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741348A (en) * | 1993-07-13 | 1995-02-10 | Mitsubishi Materials Corp | Production of super fluidized concrete |
JPH07166705A (en) * | 1993-10-12 | 1995-06-27 | Kajima Corp | Manufacture of highly fluid concrete |
JP2006045027A (en) * | 2004-08-06 | 2006-02-16 | Nissan Rinkai Construction Co Ltd | High specific gravity concrete, its manufacturing method, wave breaking high specific gravity concrete molding and radiation shielding high specific gravity concrete molding |
JP2011006310A (en) * | 2009-06-29 | 2011-01-13 | Sumitomo Metal Mining Siporex Kk | Fine aggregate for concrete and method for evaluating the same |
-
2011
- 2011-03-25 JP JP2011068285A patent/JP5676332B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741348A (en) * | 1993-07-13 | 1995-02-10 | Mitsubishi Materials Corp | Production of super fluidized concrete |
JPH07166705A (en) * | 1993-10-12 | 1995-06-27 | Kajima Corp | Manufacture of highly fluid concrete |
JP2006045027A (en) * | 2004-08-06 | 2006-02-16 | Nissan Rinkai Construction Co Ltd | High specific gravity concrete, its manufacturing method, wave breaking high specific gravity concrete molding and radiation shielding high specific gravity concrete molding |
JP2011006310A (en) * | 2009-06-29 | 2011-01-13 | Sumitomo Metal Mining Siporex Kk | Fine aggregate for concrete and method for evaluating the same |
Non-Patent Citations (5)
Title |
---|
JPN6009003886; 仁木孟伯 他: '銅スラグ砂を使用したコンクリートの基礎的性状' コンクリート工学年次論文報告集 Vol.17 No.1, 19950601, P.399-404 * |
JPN6014004309; 真野孝次、外2名: '銅スラグ細骨材を用いたコンクリート基礎的物性に関する実験研究' 建材試験情報12 , 1995, p.6-11, 建材試験センター * |
JPN6014004310; 上野敦、外3名: '銅スラグ細骨材による砕砂コンクリートのフレッシュ性状の改善' コンクリート工学年次論文集 , 2009, p.133-138, 日本コンクリート工学会 * |
JPN6014004311; 加地貴、外2名: 'フライアッシュと銅スラグ細骨材を使用したコンクリートの性状' コンクリート工学年次論文集 , 2004, p.1659-1664, 日本コンクリート工学会 * |
JPN6014004312; 笹田宏紀、外3名: '低吸水率細骨材の混合使用によるコンクリートの乾燥収縮抑制対策に関する-考察' コンクリート工学年次論文集 , 2012, p.406-411, 日本コンクリート工学会 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014210681A (en) * | 2013-04-18 | 2014-11-13 | 三菱マテリアル株式会社 | Fine copper slag aggregate having suppressed bleeding and its concrete |
CN104370567A (en) * | 2014-10-11 | 2015-02-25 | 叶香雄 | Antibacterial thermal-insulation board |
JP2020011871A (en) * | 2018-07-19 | 2020-01-23 | 住友金属鉱山株式会社 | Concrete having durability |
Also Published As
Publication number | Publication date |
---|---|
JP5676332B2 (en) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104045280B (en) | A kind of C120 super high strength concrete that is easy to super high-rise pumping | |
CN105461274B (en) | A kind of low concrete of creeping | |
JP2011195364A (en) | Concrete composition and concrete hardened body | |
JP7022959B2 (en) | Concrete composition and method for manufacturing concrete composition | |
JP5676332B2 (en) | Fine aggregate for concrete containing copper slag and concrete construction method using the same | |
KR101366294B1 (en) | High-fluid, subaqueous non-separated concrete admixture and this adding high-fluid, subaqueous non-separated concrete composition | |
JP6521608B2 (en) | High durability concrete | |
JP6259555B2 (en) | Concrete using copper slag and concrete structure | |
JP6180946B2 (en) | Concrete composition | |
JP6131459B2 (en) | Mortar or concrete composition and molded product obtained by molding the same | |
JP5195866B2 (en) | Method for producing hardened slag | |
JP6485741B2 (en) | Heavy aggregate and heavy concrete | |
JP2019065638A (en) | Concrete, tunnel lining body and concrete mixing design method | |
JP7068655B2 (en) | High-strength concrete composition and high-strength concrete hardened body | |
KR20150055678A (en) | Concrete composite for preventing drying shrinkage and crack | |
JP2018002540A (en) | Cement clinker and cement composition | |
JP2012206882A (en) | Scaling-reduced concrete product, and method for producing the concrete product | |
CN106747100A (en) | A kind of high-strength mechanism rock sand concrete | |
KR101292181B1 (en) | Concrete composition having improved durability | |
JP2004299912A (en) | Concrete for port and method for producing the same | |
JP2015024957A (en) | High-strength concrete production method | |
JP2011006310A (en) | Fine aggregate for concrete and method for evaluating the same | |
KR101578144B1 (en) | Hybrid concrete compositions and manufacture method thereof | |
JP5484655B2 (en) | Method for suppressing alkali-aggregate reaction in concrete or mortar | |
CN108314373B (en) | Auxiliary cementing material, application of auxiliary cementing material and concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5676332 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |