JPH0687635A - Hydraulic cement - Google Patents

Hydraulic cement

Info

Publication number
JPH0687635A
JPH0687635A JP23513691A JP23513691A JPH0687635A JP H0687635 A JPH0687635 A JP H0687635A JP 23513691 A JP23513691 A JP 23513691A JP 23513691 A JP23513691 A JP 23513691A JP H0687635 A JPH0687635 A JP H0687635A
Authority
JP
Japan
Prior art keywords
powder
fine powder
fluidity
concrete
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23513691A
Other languages
Japanese (ja)
Inventor
Hajime Okamura
甫 岡村
Kazumasa Ozawa
一雅 小沢
Norimitsu Kurumada
則充 車田
Original Assignee
Cement Kyokai
社団法人セメント協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cement Kyokai, 社団法人セメント協会 filed Critical Cement Kyokai
Priority to JP23513691A priority Critical patent/JPH0687635A/en
Publication of JPH0687635A publication Critical patent/JPH0687635A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement

Abstract

PURPOSE:To increase the fluidity and fillability by mixing portland cement (OPC), an admixture coarse powder and an admixture fine powder in a specified ratio. CONSTITUTION:40-80 pts.wt. of a moderate-heat portland cement, 15-40 pts.wt. of an admixture coarse powder such as blast furnace slag powder having >=50mum 50%-average grain diameter and 3-35 pts.wt. of an admixture fine powder having <=5mum 50%-average grain diameter are mixed to produce a hydraulic cement. A water reducing agent (e.g. Pozzolis SP-9HS of the Nisso master builders Inc.) and a thickener (e.g. methyl cellulose) are added to the cement, as required, respectively in desired amt. to produce a hydraulic cement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンクリート打設時に
高流動性を示す水硬性セメントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic cement that exhibits high fluidity when pouring concrete.

【0002】[0002]

【従来の技術】コンクリートは、打設時に出来るだけ流
動性が大きい方が作業能率が良く好ましいが、単にコン
クリート混練時の混練水量を多くして流動性を大きくす
ると、コンクリート構造体の強度、均一性の面で問題を
生じるばかりでなく、ブリージングの増加、コンクリー
トの密実性の低下による鉄筋の腐食の原因ともなる。一
方、壁、柱等の構造部材においては、バイブレータによ
る振動締固めを十分に行なうことができず、コンクリー
トの品質低下を招く原因となる。そこで従来、コンクリ
ート混練時の混練水量を増やすことなくコンクリートの
流動性を良くする有効な手段として、減水剤(高性能A
E減水剤を含む)を使用する方法が行なわれている。
2. Description of the Related Art For concrete, it is preferable that the fluidity is as great as possible during pouring because the working efficiency is good and the fluidity is increased simply by increasing the amount of kneading water during concrete kneading. Not only does this cause a problem in terms of properties, but it also causes an increase in breathing and corrosion of reinforcing bars due to a decrease in the solidity of concrete. On the other hand, in structural members such as walls and columns, vibration compaction by a vibrator cannot be sufficiently performed, which causes deterioration of concrete quality. Therefore, conventionally, as an effective means for improving the fluidity of concrete without increasing the amount of kneading water at the time of kneading concrete, a water reducing agent (high performance A
E water-reducing agent is used).

【0003】[0003]

【発明が解決しようとする課題】しかし、減水剤(高性
能AE減水剤を含む)は、流動性を高めようとして添加
量を多くし過ぎると、凝結遅延や硬化不良を起し、所定
材令で目標強度が得られないという欠点があった。また
その添加量を多くして行くにつれ初期強度が低下すると
いう欠点があった。
However, if a water reducing agent (including a high-performance AE water reducing agent) is added in an excessively large amount in order to improve the fluidity, delay of setting and poor curing will occur, and the predetermined material However, there was a drawback that the target strength could not be obtained. Further, there is a drawback that the initial strength decreases as the added amount increases.

【0004】[0004]

【課題を解決するための手段】本発明は、ポルトランド
セメントに特定の粒子径をもつ混合材の粗粉及び微粉、
必要に応じて減水剤及び増粘剤をそれぞれ適量添加する
ことにより、従来得られなかった高流動性が得られるば
かりでなく、従来技術の欠点であった初期強度の低下や
凝結遅延が起きない高流動性コンクリートを提供できる
ことを見出し、本発明に到達した。
DISCLOSURE OF THE INVENTION The present invention relates to a coarse powder and a fine powder of a mixed material having a specific particle size in Portland cement,
By adding an appropriate amount of each of a water reducing agent and a thickening agent as required, not only high fluidity that has not been obtained in the past can be obtained, but also the deterioration of the initial strength and the delay of setting which are the drawbacks of the prior art do not occur. They have found that they can provide highly fluid concrete, and have reached the present invention.

【0005】本発明に用いるポルトランドセメントは、
普通ポルトランドセメント(以下『OPC』と記す)又
は中庸熱ポルトランドセメント(以下『MPC』と記
す)であるが、MPCの方がより高流動性を得るために
は好ましい。
The Portland cement used in the present invention is
Ordinary Portland cement (hereinafter referred to as "OPC") or moderate heat Portland cement (hereinafter referred to as "MPC") is preferable, but MPC is preferable in order to obtain higher fluidity.

【0006】上記粗粉としては、例えばポルトランドセ
メントの粗粉が挙げられ、その製造方法は、ポルトラン
ドセメントクリンカを目的の粒度になるように粉砕して
もよいが、セメントクリンカ粉砕時の閉回路ミルの戻り
粉(以下『戻り粉』と記す)を流用してもよい。その他
の粗粉としては、高炉スラグ粉末、フライアッシュ(以
下『FA』と記す)、石灰石粉末、珪石粉末及び石粉が
挙げられる。これら粗粉は、単独で使用しても良く、二
種類以上組合わせて使用してもよい。粗粉の添加量は、
ポルトランドセメント40〜80重量部に対して15〜
40重量部である。好ましくは20〜35重量部であ
る。15重量部未満では高流動性が得られず、40重量
部を越えると強度低下が著しい。粗粉の粉末度は、50
%平均粒子径50μm以上が好ましい。その上限は、例
えばベースセメントと粒度の連続性が得られる範囲内で
ある。
[0006] Examples of the coarse powder include coarse powder of Portland cement. In the method for producing the coarse powder, Portland cement clinker may be pulverized to a desired particle size. Return powder (hereinafter referred to as "return powder") may be used. Other coarse powders include blast furnace slag powder, fly ash (hereinafter referred to as "FA"), limestone powder, silica stone powder and stone powder. These coarse powders may be used alone or in combination of two or more kinds. The amount of coarse powder added is
15 to 40 to 80 parts by weight of Portland cement
40 parts by weight. It is preferably 20 to 35 parts by weight. If it is less than 15 parts by weight, high fluidity cannot be obtained, and if it exceeds 40 parts by weight, the strength is remarkably reduced. The fineness of coarse powder is 50
A% average particle diameter of 50 μm or more is preferable. The upper limit is, for example, within a range where the continuity of the particle size with the base cement is obtained.

【0007】上記微粉としては、例えばポルトランドセ
メントの微粉が挙げられ、その製造方法としてはポルト
ランドセメントクリンカを目的の粒度になるように粉砕
してもよいが、もし粒度が適合するものであれば、簡単
に得られるものとしてセメント粉砕時の閉回路ミルの集
塵粉(以下『バフ粉』と記す)を流用できる。その他の
微粉としては、高炉スラグ微粉、FA微粉、炭酸カルシ
ウム微粉、珪石微粉及び石粉微粉が挙げられる。炭酸カ
ルシウム微粉は、石灰石を粉砕したもの(以下『重カ
ル』と記す)又は製紙用沈降炭酸カルシウム(以下『軽
カル』と記す)を使用できる。これら微粉は、単独で使
用してもよく、二種類以上組合わせて使用してもよい。
微粉の粉末度は、50%平均粒子径5μm以下が好まし
い。微粉の添加量はポルトランドセメント40〜80重
量部に対して3〜35重量部であり、好ましくは10〜
15重量部である。3重量部未満ではモルタル又はコン
クリートの強度発現に殆ど寄与せず、35重量部を越え
ると流動性に悪影響を与える。
As the above-mentioned fine powder, for example, fine powder of Portland cement can be mentioned. As a method for producing the fine powder, Portland cement clinker may be pulverized to a desired particle size, but if the particle size is suitable, As an easily obtainable product, dust collecting powder (hereinafter referred to as "buff powder") from a closed circuit mill when crushing cement can be diverted. Other fine powders include blast furnace slag fine powder, FA fine powder, calcium carbonate fine powder, silica fine powder and stone fine powder. As the calcium carbonate fine powder, crushed limestone (hereinafter referred to as "heavy calcium") or precipitated calcium carbonate for papermaking (hereinafter referred to as "light calcium") can be used. These fine powders may be used alone or in combination of two or more kinds.
The fineness of the fine powder is preferably 50% average particle diameter of 5 μm or less. The amount of the fine powder added is 3 to 35 parts by weight, preferably 10 to 80 parts by weight of Portland cement.
15 parts by weight. If it is less than 3 parts by weight, it hardly contributes to the strength development of the mortar or concrete, and if it exceeds 35 parts by weight, the fluidity is adversely affected.

【0008】モルタル又はコンクリート混練時にその流
動性や材料分離を抑えるために、必要に応じて添加する
ものとして、高性能AE減水剤(以下『SP』と記す)
及び増粘剤が挙げられる。SPとしては、一般にモルタ
ル又はコンクリート用として用いられるものでよく、例
えば日曹マスタービルダーズ株式会社のポゾリスSP−
9HS又はNP−10、花王株式会社のマイティ200
0WH等が挙げられる。
[0008] A high-performance AE water reducing agent (hereinafter referred to as "SP") is added as necessary in order to suppress the fluidity and material separation during the mixing of mortar or concrete.
And thickeners. The SP may be one generally used for mortar or concrete, for example, Pozzolith SP- from Nisso Master Builders Co., Ltd.
9HS or NP-10, Kao Corporation's Mighty 200
0WH etc. are mentioned.

【0009】コンクリートの場合、その流動性が良くな
るにつれ粗骨材とモルタル部分の材料分離が起こり易く
なるが、その場合には適宜増粘剤を加えればよい。増粘
剤としては例えば信越化学工業株式会社製メチルセルロ
ーズ:商品名メトローズなど、一般に使用されるものを
用いる。
In the case of concrete, as the fluidity of the concrete improves, the material separation between the coarse aggregate and the mortar portion easily occurs. In that case, a thickener may be added as appropriate. As the thickener, for example, a commonly used one such as Methyl Cellulose manufactured by Shin-Etsu Chemical Co., Ltd .: trade name "Metroze" is used.

【0010】[0010]

【実施例】【Example】

【0011】実施例1〜18及び比較例1〜9Examples 1-18 and Comparative Examples 1-9

【0012】本発明の水硬性セメントをモルタルに適用
し、流動性(フロー)及び強さ試験を実施した。実施例
に使用したOPC及びMPC(いずれも市販品)の化学
成分及び物理試験結果を表1及び表2に示した。
The hydraulic cement of the present invention was applied to mortar, and flowability and strength tests were carried out. The chemical components and physical test results of OPC and MPC (both are commercial products) used in the examples are shown in Tables 1 and 2.

【0013】粗粉としてはOPCの戻り粉、高炉スラグ
粉末、FA、石灰石粉末、珪石粉末及び石粉を使用し
た。
OPC return powder, blast furnace slag powder, FA, limestone powder, silica stone powder and stone powder were used as coarse powder.

【0014】微粉としてはOPCのバフ粉、高炉スラグ
微粉、FA微粉、重カル、軽カル、珪石微粉及び石粉微
粉を使用した。粗粉及び微粉の化学成分を表3に示し
た。また、それらの粒度を表4に示した。微粉として採
用した重カル及び軽カルは、それぞれ石灰石の乾式粉砕
品(東洋ファインケミカル製P−10)及び製紙用沈降
炭酸カルシウム(白石工業製Brilliant−1
5)である。
OPC buff powder, blast furnace slag fine powder, FA fine powder, heavy calcium, light calcium, silica fine powder and stone fine powder were used as fine powder. Table 3 shows the chemical components of the coarse powder and the fine powder. In addition, those particle sizes are shown in Table 4. Heavy calcium and light calcium used as fine powder are dry crushed limestone products (P-10 manufactured by Toyo Fine Chemical Co., Ltd.) and precipitated calcium carbonate for paper manufacturing (Brilliant-1 manufactured by Shiraishi Industry Co., Ltd.).
5).

【0015】SPは、日曹マスタービルダーズ製のポゾ
リスSP−9HSを使用した。骨材用の砂は、相馬砂3
号、4号、5号、6号、7号を25:25:25:1
2.5:12.5の比率で混合し、粗粒率2.82のも
のを使用した。
As the SP, Pozzolith SP-9HS manufactured by Nisso Master Builders was used. Sand for aggregate is Soma sand 3
No.4, No.5, No.6, No.7 are 25: 25: 25: 1
A mixture having a coarse grain ratio of 2.82 was used by mixing at a ratio of 2.5: 12.5.

【0016】以上の材料を使用し、水/粉体容積比=
1.00、砂/粉体容積比=1.91、空気量=9%の
一定配合でモルタルを練り、該モルタルの流動性及び材
令28日圧縮強さを調べた。
Using the above materials, water / powder volume ratio =
Mortar was kneaded with a fixed composition of 1.00, sand / powder volume ratio = 1.91, and air content = 9%, and the fluidity and 28-day compressive strength of the mortar were examined.

【0017】使用した粉体構成、即ちOPC、MPC、
粗粉及び微粉の配合割合を表5に示した。表6に、使用
した混練水(略号:W)と粉体(略号:P)との比率
(以下『W/P』と記す)、SP及びメチルセルローズ
(以下『MC』と記す)の配合量を示した。また、同表
に混練した直後のモルタルについて、JASS 15M
−103によるフロー値を示した。即ちJIS R52
01に規定されたフローコーンにモルタルを詰め、該コ
ーンを引上げたのち該モルタルが拡がり始めて静止する
までに要した時間、即ち『広がり時間』及び該モルタル
が静止した時の広がり、即ち『フロー値』を示した。ま
た、材令28日圧縮強さを同じく表6に示した。なお、
モルタルl1当たりの各材料の絶対容積は、P=233
ml、W=233ml、砂=444ml、空気量=9
%、SP=P×2%及びMS=0.03gの一定とし
た。この結果、比較例1に示すように、OPC単味では
SPを2.0重量部添加したにもかかわらず、殆ど流動
性がなく(フロー値126)、実用に供せるものではな
かった。
The powder composition used, namely OPC, MPC,
Table 5 shows the mixing ratio of the coarse powder and the fine powder. In Table 6, the ratio of kneading water (abbreviation: W) and powder (abbreviation: P) used (hereinafter referred to as "W / P"), SP and methyl cellulose (hereinafter referred to as "MC") blending amount showed that. In addition, regarding mortar immediately after kneading in the same table, JASS 15M
The flow value according to -103 is shown. That is, JIS R52
The time required for the mortar to spread after the mortar was packed in a flow cone specified in No. 01, and the mortar began to spread after the cone was pulled up, that is, the "spread time" and the spread when the mortar was at rest, that is, "the flow value. "showed that. Further, the 28-day compressive strength of the material age is also shown in Table 6. In addition,
The absolute volume of each material per 1 mortar is P = 233
ml, W = 233 ml, sand = 444 ml, air volume = 9
%, SP = P × 2% and MS = 0.03 g. As a result, as shown in Comparative Example 1, although OPC alone had 2.0 parts by weight of SP added, it had almost no fluidity (flow value 126) and could not be put to practical use.

【0018】比較例2には、比較例1のOPCをMPC
に置き替えたものを示した。フロー値は155まで改善
されたが、その改善効果は非常に小さかった。
In Comparative Example 2, the OPC of Comparative Example 1 is replaced with MPC.
It has been replaced with. The flow value was improved up to 155, but the improvement effect was very small.

【0019】実施例1〜14に、OPC又はMPCに粗
粉及び微粉を配合した場合を示した。その結果、いずれ
もフローが200以上となり強さも十分なものであっ
た。しかし、比較例3に示すように、粗粉(戻り粉)の
量が極端に多過ぎると、フローは良くなるが強さが小さ
くなる。一方、比較例4に示すように、粗粉(戻り粉)
の量が極端に少な過ぎるとフローに対して十分な効果が
出ない。また、比較例5に示すように、微粉の量が多過
ぎると粘性が高くなり過ぎて流動性が悪くなり、比較例
6に示すように、粗粉の配合量が適当であっても微粉の
量が少な過ぎると、十分な強さが発揮されない。
Examples 1 to 14 show the cases where coarse powder and fine powder were mixed with OPC or MPC. As a result, in all cases, the flow was 200 or more and the strength was sufficient. However, as shown in Comparative Example 3, when the amount of coarse powder (return powder) is extremely large, the flow is improved but the strength is reduced. On the other hand, as shown in Comparative Example 4, coarse powder (return powder)
If the amount is too small, it will not have a sufficient effect on the flow. Further, as shown in Comparative Example 5, if the amount of fine powder is too large, the viscosity becomes too high and the flowability deteriorates. As shown in Comparative Example 6, even if the amount of coarse powder is appropriate, If the amount is too small, it will not exhibit sufficient strength.

【0020】次に、本発明をコンクリートに適用した場
合を実施例15〜18に示した。該実施例で使用した材
料は、モルタルで使用した材料と同じである。ただし、
骨材は表7に示した砕石及び陸砂を使用した。表8に、
OPC又はMPCに粗粉及び微粉を適宜組合わせた場合
の粉体の配合を示した。表9にコンクリートの配合、J
IS A1108のスランプ試験におけるコンクリート
の広がり(スランプフロー値)(以下『S・F』と記
す)及び材令28日圧縮強度を示した。その結果を従来
技術である比較例7と比べると、S・Fが大きく、良好
な流動性を示した。
Next, Examples 15 to 18 show cases where the present invention was applied to concrete. The materials used in the examples are the same as those used in the mortar. However,
As the aggregate, crushed stone and land sand shown in Table 7 were used. In Table 8,
The composition of the powder when the coarse powder and the fine powder are appropriately combined with OPC or MPC is shown. Table 9 Concrete mix, J
It shows the spread of concrete (slump flow value) (hereinafter referred to as "SF") in the slump test of IS A1108 and the 28-day compressive strength of the material. Comparing the results with Comparative Example 7 which is a conventional technique, SF was large and good fluidity was exhibited.

【0021】比較例8及び9は、本発明の特許請求の範
囲外の量の粗粉(戻り粉)及び微粉(バフ粉)を配合し
た場合を示した。いずれの場合も本発明に比べると流動
性又は強度の点で劣るものであった。
Comparative Examples 8 and 9 show cases where the amounts of coarse powder (return powder) and fine powder (buff powder) outside the scope of the claims of the present invention were blended. In either case, the fluidity or strength was inferior to that of the present invention.

【0022】[0022]

【作用】本発明の水硬性セメントは、ポルトランドセメ
ントに特定の粒度範囲と配合量の粗粉及び微粉を添加す
ることにより、粉体全体の粒度構成をモルタル又はコン
クリートの流動性に適したものにすることができた。ま
た、適量範囲内の減水剤及び必要により増粘剤を配合す
ることにより、混練水量を多くすることなく流動性を著
しく向上させ、かつ骨材との分離を防ぐことができた。
従って、打込時に締固めを必要としない程度の高流動性
と材料不分離性を有し、かつ凝結や強度面で実用上問題
のない高流動性モルタル又はコンクリートを得ることが
できた。
The hydraulic cement of the present invention has the particle size composition of the entire powder suitable for the fluidity of mortar or concrete by adding coarse powder and fine powder in a specific particle size range and blending amount to Portland cement. We were able to. Further, by adding a water-reducing agent in an appropriate amount range and a thickening agent if necessary, it was possible to remarkably improve the fluidity without increasing the amount of kneading water and prevent the separation from the aggregate.
Therefore, it was possible to obtain a high-fluidity mortar or concrete which has high fluidity and material inseparability to the extent that compaction is not required at the time of driving, and has practically no problems in terms of setting and strength.

【0023】[0023]

【発明の効果】本発明の水硬性セメントを使用すると、
高流動性モルタル又はコンクリートが容易に得られ、従
来のモルタル又はコンクリートに比較して充填性が高い
ものが得られる。従って、従来バイブレータがかけられ
ず施工のネックとなっていたような背の高い壁・柱等の
構造部材や開口部の下部分へも、全く振動締固めを行な
わずに完全にコンクリートを充填できるため、十分な品
質が確保できる。また、本発明の水硬性セメントを用い
た高流動性コンクリートは、コンクリートの混練水量を
著しく減らせるので、超高強度コンクリートを製造する
ことも可能である。
When the hydraulic cement of the present invention is used,
A high-fluidity mortar or concrete can be easily obtained, and a high filling property can be obtained as compared with conventional mortar or concrete. Therefore, it is possible to completely fill concrete without vibrating and compacting into structural members such as tall walls and columns that have been a neck of construction without being able to apply a vibrator and the lower part of the opening. , Sufficient quality can be secured. In addition, since the high-fluidity concrete using the hydraulic cement of the present invention can significantly reduce the amount of concrete kneading water, it is possible to produce ultra-high strength concrete.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【表7】 [Table 7]

【0031】[0031]

【表8】 [Table 8]

【0032】[0032]

【表9】 [Table 9]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 24:38 C 2102−4G 14:02) Z 2102−4G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C04B 24:38 C 2102-4G 14:02) Z 2102-4G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポルトランドセメント40〜80重量
部、50%平均粒子径50μm以上の混合材粗粉15〜
40重量部及び50%平均粒子径5μm以下の混合材微
粉3〜35重量部からなる水硬性セメント。
1. Portland cement 40 to 80 parts by weight, 50% 50 to 50% average particle diameter of mixed material coarse powder 15 to
A hydraulic cement comprising 40 parts by weight and 3 to 35 parts by weight of a mixed material fine powder having a 50% average particle diameter of 5 μm or less.
JP23513691A 1991-09-13 1991-09-13 Hydraulic cement Pending JPH0687635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23513691A JPH0687635A (en) 1991-09-13 1991-09-13 Hydraulic cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23513691A JPH0687635A (en) 1991-09-13 1991-09-13 Hydraulic cement

Publications (1)

Publication Number Publication Date
JPH0687635A true JPH0687635A (en) 1994-03-29

Family

ID=16981594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23513691A Pending JPH0687635A (en) 1991-09-13 1991-09-13 Hydraulic cement

Country Status (1)

Country Link
JP (1) JPH0687635A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051398A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp High-strength dry mortar and its preparation process
JP2004189546A (en) * 2002-12-11 2004-07-08 Taiheiyo Cement Corp Hydraulic composition
JP2008239452A (en) * 2007-03-29 2008-10-09 Taiheiyo Cement Corp Concrete admixture
JP2009067629A (en) * 2007-09-13 2009-04-02 Taiheiyo Cement Corp Cement additive and cement composition
JP2012505150A (en) * 2008-10-10 2012-03-01 ローマン セメント エルエルシー Pozzolanic cement blend with high early strength development
JP2014076934A (en) * 2012-10-12 2014-05-01 Sumitomo Osaka Cement Co Ltd Admixture slurry for high-strength concrete and method of producing high-strength concrete
JP2014076933A (en) * 2012-10-12 2014-05-01 Sumitomo Osaka Cement Co Ltd Admixture for high-strength concrete and cement composition for high-strength concrete

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051398A (en) * 2002-07-17 2004-02-19 Mitsubishi Materials Corp High-strength dry mortar and its preparation process
JP2004189546A (en) * 2002-12-11 2004-07-08 Taiheiyo Cement Corp Hydraulic composition
JP2008239452A (en) * 2007-03-29 2008-10-09 Taiheiyo Cement Corp Concrete admixture
JP2009067629A (en) * 2007-09-13 2009-04-02 Taiheiyo Cement Corp Cement additive and cement composition
JP2012505150A (en) * 2008-10-10 2012-03-01 ローマン セメント エルエルシー Pozzolanic cement blend with high early strength development
KR101331384B1 (en) * 2008-10-10 2013-11-20 로만 시멘트, 엘엘시 High early strength pozzolan cement blends
JP2014076934A (en) * 2012-10-12 2014-05-01 Sumitomo Osaka Cement Co Ltd Admixture slurry for high-strength concrete and method of producing high-strength concrete
JP2014076933A (en) * 2012-10-12 2014-05-01 Sumitomo Osaka Cement Co Ltd Admixture for high-strength concrete and cement composition for high-strength concrete

Similar Documents

Publication Publication Date Title
JPH07267697A (en) Hydraulic composition
JPH0687635A (en) Hydraulic cement
JPH0680456A (en) Fluid hydraulic composition
JP2005119885A (en) High strength mortar composition
JP2002226245A (en) Concrete mixing material and concrete composition
JP2017226587A (en) Concrete composition
JPH07144941A (en) Portland cement composition
JP2008189491A (en) Composition for ultra-high strength mortar, composition for ultra-high strength concrete, and method for producing the composition for ultra-high strength mortar
JP2003335565A (en) High performance concrete
JPH07291760A (en) Lightweight concrete for filling and lightweight hardened material thereof
JPH1160316A (en) High strength non-shrinkable mortar composition
JP4810914B2 (en) Fine powder for concrete composition, fresh concrete and method for improving fluidity thereof
JP2839771B2 (en) Concrete composition with excellent filling and fluidity
JP2018193280A (en) Quick-hardening ultrahigh-strength grout composition
JP2839770B2 (en) Concrete composition with excellent filling and fluidity
JP2001206754A (en) Highly flowable concrete
JPH0676235B2 (en) Hydraulic cement composition
JPH06219809A (en) Production of self-packing concrete
JP3291669B2 (en) Formulation for advanced mortar and method of concrete pressing
JPH1017355A (en) High slump concrete and its production
JPH11217252A (en) Highly flowing and wet type shotcrete
JPH05286746A (en) Concrete composition needless to compact for mass concrete structure
JP7046563B2 (en) Method for producing hydraulic composition
JP4261675B2 (en) Fine aggregate, method for producing the same, and cement composition
JPH06114824A (en) Preparation of super-high-strength concrete and superfine powder mixture