JPH0738982B2 - Circulating cooling water degassing method - Google Patents

Circulating cooling water degassing method

Info

Publication number
JPH0738982B2
JPH0738982B2 JP3112596A JP11259691A JPH0738982B2 JP H0738982 B2 JPH0738982 B2 JP H0738982B2 JP 3112596 A JP3112596 A JP 3112596A JP 11259691 A JP11259691 A JP 11259691A JP H0738982 B2 JPH0738982 B2 JP H0738982B2
Authority
JP
Japan
Prior art keywords
cooling water
amount
membrane module
degassing
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3112596A
Other languages
Japanese (ja)
Other versions
JPH0655162A (en
Inventor
正彦 林
康彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Techno Ryowa Ltd
Original Assignee
Nitto Denko Corp
Techno Ryowa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Techno Ryowa Ltd filed Critical Nitto Denko Corp
Priority to JP3112596A priority Critical patent/JPH0738982B2/en
Publication of JPH0655162A publication Critical patent/JPH0655162A/en
Publication of JPH0738982B2 publication Critical patent/JPH0738982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉系の循環冷却水を脱
気処理してその溶存酸素量を低減する場合に使用する循
環冷却水の脱気方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a degassing method for circulating cooling water used when degassing a circulating cooling water in a closed system to reduce the amount of dissolved oxygen.

【0002】[0002]

【従来の技術】冷却水の循環系においては、循環水中の
溶存酸素のために配管、機材が腐食するのを防止するた
めに、循環回路中に脱気膜モジュ−ルを組み込み、溶存
酸素量を低減することが考えられている。この場合、冷
却水を脱気膜モジュ−ルに圧送するための加圧ポンプの
追加、または循環ポンプの能力アップが不可欠である。
2. Description of the Related Art In a cooling water circulation system, a degassing membrane module is incorporated in the circulation circuit to prevent corrosion of pipes and equipment due to dissolved oxygen in the circulation water, Is considered to be reduced. In this case, it is indispensable to add a pressure pump for pumping the cooling water to the degassing membrane module or increase the capacity of the circulation pump.

【0003】[0003]

【発明が解決しようとする課題】ところで、本発明者等
の経験によれば、密閉型の冷却水循環系であっても循環
ポンプのグランドシ−ルでの冷却水と外気との接触、バ
ルブの弁棒導入箇所での冷却水と外気との接触、膨張タ
ンク(調圧槽)内での空気室と冷却水との接触等のため
に、冷却水に酸素が溶解し、上記の腐食が惹起されるこ
とがある。
By the way, according to the experience of the present inventors, even in a closed cooling water circulation system, contact between the cooling water and the outside air at the ground seal of the circulation pump and the valve Oxygen dissolves in the cooling water due to contact between the cooling water and the outside air at the valve rod introduction point, contact between the air chamber and the cooling water in the expansion tank (pressure adjusting tank), and the above corrosion occurs. It may be done.

【0004】而るに、本発明者においては、かかる密閉
型の冷却水循環系においては、冷却水への酸素溶解箇所
がポンプグランドシ−ル箇所等の極限られた部位であ
り、その酸素溶解量が僅小であるから、冷却水循環量に
比べて極く少量(1/100程度)の冷却水量を脱気膜
モジュ−ルに流通させるだけで、溶存酸素量を著しく低
減でき、上記腐食を有効に防止できることを知った。
In the present inventor, however, in such a closed type cooling water circulation system, the oxygen dissolved portion in the cooling water is a very limited portion such as the pump ground seal portion, and the oxygen dissolved amount thereof. Therefore, the amount of dissolved oxygen can be remarkably reduced and the above-mentioned corrosion can be effectively performed by passing a very small amount (about 1/100) of the cooling water to the degassing membrane module compared to the circulating amount of the cooling water. I learned that you can prevent it.

【0005】本発明の目的は、かかる知見に基づき密閉
型の冷却水循環系を対象とし、極めて簡単な回路構成
で、循環ポンブの能力アップを行うことなく、脱気膜モ
ジュ−ルを用いて冷却水中の溶存酸素量を著しく低減で
きる循環冷却水の脱気方法を提供することにある。
Based on the above findings, the object of the present invention is to provide a closed type cooling water circulation system, which has a very simple circuit configuration and uses a degassing membrane module for cooling without increasing the capacity of the circulation pump. It is an object of the present invention to provide a degassing method for circulating cooling water that can significantly reduce the amount of dissolved oxygen in water.

【0006】[0006]

【課題を解決するための手段】本発明の循環冷却水の脱
気方法は、冷却水を循環ポンプにより循環させる方法に
おいて、循環路にバイパス路を設け、このバイパス路に
脱気膜モジュ−ルを設け、上記循環ポンプにより該モジ
ュ−ルに冷却水を流通させることを特徴とし、脱気膜モ
ジュ−ルのガス透過側の減圧は、水抜弁を設けたダイヤ
フラム型真空ポンプにより行うことができる。
A method for deaerating circulating cooling water according to the present invention is a method of circulating cooling water by a circulation pump, wherein a bypass passage is provided in the circulation passage and a deaerating membrane module is provided in the bypass passage. Is provided, and cooling water is circulated through the module by the circulation pump, and the depressurization on the gas permeation side of the degassing membrane module can be performed by a diaphragm-type vacuum pump provided with a drain valve. .

【0007】[0007]

【作用】密閉型の冷却水循環系での冷却水中への酸素の
溶解は、ポンプのグランドシ−ル、バルブの弁棒導入
部、膨張タンク等の極く限られた部位での極小量であ
り、冷却水循環量に比べて極めて少量(1/100程
度)の冷却水を分流し、これを脱気膜モジュ−ルで酸素
脱気するだけで、その脱気量を上記の酸素溶解量よりも
容易に大きくでき、冷却水中の酸素溶存量を僅小にでき
る。
[Function] Dissolution of oxygen in the cooling water in the closed cooling water circulation system is a minimum amount in a very limited part such as the pump ground seal, the valve rod introduction part of the valve, and the expansion tank. In comparison with the cooling water circulation amount, an extremely small amount (about 1/100) of cooling water is diverted, and the oxygen is degassed by the degassing membrane module. It can be easily enlarged, and the amount of dissolved oxygen in cooling water can be made small.

【0008】[0008]

【実施例】以下、図面により本発明の実施例を説明す
る。図1は本発明によって循環冷却水中の酸素を脱気す
る密閉型の冷却水循環系を示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a closed cooling water circulation system for degassing oxygen in circulating cooling water according to the present invention.

【0009】図1において、1は密閉型冷却塔、2は膨
張タンク、3は循環ポンプ、4は熱源機器であり、熱源
機器4により加温された冷却水が密閉型冷却塔1に送入
されて冷却され、循環ポンプ3を経て再び熱源機器4に
送入され、以後この繰返しにより、大量の冷却水が熱源
機器4に循環されていく。5は脱気膜モジュ−ルであ
り、循環ポンプ3のバイパス路6に設けられている。こ
の脱気膜モジュ−ル3のガス透過側は減圧され、その一
般的手段としては真空ポンプが使用されるが、空調装置
の冷却水循環系等では通常、工場用大型真空装置が設置
されているので、この大型真空装置を利用することが有
利である。
In FIG. 1, 1 is a closed cooling tower, 2 is an expansion tank, 3 is a circulation pump, 4 is a heat source device, and cooling water heated by the heat source device 4 is fed into the closed cooling tower 1. The cooling water is cooled, and then sent again to the heat source device 4 via the circulation pump 3. By repeating this process, a large amount of cooling water is circulated to the heat source device 4. Reference numeral 5 denotes a degassing membrane module, which is provided in the bypass passage 6 of the circulation pump 3. The gas permeation side of the degassing membrane module 3 is decompressed, and a vacuum pump is used as a general means for this, but a large-scale vacuum device for a factory is usually installed in a cooling water circulation system of an air conditioner or the like. Therefore, it is advantageous to utilize this large vacuum device.

【0010】Aはユ−スポイント側の冷却水循環系を示
し、熱源機器4で冷却水が循環ポンプ8によりサプライ
ヘッダ−9を経てユ−スポイント10に送られ、ユ−ス
ポイント10で加温された冷却水がリタ−ンヘッダ−1
1を経て熱源機器4に戻され、以後、その繰返しにより
大量の冷却水がユ−スポイント10に循環されていく。
12は膨張タンクである。
Reference numeral A denotes a cooling water circulation system on the side of the use point. In the heat source device 4, the cooling water is sent from the circulation pump 8 to the use point 10 via the supply header-9 and added at the use point 10. The heated cooling water is the return header-1
After being returned to the heat source device 4 through 1, a large amount of cooling water is circulated to the use point 10 by repeating the process.
12 is an expansion tank.

【0011】13は脱気膜モジュ−ルであり、循環ポン
プ8のバイパス路14に設けられ、ガス透過側が前記の
脱気膜モジュ−ルと同様にして減圧されている。
Reference numeral 13 denotes a degassing membrane module, which is provided in the bypass passage 14 of the circulation pump 8 and whose gas permeation side is depressurized in the same manner as the degassing membrane module.

【0012】上記脱気膜モジュ−ル5,13には、スパ
イラル型、中空糸型、管状型、プレ−ト型の何れをも使
用でき、膜には、酸素に対する選択透過性を有する非多
孔質活性薄膜を多孔支持体上に設けた選択透過性複合膜
が使用される。
As the degassing membrane modules 5 and 13, any of spiral type, hollow fiber type, tubular type and plate type can be used, and the membrane is a non-porous material having selective permeability for oxygen. A permselective composite membrane having a porous thin film provided on a porous support is used.

【0013】上記の図1において、密閉冷却塔側の冷却
水循環系では、循環ポンプ3の駆動により冷却水が、循
環ポンプ3⇒熱源機器4⇒密閉型冷却塔1⇒循環ポンプ
3の経路で循環されると共に脱気膜モジュ−ル5にも冷
却水が流通される。
In the above-mentioned FIG. 1, in the cooling water circulation system on the side of the closed cooling tower, the cooling water is circulated by the drive of the circulation pump 3 through the route of circulation pump 3 ⇒ heat source device 4 ⇒ closed cooling tower 1 ⇒ circulation pump 3. At the same time, the cooling water is circulated through the degassing membrane module 5.

【0014】而して、脱気膜モジュ−ル5においては、
冷却水が膜に接触して流動する間、膜の酸素透過速度と
膜面積と膜間差圧等によって定まる酸素透過量で冷却水
中の酸素が膜モジュ−ル5のガス透過側に分離されてい
く。一方、循環ポンプのグランドシ−ル、バルブの弁棒
導入箇所、或いは、膨張タンクの空気室等の各部位から
冷却水中に酸素が溶解していく。しかしながら、脱気膜
モジュ−ル5の膜面積が上記の各部位に比べ著しく広
く、膜間差圧が1気圧に比べて充分に大であるから、脱
気膜モジュ−ルによる上記の酸素脱気量を上記各部位か
らの酸素溶解量に比べて充分に大きくでき、冷却水中の
溶存酸素量を著しく小さくできる。
Thus, in the degassing membrane module 5,
While the cooling water is flowing in contact with the membrane, the oxygen in the cooling water is separated into the gas permeation side of the membrane module 5 by the oxygen permeation rate of the membrane, the oxygen permeation amount determined by the membrane area and the transmembrane pressure difference. Go. On the other hand, oxygen is dissolved in the cooling water from the ground seal of the circulation pump, the valve rod introduction portion of the valve, the air chamber of the expansion tank, or the like. However, since the membrane area of the degassing membrane module 5 is remarkably wider than each of the above-mentioned portions and the transmembrane pressure difference is sufficiently larger than 1 atm, the above oxygen desorption by the degassing membrane module 5 is performed. The amount of oxygen can be made sufficiently large as compared with the amount of oxygen dissolved from the above respective parts, and the amount of dissolved oxygen in the cooling water can be made extremely small.

【0015】上記において、冷却水の循環量に対する脱
気膜モジュ−ルの冷却水流通量の割合は、膜面積を大き
くするほど小さくできるが、通常、1/50〜1/15
0とされる。
In the above, the ratio of the flow rate of the cooling water in the degassing membrane module to the circulation rate of the cooling water can be reduced as the membrane area is increased, but it is usually 1/50 to 1/15.
It is set to 0.

【0016】上記ュ−スポイント側の冷却水循環系にお
いても、循環ポンプ8のグランドシ−ル、バルブ(図示
せず)の弁棒導入箇所、或いは、膨張タンク12の空気
室等の各部位からの冷却水への酸素溶解量に比べ、脱気
膜モジュ−ル13による酸素脱ガス量が著しく大にな
り、循環冷却水中の溶存酸素量を充分に低減できる。
Also in the cooling water circulation system on the above-mentioned point of use, from the ground seal of the circulation pump 8, the valve rod introduction point of the valve (not shown), the air chamber of the expansion tank 12, and the like. As compared with the amount of dissolved oxygen in the cooling water, the amount of oxygen degassing by the degassing membrane module 13 becomes remarkably large, and the amount of dissolved oxygen in the circulating cooling water can be sufficiently reduced.

【0017】上記脱気膜モジュ−ルによる溶存酸素の透
過除去の際、ガス透過側の減圧のために非透過側の膜面
に接触する水が蒸発しつつ膜を透過し、ガス透過側に微
量ながら水蒸気が出現するから、ガス透過側の減圧にダ
イヤフラム型真空ポンプを使用する場合、ダイヤフラム
チャンバ−内に凝縮水が溜って減圧能力の低下が懸念さ
れる。
When the dissolved oxygen is permeated and removed by the degassing membrane module, the water contacting the membrane surface on the non-permeate side evaporates and permeates the membrane due to the depressurization on the gas permeate side, and the permeate on the gas permeate side. Since a small amount of water vapor appears, when a diaphragm-type vacuum pump is used to reduce the pressure on the gas permeation side, condensed water may accumulate in the diaphragm chamber and the depressurization capability may be deteriorated.

【0018】かかる不具合を排除するためには、図2に
示すように、ダイヤフラム型真空ポンプ15のダイヤフ
ラムチャンバ−の入口側に電磁弁16を設け、所定時間
ごとに極短時間、電磁弁16を開口し、チャンバ−の凝
縮水を放出することが有効であり、高価な水封式真空ポ
ンプやオイル式真空ポンプを使用しなくても済む。
In order to eliminate such inconvenience, as shown in FIG. 2, an electromagnetic valve 16 is provided on the inlet side of the diaphragm chamber of the diaphragm type vacuum pump 15, and the electromagnetic valve 16 is operated for a very short time every predetermined time. It is effective to open and discharge the condensed water in the chamber, and it is not necessary to use an expensive water ring vacuum pump or oil vacuum pump.

【0019】本発明によれば、冷却水循環系において、
循環水量に対して1/100程度の冷却水量を脱気膜モ
ジュ−ルに分流させるだけで冷却水中の溶存酸素量を著
しく小さくでき、このことは次ぎの実施例からも確認で
きる。
According to the present invention, in the cooling water circulation system,
The dissolved oxygen amount in the cooling water can be remarkably reduced only by dividing the amount of the cooling water into the degassing membrane module by about 1/100 with respect to the circulating water amount. This can be confirmed from the following examples.

【0020】実施例 図1において、密閉型冷却塔1には冷却能力:200冷却
トン、保有水量:8m3のものを使用し、脱気膜モジュ-
ル5及び13には、酸素ガス透過量:1.1Nm3/m2
・h・atmの複合膜を使用した4インチスパイラル膜モ
ジュ−ル(膜面積:10m2)を使用し、ユ−スポイン
ト10の保有水量は10m3とした。
EXAMPLE In FIG. 1, a closed type cooling tower 1 having a cooling capacity of 200 cooling tons and an amount of retained water of 8 m 3 is used.
Oxygen gas permeation amount: 1.1 Nm 3 / m 2 in the 5 and 13
A 4-inch spiral membrane module (membrane area: 10 m 2 ) using a composite membrane of h · atm was used, and the amount of water held at the use point 10 was 10 m 3 .

【0021】運転条件は、ガス透過側の減圧度を30T
orrとし、密閉型冷却塔1側の循環水量を150m3
/hr、密閉型冷却塔1の入口冷却水温度:37℃、出
口冷却水温度:32℃、脱気膜モジュ-ル5の冷却水流
量:1m3/hr、供給圧力:5kg/cm2とし、ユ−
スポイント10側の循環冷却水量:120m3/hr、
冷却水温度:15℃、脱気膜モジュ-ル13の冷却水流
量:1m3/hr、供給圧力:5kg/cm2とした。
The operating condition is that the degree of pressure reduction on the gas permeation side is 30T.
orr, and the circulating water amount on the closed cooling tower 1 side is 150 m 3
/ Hr, inlet cooling water temperature of closed cooling tower 1: 37 ° C., outlet cooling water temperature: 32 ° C., cooling water flow rate of degassing membrane module 5: 1 m 3 / hr, supply pressure: 5 kg / cm 2. , You
Circulating cooling water amount on the point 10 side: 120 m 3 / hr,
The cooling water temperature was 15 ° C., the cooling water flow rate of the degassing membrane module 13 was 1 m 3 / hr, and the supply pressure was 5 kg / cm 2 .

【0022】図3の(イ)は運転後の密閉型冷却塔1側
循環冷却水の溶存酸素量を、図3の(ロ)は、ユ−スポ
イント10側循環冷却水の溶存酸素量をそれぞれ示し、
溶存酸素量を著しく低減できた。
FIG. 3A shows the dissolved oxygen amount of the circulating cooling water on the closed cooling tower 1 side after the operation, and FIG. 3B shows the dissolved oxygen amount of the circulating cooling water on the use point 10 side. Show each,
The amount of dissolved oxygen could be significantly reduced.

【0023】なお、モジュ−ルのガス透過側の減圧に
は、ダイヤフラム型真空ポンプを使用し、57min/
hrの真空運転、3min/hrの水排出運転で運転し
た。モジュ−ルのガス透過側への水蒸気量は凝縮水量で
30cc/hrであったが、上記の減圧度:30Tor
rを良好に維持できた。
A diaphragm-type vacuum pump was used to reduce the pressure on the gas permeation side of the module at 57 min / min.
It was operated in a vacuum operation of hr and a water discharge operation of 3 min / hr. The amount of water vapor on the gas permeation side of the module was 30 cc / hr as the amount of condensed water, but the degree of pressure reduction was 30 Tor.
r was able to be maintained well.

【0024】[0024]

【発明の効果】本発明の循環冷却水の脱気方法によれ
ば、上述した通り、密閉型の冷却水循環系において循環
水量の1/100程度の水量を分流し、その分流した冷
却水を脱気膜モジュ−ルに流通するだけで冷却水中の溶
存酸素量を僅小にでき、かかる少量の分流は循環ポンプ
の実質上の負荷増大を来さず、既設の循環ポンプで処置
できるから、簡単な回路構成で循環冷却水中の溶存酸素
量をよく低減できる。
As described above, according to the method for deaerating the circulating cooling water of the present invention, a water amount of about 1/100 of the circulating water amount is diverted in the closed cooling water circulation system, and the chilled cooling water is deaerated. The amount of dissolved oxygen in the cooling water can be made small by simply passing it through the air membrane module, and such a small amount of diversion does not substantially increase the load on the circulation pump and can be treated with the existing circulation pump. With this circuit configuration, the amount of dissolved oxygen in the circulating cooling water can be reduced well.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において使用する冷却水の循環系の一例
を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a circulation system of cooling water used in the present invention.

【図2】本発明において使用する脱気膜モジュ−ルのガ
ス透過側の減圧に使用する真空ポンプの一例を示す説明
図である。
FIG. 2 is an explanatory view showing an example of a vacuum pump used for reducing the pressure on the gas permeation side of the degassing membrane module used in the present invention.

【図3】本発明による循環冷却水の溶存酸素量の減少状
態を示す図表である。
FIG. 3 is a chart showing a state in which a dissolved oxygen amount of circulating cooling water according to the present invention is reduced.

【符号の説明】[Explanation of symbols]

5 脱気膜モジュ−ル 6 バイパス路 13 脱気膜モジュ−ル 14 バイパス路 5 Degassing membrane module 6 Bypass passage 13 Degassing membrane module 14 Bypass passage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷却水を循環ポンプにより循環させる方法
において、循環路にバイパス路を設け、このバイパス路
に脱気膜モジュ−ルを設け、上記循環ポンプにより該モ
ジュ−ルに冷却水を流通させることを特徴とする循環冷
却水の脱気方法。
1. A method for circulating cooling water by a circulation pump, wherein a bypass is provided in the circulation path, a degassing membrane module is provided in the bypass, and the cooling water is circulated through the module by the circulation pump. A degassing method for circulating cooling water, characterized by:
【請求項2】脱気膜モジュ−ルのガス透過側の減圧を、
水抜弁を設けたダイヤフラム型真空ポンプにより行う請
求項1記載の循環冷却水の脱気方法。
2. The depressurization on the gas permeation side of the degassing membrane module,
The degassing method for circulating cooling water according to claim 1, which is performed by a diaphragm type vacuum pump provided with a drain valve.
JP3112596A 1991-04-17 1991-04-17 Circulating cooling water degassing method Expired - Lifetime JPH0738982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3112596A JPH0738982B2 (en) 1991-04-17 1991-04-17 Circulating cooling water degassing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3112596A JPH0738982B2 (en) 1991-04-17 1991-04-17 Circulating cooling water degassing method

Publications (2)

Publication Number Publication Date
JPH0655162A JPH0655162A (en) 1994-03-01
JPH0738982B2 true JPH0738982B2 (en) 1995-05-01

Family

ID=14590699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3112596A Expired - Lifetime JPH0738982B2 (en) 1991-04-17 1991-04-17 Circulating cooling water degassing method

Country Status (1)

Country Link
JP (1) JPH0738982B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038853A1 (en) * 2003-10-17 2005-04-28 Kabushiki Kaisha Toshiba X-ray apparatus
JP2009204445A (en) * 2008-02-28 2009-09-10 Hitachi High-Technologies Corp Automatic analysis apparatus
JP7188064B2 (en) * 2018-12-26 2022-12-13 株式会社デンソー heat management system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011328A (en) * 1973-05-30 1975-02-05
JPH0225096B2 (en) * 1980-03-03 1990-05-31 Tokyo Shibaura Electric Co
JPH02303587A (en) * 1989-05-16 1990-12-17 Dainippon Ink & Chem Inc Device and method for cleaning water
JPH0332792A (en) * 1989-06-29 1991-02-13 Miura Co Ltd Method for controlling vacuum pump of deoxidation system
JPH0347520A (en) * 1989-03-02 1991-02-28 Takeshi Nitami Liquid-gas separator
JPH0319595B2 (en) * 1982-02-08 1991-03-15 Omuron Kk
JPH0386217A (en) * 1989-08-30 1991-04-11 Dainippon Ink & Chem Inc Water purifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454606U (en) * 1987-09-30 1989-04-04
JPH0632239Y2 (en) * 1988-08-03 1994-08-24 東レ株式会社 Small boiler with separation membrane treatment device
JP3019595U (en) * 1995-06-14 1995-12-19 添記貿易行股▲ぶん▼有限公司 Heat insulating laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011328A (en) * 1973-05-30 1975-02-05
JPH0225096B2 (en) * 1980-03-03 1990-05-31 Tokyo Shibaura Electric Co
JPH0319595B2 (en) * 1982-02-08 1991-03-15 Omuron Kk
JPH0347520A (en) * 1989-03-02 1991-02-28 Takeshi Nitami Liquid-gas separator
JPH02303587A (en) * 1989-05-16 1990-12-17 Dainippon Ink & Chem Inc Device and method for cleaning water
JPH0332792A (en) * 1989-06-29 1991-02-13 Miura Co Ltd Method for controlling vacuum pump of deoxidation system
JPH0386217A (en) * 1989-08-30 1991-04-11 Dainippon Ink & Chem Inc Water purifier

Also Published As

Publication number Publication date
JPH0655162A (en) 1994-03-01

Similar Documents

Publication Publication Date Title
JP6440156B2 (en) Organic solvent purification system and method
JP6636111B2 (en) Organic solvent purification system and method
JP6415159B2 (en) Organic solvent purification system and method
JPH06327905A (en) Degassing membrane module and its operation
WO2021054368A1 (en) Purification system, purification method, membrane separation device, and method for producing solvent
JP2000051606A (en) Gas permeation membrane apparatus
JPH05317605A (en) Membrane vacuum deaerating method and device therefor
JPS5946644B2 (en) Membrane separation method
JPH0738982B2 (en) Circulating cooling water degassing method
JP2007000789A (en) Method for concentrating waste water and its apparatus
JP2832372B2 (en) Exhaust gas treatment method for organic solvent storage container
JPH0768103A (en) Membrane deaerating method
JPH04180811A (en) Treatment of exhaust gas containing organic vapor
JP2781931B2 (en) Deoxidizer
JP2003126854A (en) Manufacturing device for primary water purification
JPH04156903A (en) Degasification membrane device
JPH10296005A (en) Method for ultradeaeration of liquid and deaeration apparatus thereof
JP2898080B2 (en) Operation method of degassing membrane device
JPH08229365A (en) Dehydrating method of water-containing organic solvent
JPH06121902A (en) Deaerating device and deaerating method
JP4919155B2 (en) Water treatment system
JP2857875B2 (en) Cleaning method for gas separation membrane module
JPH0824585A (en) Method for concentrating aqueous solution
JP3198171B2 (en) Degassing device
JPH05293328A (en) Treatment of air containing combustible organic vapor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110501

Year of fee payment: 16

EXPY Cancellation because of completion of term