JP2857875B2 - Cleaning method for gas separation membrane module - Google Patents

Cleaning method for gas separation membrane module

Info

Publication number
JP2857875B2
JP2857875B2 JP32383090A JP32383090A JP2857875B2 JP 2857875 B2 JP2857875 B2 JP 2857875B2 JP 32383090 A JP32383090 A JP 32383090A JP 32383090 A JP32383090 A JP 32383090A JP 2857875 B2 JP2857875 B2 JP 2857875B2
Authority
JP
Japan
Prior art keywords
gas
separation membrane
membrane module
gas separation
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32383090A
Other languages
Japanese (ja)
Other versions
JPH04190821A (en
Inventor
賢一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP32383090A priority Critical patent/JP2857875B2/en
Publication of JPH04190821A publication Critical patent/JPH04190821A/en
Application granted granted Critical
Publication of JP2857875B2 publication Critical patent/JP2857875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガス分離膜モジュールの洗浄方法に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for cleaning a gas separation membrane module.

(従来の技術) 近来、ガス分離膜の用途はますます拡大されつつあ
り、酸素や窒素富化膜、水素,ヘリウム,炭酸ガス等の
低沸点ガスから水蒸気や有機蒸気に至る高沸点ガスの分
離精製膜,あるいは浸透気化膜,更には、脱気膜等が開
発されている。
(Prior art) In recent years, the use of gas separation membranes is expanding more and more. Separation of high-boiling gases from low-boiling gases such as oxygen and nitrogen-enriched membranes, hydrogen, helium, and carbon dioxide to water vapor and organic vapors. Purification membranes, pervaporation membranes, and deaeration membranes have been developed.

かかる用途のガス分離膜においては、固体状異物汚染
のほかに、非処理ガス中に蒸気状態で拡散している不純
物がガス分離膜表面或いは内部に付着或いは吸着するこ
とによっても膜汚染を受け、これらの膜汚染による透過
流速の低下が避けられない。従って、液系の分離膜と同
様、膜洗浄を行って透過流速を回復させることが必要で
ある。
In gas separation membranes for such applications, in addition to solid foreign matter contamination, membrane diffusion is also caused by impurities that are diffused in a vapor state in the non-process gas adhere or adsorb to the surface or inside the gas separation membrane, A reduction in the permeation flow rate due to these membrane contaminations is inevitable. Therefore, it is necessary to restore the permeation flow rate by performing membrane washing similarly to the liquid type separation membrane.

従来、液系分離膜モジュールの洗浄方法には、種々の
方法が提案されており、その一方法として溶剤を膜モジ
ュール内に流通して汚染物を溶解除去することが知られ
ている。
Conventionally, various methods have been proposed for cleaning a liquid separation membrane module, and as one of the methods, it is known to dissolve and remove contaminants by flowing a solvent through the membrane module.

(解決しようとする課題) ガス分離膜モジールにおいては、通常膜間差圧をモジ
ュールの透過側の真空ポンプにより作用させて、所定の
ステージカット(ガス供給量とガス透過量との比)のも
とで運転している。
(Problem to be Solved) In a gas separation membrane module, a predetermined stage cut (the ratio between the gas supply amount and the gas permeation amount) is usually performed by applying a transmembrane pressure by a vacuum pump on the permeation side of the module. I'm driving with

而るに、ガス分離膜モジュールの洗浄に上記の溶剤を
流通させる方法を使用すると、洗浄後のガス分離膜モジ
ュールの再運転時、膜面に残存している溶剤が上記透過
側の減圧下、蒸気化されつつ膜内を拡散して透過側に現
れ、透過ガスの純度低下が惹起される。例えば、シリコ
ーンゴム系ポリイミド複合膜においては、n−ヘキサン
蒸気をよく透過し、n−ヘキサンを上記の洗浄用に使用
すれば、透過ガスへのn−ヘキサン蒸気の混入が避けら
れない。
Therefore, when the above-described method of flowing the solvent is used for cleaning the gas separation membrane module, when the gas separation membrane module is restarted after the cleaning, the solvent remaining on the membrane surface is reduced under reduced pressure on the permeation side. While being vaporized, it diffuses through the membrane and appears on the permeation side, causing a decrease in the purity of the permeated gas. For example, in the case of a silicone rubber-based polyimide composite membrane, n-hexane vapor is well permeated, and if n-hexane is used for the above-mentioned cleaning, mixing of n-hexane vapor into the permeated gas cannot be avoided.

本発明の目的は、ガス分離膜モジュールの運転中に、
透過流速の低下したガス分離膜モジュールを、有機溶剤
によって洗浄しても、上記した透過ガスの純度低下をよ
く防止し得るガス分離膜モジュールの運転方法を提供す
ることにある。
An object of the present invention is to provide a gas separation membrane module,
It is an object of the present invention to provide a method of operating a gas separation membrane module that can well prevent the above-described decrease in the purity of a permeated gas even if the gas separation membrane module having a reduced permeation flow rate is washed with an organic solvent.

(課題を解決するための手段) 本発明のガス分離膜モジュールの洗浄方法は透過流速
の低下したガス分離膜モジュール内に揮発性有機溶剤を
流通させたのち、乾燥ガスを送通して残留有機溶剤を揮
発させて除去することを特徴とする構成である。
(Means for Solving the Problems) According to the method for cleaning a gas separation membrane module of the present invention, after a volatile organic solvent is allowed to flow through a gas separation membrane module having a reduced permeation flow rate, a dry gas is sent to pass a residual organic solvent. Is volatilized and removed.

(実施例の説明) 以下、本発明の実施例を図面により説明する。(Explanation of Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明において使用する。洗浄装置を組み込
んだガス分離膜装置の一例を示す説明図である。
FIG. 1 is used in the present invention. It is an explanatory view showing an example of a gas separation membrane device incorporating a cleaning device.

第1図において、1はガス分離膜モジュールであり、
スパィラル型、中空糸型,チューブラー型,プレート型
等を使用できる。2は被処理ガス源、3は被処理ガスを
ガス分離膜モジュール1に送入するブロワである。4は
ブロワ3と被処理ガス源2との間に設けた開閉弁であ
る。5はガス分離膜モジュール1の透過側を減圧するた
めの真空ポンプである。6はガス分離膜モジュール1の
非透過ガス排出管、7は開閉弁である。
In FIG. 1, 1 is a gas separation membrane module,
Spiral type, hollow fiber type, tubular type, plate type, etc. can be used. Reference numeral 2 denotes a gas source to be processed, and 3 denotes a blower for feeding the gas to be processed into the gas separation membrane module 1. Reference numeral 4 denotes an on-off valve provided between the blower 3 and the gas source 2 to be processed. Reference numeral 5 denotes a vacuum pump for reducing the pressure on the permeation side of the gas separation membrane module 1. 6 is a non-permeate gas discharge pipe of the gas separation membrane module 1, and 7 is an on-off valve.

第1図において、8は有機溶剤循環回路であり、有機
溶剤タンク81並びに有機溶剤循環ポンプ82を備え、有機
溶剤タンク81の入口側には開閉弁83を、有機溶剤循環ポ
ンプ82の吐出側には開閉弁84をそれぞれ挿入してある。
9は乾燥ガス送入管であり、開閉弁10を介して被処理ガ
ス供給ラインにブロワ3と開閉弁4との間において連通
してある。
In FIG. 1, reference numeral 8 denotes an organic solvent circulation circuit, which is provided with an organic solvent tank 81 and an organic solvent circulation pump 82, and has an opening / closing valve 83 on the inlet side of the organic solvent tank 81 and a discharge side on the discharge side of the organic solvent circulation pump 82. Have on-off valves 84 inserted respectively.
Reference numeral 9 denotes a drying gas supply pipe, which communicates with the gas supply line to be processed via the on-off valve 10 between the blower 3 and the on-off valve 4.

上記において、被処理ガスを処理するには、開閉弁4
並びに7を開とし、開閉弁10,83並びに84を閉とし、真
空ポンプ5によってガス分離膜モジュール1の透過膜を
減圧し、ブロワ3によって被処理ガス源2からガス分離
膜モジュール1に被処理ガスを送入し、この減圧による
膜間差圧と所定のステージカットのもとで膜の選択性に
基づき被処理ガスを処理していく。例えば、被処理ガス
がn−ブタンガス混合空気の場合、ガス分離膜モジュー
ル1の膜にシリコーンゴム系ポリイミド複合膜を使用
し、透過側にn−ブタン濃縮ガスを取り出し、非透過ガ
ス排出間6からn−ブタン希釈空気を排出していく。
In the above, in order to treat the gas to be treated, the on-off valve 4
And 7 are opened, the on-off valves 10, 83 and 84 are closed, the pressure of the permeable membrane of the gas separation membrane module 1 is reduced by the vacuum pump 5, and the gas separation membrane module 1 is processed by the blower 3 from the gas source 2 to be processed. The gas is fed in, and the gas to be treated is processed based on the selectivity of the film under the pressure difference between the films due to the reduced pressure and a predetermined stage cut. For example, when the gas to be treated is n-butane gas mixed air, a silicone rubber-based polyimide composite membrane is used for the membrane of the gas separation membrane module 1, and the n-butane enriched gas is taken out on the permeation side, and the non-permeated gas discharge space 6 The n-butane dilution air is discharged.

本発明により、ガス分離膜モジュールの運転中に、そ
のモジュールを洗浄するには、開閉弁4,7並びに10を閉
とし、開閉弁83,84を開にして、溶剤循環ポンプ82の駆
動により、溶剤タンク81内の有機溶剤をガス分離膜モジ
ュール1の非透過側を経て循環させ、膜面に付着してい
る汚染物質をこの有機溶剤で溶解除去する。次いで、溶
剤循環ポンプ82を停止し、開閉弁83,84を閉とし、開閉
弁4は閉のままとし、開閉弁10を開とし、ブロワ3の操
作により乾燥ガス送入管9から乾燥ガスをガス分離膜モ
ジュール1の非透過側に送通し、非透過ガス排出管6よ
り流出させ、ガス分離膜モジュール1内に残存している
有機溶剤を揮発させて除去し、これにて、ガス分離膜モ
ジュール1の洗浄を終了し、該ガス分離膜モジュール1
の再運転を行う。
According to the present invention, during the operation of the gas separation membrane module, in order to wash the module, by closing the on-off valves 4, 7, and 10 and opening the on-off valves 83, 84, by driving the solvent circulation pump 82, The organic solvent in the solvent tank 81 is circulated through the non-permeate side of the gas separation membrane module 1, and contaminants adhering to the membrane surface are dissolved and removed with the organic solvent. Next, the solvent circulation pump 82 is stopped, the on-off valves 83 and 84 are closed, the on-off valve 4 is kept closed, the on-off valve 10 is opened, and the drying gas is supplied from the drying gas inlet pipe 9 by operating the blower 3. The organic solvent remaining in the gas separation membrane module 1 is volatilized and removed by passing the gas through the non-permeate side of the gas separation membrane module 1 and flowing out from the non-permeate gas discharge pipe 6. After completing the cleaning of the module 1, the gas separation membrane module 1
Perform the operation again.

上記の有機溶剤については、ガス分離膜モジュール、
溶剤循環ポンプ並びに溶剤循環配管等における耐溶剤
性、揮発迅速性を勘案して選定し、例えば、低級の直鎖
炭化水素系のヘキサン、ケトン系のアセトン等を使用で
きる。
For the above organic solvent, a gas separation membrane module,
It is selected in consideration of the solvent resistance and the rapidity of volatilization in a solvent circulation pump and a solvent circulation pipe, and for example, lower-grade straight chain hydrocarbon hexane, ketone acetone, or the like can be used.

又、上記有機溶剤の循環に代え有機溶剤をガス分離膜
モジュールの非透過側に浸漬放置することもできる。
Further, instead of the circulation of the organic solvent, the organic solvent can be immersed and left on the non-permeate side of the gas separation membrane module.

次ぎに本発明の実施例について説明する。 Next, embodiments of the present invention will be described.

被処理ガスには、高沸点不純物を含有する濃度20vol
%のn−ブタンガス混合空気を使用し、ガス分離膜モジ
ュールには、有効膜面積約14m2のシリコンゴム系ポリイ
ミド複合膜を使用したスパィラル型モジュールを用い
た。被処理ガスの供給流量を250nl/minとし、処理温度2
4℃,真空圧力100toor,初期ステージカット0.6で運転し
た。
The gas to be treated has a concentration of 20vol containing high boiling impurities.
% Of n-butane gas mixed air, and a spiral type module using a silicon rubber-based polyimide composite membrane having an effective membrane area of about 14 m 2 was used as the gas separation membrane module. The supply flow rate of the gas to be treated is 250 nl / min, and the processing temperature is 2
Operation was performed at 4 ° C, vacuum pressure of 100 toor, and initial stage cut of 0.6.

膜の各純ガスに対する初期FLUX(Nm3/m2/hr/atm)
は、窒素ガスに対し0.15,酸素ガスに対し0.31,n−ガス
ブタンに対し28であったが、運転2日後には、窒素ガス
に対し0.02,酸素ガスに対し0.04,n−ガスブタンに対し
8と低下した。そこで、有機溶剤としてn−ヘキサンを
使用し、この溶剤を溶剤循環流量10L/min,温度30℃で15
分間循環し、次いで、乾燥空気を,送風量50NL/min,温
度20℃〜25℃デ30分間,通風して洗浄を行った。この洗
浄により、膜のFLUX(Nm3/m2/hr/atm)は、窒素ガスに
対し0.18,酸素ガスに対し0.36,n−ガスブタンに対し30
にそれぞれ回復した。
Initial FLUX for each pure gas in the membrane (Nm 3 / m 2 / hr / atm)
Was 0.15 for nitrogen gas and 0.31 for oxygen gas and 28 for n-gas butane, but after 2 days of operation, 0.02 for nitrogen gas, 0.04 for oxygen gas and 8 for n-gas butane. Dropped. Therefore, n-hexane was used as an organic solvent, and the solvent was circulated at a solvent circulation flow rate of 10 L / min at a temperature of 30 ° C.
Circulation was performed for 30 minutes, and then dry air was blown at a flow rate of 50 NL / min at a temperature of 20 ° C. to 25 ° C. for 30 minutes to perform cleaning. By this cleaning, the FLUX (Nm 3 / m 2 / hr / atm) of the film is 0.18 for nitrogen gas, 0.36 for oxygen gas, and 30 for n-gas butane.
Respectively recovered.

本発明によるガス分離膜モジュールの洗浄を、ガス分
離膜モジュールの運転を実質上継続したままで行うため
に、第2図に示すように、ガス分離膜モジュールを2ラ
イン並設し、この並設ラインに有機溶剤循環回路並びに
乾燥ガス送入管を組み込むことが望ましい。第2図にお
いて、サフィックスaを付した図番、サフィックスbを
付した図番はそれぞれ同一系統の構成部材を示し、1a,1
bはガス分離膜モジュールを、3a,3bはブロワを、4a,4b,
7a,7b、83a,83b、84a,84b、10a,10b、11a,11bはそれぞ
れ開閉弁を示している。更に、第2図において、2は被
処理ガス源を、5は真空ポンプを、6は非透過ガス排出
管を、8は溶剤循環回路を、81は溶剤タンクを、82は溶
剤循環ポンプを、9は乾燥ガス送入管をそれぞれ示し、
これらの構成部材の両系統に共通である。
In order to perform the cleaning of the gas separation membrane module according to the present invention while keeping the operation of the gas separation membrane module substantially continued, as shown in FIG. It is desirable to incorporate an organic solvent circulation circuit and a drying gas inlet pipe into the line. In FIG. 2, the figure numbers with a suffix a and the figure numbers with a suffix b show the same members of the same system, respectively.
b is a gas separation membrane module, 3a and 3b are blowers, 4a, 4b,
7a, 7b, 83a, 83b, 84a, 84b, 10a, 10b, 11a, 11b indicate on-off valves, respectively. Further, in FIG. 2, reference numeral 2 denotes a gas source to be processed, 5 denotes a vacuum pump, 6 denotes a non-permeate gas discharge pipe, 8 denotes a solvent circulation circuit, 81 denotes a solvent tank, and 82 denotes a solvent circulation pump. Reference numeral 9 denotes a dry gas inlet pipe, respectively.
These components are common to both systems.

この並設ラインにおいて、本発明によりガス分離膜モ
ジュールを洗浄するには、真空ポンプを連続運転にし、
被処理ガス源2からのガス供給を連続供給とし、一方の
系統のガス分離膜モジュールの洗浄時には、開閉弁4aと
11a(4bと11b)を閉とし、この状態で一方の系統のガス
分離膜モジュールを、上記した溶剤循環、乾燥ガスの流
通により洗浄し、この間、他方の系統は運転を継続した
ままとする。
In this juxtaposition line, in order to wash the gas separation membrane module according to the present invention, the vacuum pump is operated continuously,
The gas supply from the processing target gas source 2 is a continuous supply, and when the gas separation membrane module of one system is washed, the on-off valve 4a
11a (4b and 11b) is closed, and in this state, the gas separation membrane module of one system is washed by the circulation of the solvent and the flow of the dry gas described above, while the other system is kept operating.

この並設ライン方式において、ガス分離膜モジュール
の運転条件、有機溶剤の循環条件並びに乾燥ガスによる
乾燥条件を上記した実施例と同じにし、両ラインについ
て、6時間運転,45分間洗浄を時間をづらせておこな
い、常に、少なくとも、一方のラインは運転状態にして
連続運転を行ったところ、非透過側(n−ベタンガス希
釈側)のガス流量を95〜110NL/min、n−ブタンガス濃
度を2.9VOL%以下にできた。
In this side-by-side line system, the operating conditions of the gas separation membrane module, the circulating conditions of the organic solvent, and the drying conditions with the drying gas were the same as those in the above-described embodiment, and both lines were operated for 6 hours and the cleaning time was reduced for 45 minutes. When the continuous operation was performed with at least one of the lines in the operating state, the gas flow rate on the non-permeate side (n-butane gas dilution side) was 95 to 110 NL / min, and the n-butane gas concentration was 2.9 VOL. %.

(発明の効果) 本発明のガス分離膜モジュールの洗浄方法は上述した
通り、有機溶剤で汚染物質を溶解したのち、残存溶剤を
乾燥ガスにより揮発させて除去しているから、ガス分離
膜モジュールの運転再開時、有機溶剤が蒸発して膜を拡
散するのを除去でき、透過ガスの純度をよく保証でき
る。
(Effect of the Invention) As described above, the method for cleaning a gas separation membrane module of the present invention dissolves a contaminant with an organic solvent and then volatilizes and removes the remaining solvent with a dry gas. When the operation is resumed, the organic solvent can be prevented from evaporating and diffusing from the membrane, and the purity of the permeated gas can be well guaranteed.

【図面の簡単な説明】[Brief description of the drawings]

第1図並びに第2図は本発明において使用する異なるガ
ス分離膜装置を示す説明図である。 1,1a,1b……ガス分離膜モジュール、8……有機溶剤循
環回路、9……乾燥ガス送入管。
1 and 2 are explanatory views showing different gas separation membrane devices used in the present invention. 1, 1a, 1b: gas separation membrane module, 8: organic solvent circulation circuit, 9: dry gas feed pipe.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透過流速の低下したガス分離膜モジュール
内に揮発性有機溶剤を流通させたのち、乾燥ガスを送通
して残留有機溶剤を揮発させて除去することを特徴とす
るガス分離膜モジュールの洗浄方法。
1. A gas separation membrane module, comprising: flowing a volatile organic solvent through a gas separation membrane module having a reduced permeation flow rate, and then sending a dry gas to volatilize and remove the residual organic solvent. Cleaning method.
JP32383090A 1990-11-26 1990-11-26 Cleaning method for gas separation membrane module Expired - Lifetime JP2857875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32383090A JP2857875B2 (en) 1990-11-26 1990-11-26 Cleaning method for gas separation membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32383090A JP2857875B2 (en) 1990-11-26 1990-11-26 Cleaning method for gas separation membrane module

Publications (2)

Publication Number Publication Date
JPH04190821A JPH04190821A (en) 1992-07-09
JP2857875B2 true JP2857875B2 (en) 1999-02-17

Family

ID=18159072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32383090A Expired - Lifetime JP2857875B2 (en) 1990-11-26 1990-11-26 Cleaning method for gas separation membrane module

Country Status (1)

Country Link
JP (1) JP2857875B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5779369B2 (en) * 2011-03-11 2015-09-16 日立造船株式会社 Membrane cleaning and regeneration method in zeolite membrane dehydration equipment
JP2015051423A (en) * 2013-08-05 2015-03-19 三菱レイヨン株式会社 Cleaning method of polyolefin film

Also Published As

Publication number Publication date
JPH04190821A (en) 1992-07-09

Similar Documents

Publication Publication Date Title
JPH05192658A (en) System for purifying water by reverse osmosis and degassing the same
JP2000327309A (en) Purification of ozone
EP1036759A1 (en) Ozone purification
JPH07185254A (en) Method of starting and stopping membrane system and membrane system capable of using said method
JP2857875B2 (en) Cleaning method for gas separation membrane module
JPH022820A (en) Separation of mixed solution
WO2003070643A1 (en) Water treatment system
JPH04180811A (en) Treatment of exhaust gas containing organic vapor
JPH05192543A (en) Method and apparatus for regenerating membrane evaporative concentrator of waste fluid
JP4826864B2 (en) Ultrapure water production equipment
EP1180497A1 (en) Ionic purifier
JP3771684B2 (en) Ultrapure water production method
JPH1099855A (en) Ultrapure water supply plant equipped with ultrafiltration function and supply of ultrapure water
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JPS63305917A (en) Production of ultrapure water and equipment thereof and method for using ultrapure water
JPH05137903A (en) Method and device for treating waste water
JPH07155744A (en) Production of ultrapure water
JPH10156104A (en) Membrane deaerator
JPH0655162A (en) Method for degassing circulating cooling water
JPH05293328A (en) Treatment of air containing combustible organic vapor
JP3642552B2 (en) Gas dissolved water production equipment
JP2023179226A (en) Water droplet in gas removal device and organic matter-containing water treatment device
JP2938194B2 (en) Organic component vapor mixed gas treatment method
JP2649472B2 (en) Dissolved oxygen reduction device
JPH04290518A (en) Gas separating method