JPH0737742A - Manufacture of rare earth permanent magnet alloy - Google Patents

Manufacture of rare earth permanent magnet alloy

Info

Publication number
JPH0737742A
JPH0737742A JP17956393A JP17956393A JPH0737742A JP H0737742 A JPH0737742 A JP H0737742A JP 17956393 A JP17956393 A JP 17956393A JP 17956393 A JP17956393 A JP 17956393A JP H0737742 A JPH0737742 A JP H0737742A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
magnet alloy
heat treatment
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17956393A
Other languages
Japanese (ja)
Inventor
Kazumitsu Endo
和光 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP17956393A priority Critical patent/JPH0737742A/en
Publication of JPH0737742A publication Critical patent/JPH0737742A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a manufacturing method of rare earth permanent magnet alloy which can obtain high Br and (BH)max by powder metallurgy. CONSTITUTION:By repeating heat treatment and surface grinding after heat treatment for R-T-B system permanent magnet alloy (where R is rare earth element (Y is contained) whose main component is Nd, and T is transition metal or the one wherein a part of the transition metal is substituted by at least one out of Al and Si), the residual magnetic flux density Br and the maximum energy product (BH)max can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,正方晶Nd2 Fe14
を主相とするNd−Fe−B磁石に代表される,正方晶
2 14B(RはNdを主成分とする希土類元素(Yを
包含する),TはFe,Co,Niなどの遷移金属又は
その一部をAl,Siで置換したもの)を主相とする希
土類永久磁石合金の製造方法に関する。
The present invention relates to tetragonal Nd 2 Fe 14 B
Tetragonal R 2 T 14 B (R is a rare earth element (including Y) containing Nd as a main component), represented by an Nd-Fe-B magnet whose main phase is, T is Fe, Co, Ni, or the like. The present invention relates to a method for producing a rare earth permanent magnet alloy whose main phase is a transition metal or a part of which is replaced with Al or Si.

【0002】[0002]

【従来の技術】従来,粉末冶金法により作製するR−T
−B系永久磁石(RはNdを主成分とする希土類元素
(Yを包含する),TはFe,Co,Niなどの遷移金
属又はその一部をAl,Siで置換したもの)は,母合
金作製,粗粉砕,微粉砕,磁場中成形,焼結,熱処理の
順に作製される。そして,これらの工程の後に焼結体表
面を研削し,更に焼結体の耐食性向上のためにメッキ等
の加工を施している。
2. Description of the Related Art Conventionally, RT manufactured by powder metallurgy method
-A B-based permanent magnet (R is a rare earth element containing Nd as a main component (including Y), T is a transition metal such as Fe, Co, or Ni, or a part of which is replaced with Al, Si) Alloy production, coarse pulverization, fine pulverization, forming in a magnetic field, sintering, and heat treatment are performed in this order. After these steps, the surface of the sintered body is ground and further processed such as plating to improve the corrosion resistance of the sintered body.

【0003】[0003]

【発明が解決しようとする課題】R−T−B系永久磁石
(RはNdを主成分とする希土類元素(Yを包含す
る),TはFe,Co,Niなどの遷移金属又はその一
部をAl,Siで置換したもの)は,主相が正方晶R2
14Bであり,Nd2 Fe14Bの場合,飽和磁束密度B
sが約1.6(T)であることから,高い残留磁束密度
Br,最大エネルギー積(BH)max が期待されてい
る。
An R-T-B system permanent magnet (R is a rare earth element containing Nd as a main component (including Y), T is a transition metal such as Fe, Co, Ni or a part thereof. Is replaced by Al and Si), the main phase is tetragonal R 2
T 14 B, and in the case of Nd 2 Fe 14 B, the saturation magnetic flux density B
Since s is about 1.6 (T), high residual magnetic flux density Br and maximum energy product (BH) max are expected.

【0004】一般に,Br及び(BH)max を向上させ
る方法として,主相R2 14Bの比率を上げればよい
が,R−T−B系永久磁石を粉末冶金法により作製する
場合,焼結時に液相が必要であり,このため母合金組成
を主相組成よりR量を多くしなければならない。このよ
うに,焼結のため焼結体中の主相R2 14Bの比率の向
上にも限界がある。従って,磁気特性は母合金の組成に
よってほぼ決まる。
Generally, as a method of improving Br and (BH) max , the ratio of the main phase R 2 T 14 B may be increased. However, when an RTB-based permanent magnet is manufactured by a powder metallurgy method, it is burned. Since a liquid phase is required at the time of binding, the master alloy composition must have a larger amount of R than the main phase composition. Thus, there is a limit to the improvement of the ratio of the main phase R 2 T 14 B in the sintered body due to the sintering. Therefore, the magnetic properties are almost determined by the composition of the master alloy.

【0005】又,Nd等の希土類元素を含む合金は酸化
が著しいため,焼結時に焼結体中に酸化物等が混在する
ことによっても,焼結体中の主相の比率を低下させる原
因,つまりBrや(BH)max を低下させる原因となっ
ている。
Further, since an alloy containing a rare earth element such as Nd is markedly oxidized, mixing of oxides and the like into the sintered body at the time of sintering also causes a decrease in the ratio of the main phase in the sintered body. That is, it is a cause of lowering Br and (BH) max .

【0006】ところが,主相の比率を高めるためR量を
減少させて焼結体を作製すると,軟磁性相であるFe等
の遷移金属相やR2 17相が出現し,保磁力Hcjの低
下等の磁気特性の劣化が生じる。
However, when the amount of R is decreased to produce a sintered body in order to increase the ratio of the main phase, a transition metal phase such as Fe or a R 2 T 17 phase, which is a soft magnetic phase, appears and the coercive force Hcj of Deterioration of magnetic properties such as deterioration occurs.

【0007】そこで,本発明の技術的課題は,粉末冶金
により高いBr及び(BH)max を得ることのできる希
土類永久磁石合金の製造方法を提供することにある。
Therefore, a technical object of the present invention is to provide a method for producing a rare earth permanent magnet alloy capable of obtaining high Br and (BH) max by powder metallurgy.

【0008】[0008]

【課題を解決するための手段】本発明者は,上記課題を
解決するために,種々の検討を行った結果,粉末冶金法
を用いて永久磁石合金を作製した後に,熱処理と永久磁
石合金表面の研削加工を繰り返すことにより,残留磁束
密度Br及び最大エネルギー積(BH)max が向上する
ことを見い出した。
Means for Solving the Problems The present inventor has conducted various studies in order to solve the above problems, and as a result, after producing a permanent magnet alloy by a powder metallurgy method, heat treatment and the surface of the permanent magnet alloy are performed. It was found that the residual magnetic flux density Br and the maximum energy product (BH) max are improved by repeating the above grinding process.

【0009】本発明によれば,R−T−B系永久磁石合
金(但し,RはNdを主成分とする希土類元素(Yを包
含する),Tは遷移金属又はその一部をAl,Siのう
ちの少なくとも一種で置換したもの)を粉末冶金法によ
り作製する方法において,該永久磁石合金に熱処理と熱
処理後の表面研削加工を繰り返すことにより,残留磁束
密度Brと最大エネルギー積(BH)max を向上させる
ことを特徴とする希土類永久磁石合金の製造方法が得ら
れる。
According to the present invention, an RTB-based permanent magnet alloy (where R is a rare earth element containing Nd as a main component (including Y)), T is a transition metal or a part thereof is Al, Si In which at least one of the above is replaced by a powder metallurgy method, the residual magnetic flux density Br and the maximum energy product (BH) max are obtained by repeating heat treatment and surface grinding after the heat treatment on the permanent magnet alloy. A method for producing a rare earth permanent magnet alloy is obtained which is characterized by improving

【0010】ここで,本発明において,RはNdを主成
分とする希土類元素で,Nd以外にPr,Ce,Dy,
La等が含まれる。また,Tは遷移金属又はその一部を
Al,Siのうちの少なくとも一種で置換したもので,
遷移金属としては,Fe,Co,Ni等が例示できる
が,特にTとしては,Feを主成分としたものが好まし
い。
Here, in the present invention, R is a rare earth element containing Nd as a main component, and in addition to Nd, Pr, Ce, Dy,
La and the like are included. Further, T is a transition metal or a part thereof substituted with at least one of Al and Si,
Examples of the transition metal include Fe, Co, Ni, and the like. Particularly, T containing Fe as a main component is preferable.

【0011】[0011]

【実施例】以下,本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0012】まず出発原料として純度99.9のNd及
びDy,純度99.99のFe及びAl,純度99.5
のBを夫々使用した。これらの原料を下表1に示す組成
に配合し,高周波溶解により母合金を作製した。
First, as starting materials, Nd and Dy having a purity of 99.9, Fe and Al having a purity of 99.99, and a purity of 99.5.
B of each was used. These raw materials were blended in the compositions shown in Table 1 below, and a master alloy was prepared by high frequency melting.

【0013】[0013]

【表1】 [Table 1]

【0014】次に母合金をAr雰囲気において粗粉砕,
微粉砕した後に,約2(T)の磁場において垂直磁場中
成形を行った。次に,この成形体を真空中及びAr雰囲
気において1080(℃),約2時間の焼結を行った。
次に,Ar雰囲気において600(℃)の各温度におい
て1時間の熱処理を行った後,焼結体表面の研削加工を
行った。この熱処理と熱処理後の焼結体表面の研削加工
の一連の工程を5回繰り返した。尚,焼結体の磁気特性
の測定は焼結体表面の研削加工後にB−Hトレーサーに
より行った。
Next, the mother alloy is coarsely crushed in an Ar atmosphere,
After finely pulverizing, molding was performed in a vertical magnetic field in a magnetic field of about 2 (T). Next, this compact was sintered in a vacuum and an Ar atmosphere at 1080 (° C.) for about 2 hours.
Next, after performing a heat treatment for 1 hour at each temperature of 600 (° C.) in an Ar atmosphere, the surface of the sintered body was ground. This heat treatment and a series of steps of grinding the surface of the sintered body after the heat treatment were repeated 5 times. The magnetic characteristics of the sintered body were measured by a BH tracer after grinding the surface of the sintered body.

【0015】図1は熱処理と焼結体表面の研削加工の繰
り返し数と磁気特性との関係を示す図である。また,比
較例として,焼結後の熱処理に焼結体表面研削を行った
後,熱処理のみを繰り返した場合の磁気特性と熱処理回
数の関係を併せて示した。
FIG. 1 is a diagram showing the relationship between the magnetic properties and the number of repetitions of heat treatment and grinding of the surface of a sintered body. In addition, as a comparative example, the relationship between the magnetic characteristics and the number of times of heat treatment when the heat treatment after the sintering is performed after the surface of the sintered body is ground and only the heat treatment is repeated is also shown.

【0016】図1に示すように,本発明の実施例では熱
処理と焼結体表面の研削加工の繰り返す数が増加するこ
とにより,Br,(BH)max が向上した。一方,比較
例では熱処理回数が増加しても磁石特性にはほとんど変
化が見られなかった。但し,本発明の実施例では熱処理
と熱処理後の焼結体表面の研削加工の繰り返す数に対し
保磁力Hcjに変化はほとんど見られなかった。
As shown in FIG. 1, in the embodiment of the present invention, Br and (BH) max were improved by increasing the number of repeating the heat treatment and the grinding of the surface of the sintered body. On the other hand, in the comparative example, there was almost no change in the magnet characteristics even when the number of heat treatments was increased. However, in the examples of the present invention, almost no change was observed in the coercive force Hcj with respect to the number of times the heat treatment and the grinding of the surface of the sintered body after the heat treatment were repeated.

【0017】[0017]

【発明の効果】以上の説明にて述べたように,本発明に
おいては,粉末冶金法により作製するR−T−B系永久
磁石(但,RはNdを主成分とする希土類元素(Yを包
含する),Tは遷移金属又はその一部をAl,Siのう
ちの少なくとも一種で置換したもの)において,熱処理
と熱処理後に焼結体表面の研削加工を繰り返すことによ
り,残留磁束密度Br及び最大エネルギー積(BH)
max を向上させることができる希土類永久磁石合金の製
造方法を提供することができる。
As described above, in the present invention, the RTB-based permanent magnet manufactured by the powder metallurgy method (where R is a rare earth element containing Nd as a main component (Y is , T is a transition metal or a part of which is replaced with at least one of Al and Si), and the residual magnetic flux density Br and the maximum Energy product (BH)
It is possible to provide a method for producing a rare earth permanent magnet alloy that can improve max .

【図面の簡単な説明】[Brief description of drawings]

【図1】600(℃)における熱処理及び熱処理後の焼
結体表面の研削加工の繰り返す数と,磁気特性との関係
を示す図である。
FIG. 1 is a diagram showing the relationship between the magnetic properties and the number of repetitions of heat treatment at 600 (° C.) and grinding of the surface of a sintered body after heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 R−T−B系永久磁石合金(RはNdを
主成分とする希土類元素(Yを包含する),Tは遷移金
属又はその一部をAl,Siの少なくとも一方で置換し
たもの)を粉末冶金法により作製する方法において,該
永久磁石合金に熱処理と熱処理後の表面研削加工とを繰
り返すことにより,残留磁束密度Brと最大エネルギー
積(BH)max を向上させることを特徴とする希土類永
久磁石合金の製造方法。
1. An R-T-B system permanent magnet alloy (R is a rare earth element containing Nd as a main component (including Y), T is a transition metal or a part thereof is substituted with at least one of Al and Si. Of the permanent magnet alloy, the residual magnetic flux density Br and the maximum energy product (BH) max are improved by repeating heat treatment and surface grinding after the heat treatment on the permanent magnet alloy. A method for producing a rare earth permanent magnet alloy.
JP17956393A 1993-07-21 1993-07-21 Manufacture of rare earth permanent magnet alloy Withdrawn JPH0737742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17956393A JPH0737742A (en) 1993-07-21 1993-07-21 Manufacture of rare earth permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17956393A JPH0737742A (en) 1993-07-21 1993-07-21 Manufacture of rare earth permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPH0737742A true JPH0737742A (en) 1995-02-07

Family

ID=16067923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17956393A Withdrawn JPH0737742A (en) 1993-07-21 1993-07-21 Manufacture of rare earth permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPH0737742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287865A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing permanent magnet material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287865A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing permanent magnet material
US7922832B2 (en) 2006-04-14 2011-04-12 Shin-Etsu Chemical Co., Ltd. Method for preparing permanent magnet material

Similar Documents

Publication Publication Date Title
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP3715573B2 (en) Magnet material and manufacturing method thereof
JPS6110209A (en) Permanent magnet
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
USRE31317E (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
JPH03236202A (en) Sintered permanent magnet
JP2009010305A (en) Method for manufacturing rare-earth magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JPH10106875A (en) Manufacturing method of rare-earth magnet
JP2000114016A (en) Permanent magnet and manufacture thereof
JPH08181009A (en) Permanent magnet and its manufacturing method
JPH0737742A (en) Manufacture of rare earth permanent magnet alloy
JPS6031208A (en) Permanent magnet
JP3053187B2 (en) Manufacturing method of permanent magnet
JPH068488B2 (en) Permanent magnet alloy
JPS609104A (en) Permanent magnet
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP2868062B2 (en) Manufacturing method of permanent magnet
JPS6144155A (en) Permanent magnet alloy
JPS601808A (en) Permanent magnet
KR930011237B1 (en) Re-magnetic materials
JPH02145739A (en) Permanent magnet material and permanent magnet
JPS63278208A (en) Manufacture of rare earth permanent magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003