JPH07332955A - Inspection of mounted printed board - Google Patents

Inspection of mounted printed board

Info

Publication number
JPH07332955A
JPH07332955A JP12618194A JP12618194A JPH07332955A JP H07332955 A JPH07332955 A JP H07332955A JP 12618194 A JP12618194 A JP 12618194A JP 12618194 A JP12618194 A JP 12618194A JP H07332955 A JPH07332955 A JP H07332955A
Authority
JP
Japan
Prior art keywords
light
solder
shape
reflected light
mounted printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12618194A
Other languages
Japanese (ja)
Other versions
JP3277691B2 (en
Inventor
Makoto Okazaki
真 岡崎
Kenichi Horiuchi
憲一 堀内
Tomohiro Kimura
知博 木村
Daisuke Nagai
大介 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12618194A priority Critical patent/JP3277691B2/en
Publication of JPH07332955A publication Critical patent/JPH07332955A/en
Application granted granted Critical
Publication of JP3277691B2 publication Critical patent/JP3277691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To inspect the defective soldering by forming the intense and weak pattern of the luminance of a surface based on the amount of the received reflected light with regard to the inspection method, which scans upper surface of a mounted printed board with fine beam light, receives the reflected light along the irradiated optical axis from the irradiated position with a photoelectric transducer, and obtains the shape of the surface. CONSTITUTION:The fine beam light is generated from a light source 1. The light is made to scan approximately vertically on a mounted printed board 6 through a polygon mirror 3 and a light projecting ftheta lens 5. The reflected light in the direction along the optical axis of the irradiation with the fine beam light from the irradiated position is detected with a photodiode 10. The output of the photodiode 10 is binary-coded, and the two-dimensional pattern of the strong intensity and weakness of the luminance is formed, and the shape of the surface is obtained. Thus, the soldering is inspected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、細く絞った微小ビーム
光を実装済みプリント基板に照射し、その反射光を受光
することで、半田形状を検査する実装済みプリント基板
の検査方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a mounted printed circuit board which inspects a solder shape by irradiating a mounted printed circuit board with a fine beam of light and receiving the reflected light. is there.

【0002】[0002]

【従来の技術】近年、実装済みプリント基板の部品の位
置ずれ、欠品、半田不良等の検査は、細く絞ったビーム
光を実装済みプリント基板に照射し、その反射光を検出
することにより非接触で行うものがある。従来このよう
な検査方法として、三角測量の原理を用いたものがあ
り、光源から発生した微小ビーム光をポリゴンミラーで
偏向して基板上を走査し、基板上の微小ビーム光の照射
位置からの反射光を光電変換素子にて受光し、その受光
位置に応じた微小ビーム光の照射位置の高さを求めて検
査するものがある。
2. Description of the Related Art In recent years, inspection of a mounted printed circuit board for component misalignment, defective parts, defective solder, etc. is performed by irradiating a narrowed beam light on the mounted printed circuit board and detecting the reflected light. Some things are done by contact. Conventionally, there is a method using the principle of triangulation as such an inspection method, in which a minute beam light generated from a light source is deflected by a polygon mirror to scan the substrate, and the minute beam light from the irradiation position on the substrate is scanned. There is a method in which reflected light is received by a photoelectric conversion element, and the height of the irradiation position of the minute beam light according to the light receiving position is obtained and inspected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の検査方法においては、特に半田面では光沢性があり、
しかも傾斜していることが多いので、微小ビーム光の照
射位置からの反射光が光電変換素子に入射しないことが
ある。このため光電変換素子での検出が不能となって正
確な高さが求められず、半田検査を行えないという問題
がある。
However, in the above-mentioned conventional inspection method, there is glossiness especially on the solder side,
Moreover, since it is often inclined, the reflected light from the irradiation position of the minute beam light may not enter the photoelectric conversion element. For this reason, there is a problem that the photoelectric conversion element cannot detect it, an accurate height is not required, and a solder inspection cannot be performed.

【0004】そこで本発明は、基板への微小ビーム光の
照射軸に沿った反射光を光電変換素子で受光し、その受
光光量の大きさから検査面の傾斜状態を検出することに
より、半田形状を検査できるようにするものである。
Therefore, according to the present invention, the reflected light along the irradiation axis of the minute beam light to the substrate is received by the photoelectric conversion element, and the tilted state of the inspection surface is detected from the magnitude of the received light amount to obtain the solder shape. Is to be able to inspect.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の実装済みプリント基板の検査方法は、実装
済みプリント基板上を微小ビーム光により走査し、微小
ビーム光の照射位置から前記微小ビーム光の照射光軸に
沿った反射光を光電変換素子で受光して、半田形状を取
得する方法であって、検査すべき計測領域を複数の小領
域に分割し、前記光電変換素子で受光した反射光の光量
から前記各小領域の輝度を二値化し、輝度の強弱の2次
元パターンを作成することにより、表面形状を取得する
ことを特徴とするものである。
In order to solve the above-mentioned problems, a method of inspecting a mounted printed circuit board according to the present invention scans the mounted printed circuit board with a minute beam light, and detects the position from the irradiation position of the minute beam light. A method of receiving reflected light along an irradiation optical axis of a minute beam light with a photoelectric conversion element and obtaining a solder shape, in which a measurement region to be inspected is divided into a plurality of small regions, and the photoelectric conversion device is used. The surface shape is obtained by binarizing the brightness of each of the small areas from the light amount of the received reflected light and creating a two-dimensional pattern of the brightness intensity.

【0006】[0006]

【作用】上記方法によれば、光電変換素子で受光した反
射光の光量から、分割した各領域ごとに輝度を検出し、
その輝度を二値化して輝度の強弱の2次元パターンを作
成する。輝度の2次元パターンから基板表面の傾斜状態
を検出することで、半田塗布の良、不良を検査する。
According to the above method, the brightness is detected for each of the divided areas from the light quantity of the reflected light received by the photoelectric conversion element,
The brightness is binarized to create a two-dimensional pattern of brightness. By detecting the inclination state of the substrate surface from the two-dimensional pattern of brightness, the solder coating is inspected for goodness or badness.

【0007】[0007]

【実施例】以下に本発明の実施例について図面を参照し
ながら説明する。図1に本発明が適用される実装済みプ
リント基板の検査装置を示す。図1において、1は実装
済みプリント基板6上に照射する微小ビーム光を発生す
るための光源である。2は光源1からの微小ビーム光を
集光し平行光束にするためのコリメートレンズ系であ
る。3は前記平行光束を偏向し、かつ、実装済みプリン
ト基板6からの反射光を偏向するためのポリゴンミラー
である。4はポリゴンミラー3を回転駆動させるポリゴ
ンモータである。5はポリゴンミラー3により偏向され
た前記平行光束を集光し、実装済みプリント基板6に対
して略垂直に照射する投光fθレンズである。6は検査
対象の実装済みプリント基板である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an inspection apparatus for a mounted printed circuit board to which the present invention is applied. In FIG. 1, reference numeral 1 is a light source for generating a minute beam of light with which the mounted printed circuit board 6 is irradiated. Reference numeral 2 is a collimating lens system for converging the minute light beam from the light source 1 into a parallel light beam. Reference numeral 3 is a polygon mirror for deflecting the parallel light flux and deflecting the reflected light from the mounted printed circuit board 6. A polygon motor 4 drives the polygon mirror 3 to rotate. Reference numeral 5 denotes a light projecting fθ lens that collects the parallel light beam deflected by the polygon mirror 3 and irradiates the mounted printed circuit board 6 substantially vertically. Reference numeral 6 is a mounted printed circuit board to be inspected.

【0008】7は実装済みプリント基板6上の前記微小
ビーム光照射位置からの反射光のうち、投光光軸に沿っ
て、投光fθレンズ5、ポリゴンミラー3を通り戻って
きた、実装済みプリント基板6に対して垂直方向の反射
光を偏向するトンネルミラーである。8はトンネルミラ
ー7により偏向された反射光を集光するためのレンズで
ある。9は前記垂直方向以外からの反射光を遮断する絞
りである。10は前記垂直方向の反射光を受光し、受光
光量を電気的出力に変換するフォトダイオードである。
Reference numeral 7 indicates a portion of the reflected light from the irradiation position of the minute beam light on the mounted printed circuit board 6, which has returned along the light projection optical axis through the light projecting fθ lens 5 and the polygon mirror 3. It is a tunnel mirror that deflects reflected light in a direction perpendicular to the printed circuit board 6. Reference numeral 8 is a lens for collecting the reflected light deflected by the tunnel mirror 7. Reference numeral 9 denotes a diaphragm that blocks reflected light from directions other than the vertical direction. Reference numeral 10 denotes a photodiode that receives the reflected light in the vertical direction and converts the received light amount into an electrical output.

【0009】11は実装済みプリント基板6を固定する
ためのテーブルである。12は回転することによりテー
ブル11を副走査方向(矢印y方向)に移動させるボー
ルネジである。13はボールネジ12を回転させるボー
ルネジモータである。14はテーブル11を案内するた
めの案内レールである。以上のように構成された実装済
みプリント基板検査装置についてその動作を説明する。
Reference numeral 11 is a table for fixing the mounted printed circuit board 6. A ball screw 12 moves the table 11 in the sub-scanning direction (arrow y direction) by rotating. A ball screw motor 13 rotates the ball screw 12. Reference numeral 14 is a guide rail for guiding the table 11. The operation of the mounted printed circuit board inspection device configured as described above will be described.

【0010】光源1から発生した微小ビーム光は、コリ
メートレンズ系2により平行光束となり、トンネルミラ
ー7の穴空き部分を通過後、ポリゴンミラー3に偏向さ
れ、投光fθレンズ5により集光され、微小ビーム光照
射光軸として実装済みプリント基板6上に略垂直に照射
される。この際、光源1より発生した微小ビーム光は、
ポリゴンモータ4により回転駆動されるポリゴンミラー
3の回転にともない、実装済みプリント基板6上を図中
の主走査方向(矢印x方向)を走査する。
The minute light beam generated from the light source 1 becomes a parallel light beam by the collimator lens system 2, passes through the holed portion of the tunnel mirror 7, is deflected by the polygon mirror 3, and is condensed by the light projecting fθ lens 5. The minute beam light is irradiated as an optical axis on the mounted printed circuit board 6 substantially vertically. At this time, the minute beam light generated from the light source 1 is
As the polygon mirror 3 rotated by the polygon motor 4 rotates, the mounted printed circuit board 6 is scanned in the main scanning direction (arrow x direction) in the figure.

【0011】前記微小ビーム光照射位置より、前記微小
ビーム光照射光軸方向(略垂直方向)へ反射する反射光
は、投光fθレンズ5、ポリゴンミラー3、トンネルミ
ラー7、レンズ8、絞り9を介してフォトダイオード1
0に導かれる。この際、垂直方向への反射光は、投光f
θレンズ5、レンズ8により集光され、この集光された
反射光をフォトダイオード10が受光する。また、レン
ズ8とフォトダイオード10の間に設けられている絞り
9により前記微小ビーム光照射光軸方向の反射光以外の
光は遮断される。したがって、前記微小ビーム光照射位
置より前記微小ビーム光照射光軸方向へ反射する反射光
の光量のみが正しく計測できる。以後フォトダイオード
10が受光する光量(微少ビーム光照射光軸方向の反射
光)を落射輝度と呼ぶ。
Reflected light reflected from the irradiation position of the minute beam light in the direction of the optical axis of the minute beam light irradiation (substantially vertical direction) passes through a light projecting fθ lens 5, a polygon mirror 3, a tunnel mirror 7, a lens 8 and a diaphragm 9. Through the photodiode 1
Lead to zero. At this time, the reflected light in the vertical direction is the projected light f.
The reflected light is condensed by the θ lens 5 and the lens 8 and is received by the photodiode 10. Further, a stop 9 provided between the lens 8 and the photodiode 10 blocks light other than the reflected light in the optical axis direction of the minute beam light irradiation. Therefore, only the light amount of the reflected light reflected from the irradiation position of the minute beam light in the optical axis direction of the minute beam light irradiation can be accurately measured. Hereinafter, the amount of light received by the photodiode 10 (reflected light in the direction of the optical axis of the minute beam light irradiation) will be referred to as incident brightness.

【0012】フォトダイオード10は、実装済みプリン
ト基板6からの垂直方向への反射光を受光するので、半
田面の傾きが緩やかな時や半田がついていないときは、
垂直方向への反射光が多くなるので出力は大きくなり、
逆に半田面の傾きが急な時は、垂直方向への反射光が少
なくなるので出力は小さくなる。この特徴を利用して、
本発明の実施例として、上記実装済みプリント基板検査
装置に適用した、反射光の強弱パターンにより半田不良
を検査する方法について以下説明する。
Since the photodiode 10 receives light reflected in the vertical direction from the mounted printed circuit board 6, when the inclination of the solder surface is gentle or when no solder is attached,
Since the reflected light in the vertical direction increases, the output increases,
On the other hand, when the inclination of the solder surface is steep, the reflected light in the vertical direction is small and the output is small. Utilizing this feature,
As an embodiment of the present invention, a method of inspecting a solder defect by a pattern of reflected light intensity, which is applied to the mounted printed circuit board inspection apparatus, will be described below.

【0013】まず検査に先だって計測エリアを予め設定
する。図2に半田検査を行う計測エリアの設定例を示
す。図2(a)は検査すべき実装部品の半田接続部分の
平面図を示すものであり、21は実装部品のリード、2
2は半田、23は基板上のランドである。計測エリア2
4の設定の仕方は、縦方向のサイズを、図(b)に示す
ようにリード幅を基準にする方法や、図(c)に示すよ
うにランド幅を基準にする方法があり、横方向のサイズ
を図(b),(c)に示すようにランド長さにする方法
がある。本実施例では計測エリア24を図(b)で示す
ように設定する。
First, a measurement area is set in advance prior to the inspection. FIG. 2 shows an example of setting the measurement area for solder inspection. FIG. 2A shows a plan view of a solder connection portion of a mounted component to be inspected, 21 is a lead of the mounted component, 2
2 is solder, and 23 is a land on the substrate. Measurement area 2
There are two methods for setting the size in the vertical direction, which is based on the lead width as shown in FIG. 6B, and based on the land width as shown in FIG. There is a method of making the size of the land the length of the land as shown in FIGS. In this embodiment, the measurement area 24 is set as shown in FIG.

【0014】次に図2(b)で設定した計測エリア24
を図3(a)に示すように縦横の複数の分割エリア25
に分割する。各分割エリア25の大きさは、光源1から
の微小ビーム光が照射するスポットより大きく、フォト
ダイオード10で複数の反射光量のデータをサンプルで
きる適当な大きさに設定する。なお横方向の分割は、等
分割でなく3分割した中央の分割エリアの幅を大きくす
ることもできる。
Next, the measurement area 24 set in FIG.
As shown in FIG. 3A, a plurality of vertical and horizontal divided areas 25
Split into. The size of each divided area 25 is larger than the spot irradiated by the minute beam light from the light source 1, and is set to an appropriate size that allows the photodiode 10 to sample a plurality of reflected light amount data. In the horizontal division, the width of the central divided area, which is divided into three, instead of the equal division, can be increased.

【0015】このように検査に先だって計測エリアを複
数の分割エリアに設定しておいてから検査を開始する。
ポリゴンミラー3の回転により微小ビーム光で計測エリ
ア24を走査し、各分割エリア25内で複数の落射輝度
のデータをサンプルする。サンプルしたデータから各分
割エリア25内で落射輝度の特性値を求める。特性値の
求め方の例としては、各分割エリア内の落射輝度の平均
を特性値としたり、各分割エリア内の落射輝度の最大値
を特性値とするものなどがある。
As described above, the measurement area is set to a plurality of divided areas prior to the inspection, and then the inspection is started.
The measurement area 24 is scanned with a minute light beam by the rotation of the polygon mirror 3, and a plurality of incident luminance data is sampled in each divided area 25. The characteristic value of the epi-illumination in each divided area 25 is obtained from the sampled data. As an example of how to obtain the characteristic value, there is a method in which the average of the epi-illumination in each divided area is used as the characteristic value, or the maximum value of the epi-illumination in each divided area is used as the characteristic value.

【0016】次にこの特性値をある設定値を基準に二値
化する。前述したように、落射輝度は斜面では暗く(小
さく)、平面では明るい(大きい)ので、各分割エリア
の特性値がこの設定値より大きいと平面、小さいと斜面
と判断する。このようにして落射輝度の特性値を二値化
すると、例えば図3に示す結果が得られる。ここで斜線
部26は傾斜面を、空白部27は平面部を示しており、
分割エリアの輝度の強弱のパターンにより、半田形状の
認識が可能となる。
Next, this characteristic value is binarized based on a certain set value. As described above, since the epi-illumination is dark (small) on a slope and bright (large) on a plane, it is determined to be a plane if the characteristic value of each divided area is larger than this set value, and a slope if it is small. By binarizing the characteristic value of the epi-illumination in this way, for example, the result shown in FIG. 3 is obtained. Here, the shaded portion 26 indicates an inclined surface, and the blank portion 27 indicates a flat surface portion.
It is possible to recognize the solder shape by the pattern of the intensity of the divided areas.

【0017】本実施例では、半田の良、不良の検査は、
上述の落射輝度の強弱のパターンから、半田長と半田不
濡れ形状(すなわちリードと半田との不良接続)とを検
出することにより行う。
In the present embodiment, the inspection for good or bad solder is
This is performed by detecting the solder length and the solder non-wetting shape (that is, the defective connection between the lead and the solder) from the above-described pattern of the intensity of the reflected light.

【0018】まず半田長の検出について説明する。半田
長の計測方法は、落射輝度パターンからリードと半田と
の接続部、すなわち半田の開始端を認識し、次に半田の
連続性を認識し、最後に半田の終端部を認識することに
より計測する。
First, the detection of the solder length will be described. The solder length is measured by recognizing the connection between lead and solder, that is, the solder start end, the solder continuity, and finally the solder end by recognizing the reflected brightness pattern. To do.

【0019】縦方向の各列の3つの分割エリアの落射輝
度パターンは、図4に示すように(a)全て斜面、
(b)2箇所斜面、(c)2箇所斜面で中央部が平面、
(d)1箇所斜面、(e)全て平面の5つの形状に分類
される。(c)の両端が斜面で中央が平面のパターンは
不濡れパターンと呼び、中央部も斜面とみなすこととす
る。ここで図5の矢印Aの位置で示すように、計測エリ
ア24の左端側からみて、縦方向一列の分割エリアに2
つ以上の斜面があれば半田の開始端と見なす。すなわ
ち、その位置から右方向に半田が形成されているものと
判断する。
The epi-illumination patterns of the three divided areas in each column in the vertical direction are (a) all slopes, as shown in FIG.
(B) two slopes, (c) two slopes with a flat central part,
(D) One slope, and (e) all are flat. A pattern in which both ends of (c) are sloped and the center is flat is called a non-wetting pattern, and the central portion is also regarded as a slope. Here, as shown by the position of the arrow A in FIG. 5, when viewed from the left end side of the measurement area 24, two divided areas are arranged in a line in the vertical direction.
If there is more than one slope, consider it as the beginning of solder. That is, it is determined that the solder is formed rightward from that position.

【0020】ここで開始端の認識を行う範囲は、リード
先端位置の認識誤差を吸収するために、ある程度の余裕
をもたせて設定することができる。図6(a)に示すよ
うに認識範囲Lに余裕を全くもたせない場合は、計測エ
リア左端の1列目に開始端が存在するかどうかを認識す
る。これに対し図(b)に示すように、認識範囲Lに余
裕をもたせ計測エリアの左端から3列の範囲から開始端
Aを認識するようにすれば、2列目に斜面が存在してい
ても開始端と認識する。また(c)のように認識範囲内
Lに斜面が存在しない場合は、半田長は0とする。
The range in which the start end is recognized can be set with a certain margin in order to absorb the recognition error of the lead tip position. When no margin is given to the recognition range L as shown in FIG. 6A, it is recognized whether or not the start end exists in the first column on the left end of the measurement area. On the other hand, as shown in FIG. 6B, if the recognition range L is provided with a margin and the start end A is recognized from the range of the third row from the left end of the measurement area, the slope exists in the second row. Is also recognized as the starting end. When there is no slope in the recognition range L as shown in (c), the solder length is set to 0.

【0021】半田の開始端を検出したら、図7に示すよ
うに、斜面である分割エリアの右隣の列の分割エリアが
斜面であるかどうかを認識し、斜面であれば半田が連続
しているものとする。図では矢印Lの間で半田が連続し
ていると認識する。例外として(d)の不濡れパターン
の中央部に限り、右隣が斜面であれば連続しているもの
と見なす。
When the start end of the solder is detected, as shown in FIG. 7, it is recognized whether or not the divided area in the column on the right of the divided area which is the inclined surface is the inclined surface. Be present. In the figure, it is recognized that the solder is continuous between the arrows L. As an exception, only in the central part of the non-wetting pattern in (d), if the slope on the right side is considered to be continuous.

【0022】半田の終端は、右隣の列に連続する斜面の
分割エリアが1箇所以下になったところを半田の終端と
見なしており、例えば図8では矢印Bで示す位置で半田
の終端と認識している。特に(d)は例外として不濡れ
パターンの場合の終端の認識の仕方である。以上のよう
に開始端から終端までを認識し半田長を検出する。
The end of the solder is regarded as the end of the solder when the number of divided areas on the slope continuous to the adjacent row on the right is one or less. For example, the end of the solder is located at the position indicated by arrow B in FIG. It has recognized. In particular, (d) is the method of recognizing the end in the case of a non-wetting pattern as an exception. As described above, the solder length is detected by recognizing from the start end to the end.

【0023】さて次に半田の不濡れ(不良)の認識であ
るが、不濡れ形状とは図9(a)−(イ)の断面図に示
すように、リード21の先端が半田になじんでいないも
のや図(b)−(イ)の断面図に示すように、リード2
1の先端が浮いているものをいう。半田不濡れ形状は、
図(a)−(ロ),図(b)−(ロ)に示すように、半
田部の頂点部の落射輝度が高く(明るく)なる特性があ
る。この特性を利用して、同図(ハ)に示す輝度の強弱
の2次元パターンから頂点部の長さ(不濡れ長さ)を計
測し、この不濡れ長さが設定値より長いと不良、短いと
良の判定をする。この不濡れ長さを求める方法を次に順
を追って説明する。
Next, it is the recognition of non-wetting (defective) of the solder. The non-wetting shape means that the tip of the lead 21 fits in the solder as shown in the sectional views of FIGS. 9 (a)-(a). As shown in the cross section of FIG.
It means that the tip of 1 is floating. The solder non-wetting shape is
As shown in FIGS. (A)-(b) and FIGS. (B)-(b), there is a characteristic that the epi-luminance at the apex of the solder portion is high (bright). By utilizing this characteristic, the length of the apex portion (non-wetting length) is measured from the two-dimensional pattern of the intensity of the luminance shown in FIG. 3C, and if the non-wetting length is longer than the set value, it is defective. If it is short, it is judged as good. A method for obtaining the non-wetting length will be described step by step.

【0024】不濡れ形状であるかどうかをまず認識す
る。すなわち図(c)に示すように、半田の中央部の輝
度が高くても、半田形状が扇型になっている場合は不濡
れ形状ではないので、上述のように検出した連続する半
田内に図4(c)に示す不濡れパターンが存在していて
も、不濡れパターンの右隣の列の中央の分割エリアが斜
面でないときは、不濡れ形状とは認識しない。
First, whether or not the shape is a non-wetting shape is recognized. That is, as shown in FIG. 7C, even if the brightness of the central portion of the solder is high, if the solder shape is a fan shape, it is not a non-wetting shape. Even if the non-wetting pattern shown in FIG. 4C is present, it is not recognized as a non-wetting shape if the central divided area of the column to the right of the non-wetting pattern is not a slope.

【0025】不濡れ形状の場合、図9(a)の形状であ
るのか、(b)に示すものであるのかは、計測した不濡
れパターンの開始位置と、半田の開始端との位置関係に
より判別する。すなわち不濡れパターンの開始位置と半
田の開始端の位置とが一致すれば図(b)の形状とし、
そうでなければ(a)の形状と判断する。
In the case of the non-wetting shape, whether it is the shape shown in FIG. 9A or the shape shown in FIG. 9B depends on the positional relationship between the measured start position of the non-wet pattern and the start end of the solder. Determine. That is, if the start position of the non-wetting pattern and the start position of the solder match, the shape of FIG.
Otherwise, the shape is determined to be (a).

【0026】不濡れ形状を確認した後、不濡れ形状の長
さを求める。不濡れ形状の長さは不濡れパターンの連続
数により求め、複数の不濡れパターンが存在する場合
は、形状毎に分類してその形状毎の最大の不濡れ長さを
採用する。例えば図10に示す例では、半田長Lが9ド
ット、不濡れ長さは図9(a)形状が2ドット、図9
(b)形状の最大長は3ドットと計測できる。
After confirming the non-wetting shape, the length of the non-wetting shape is obtained. The length of the non-wetting shape is obtained from the number of consecutive non-wetting patterns. When there are a plurality of non-wetting patterns, each shape is classified and the maximum non-wetting length for each shape is adopted. For example, in the example shown in FIG. 10, the solder length L is 9 dots, and the non-wetting length is 2 dots in the shape of FIG.
(B) The maximum length of the shape can be measured as 3 dots.

【0027】以上のように計測した半田長、不濡れ長を
それぞれ、設定値と比較し、半田不良を検出する。この
設定値により、不良にする半田長さや不濡れ長さ、不濡
れ形状を変えることができる。
The solder length and non-wetting length measured as described above are respectively compared with set values to detect solder defects. The solder length, non-wetting length, and non-wetting shape to be defective can be changed by this set value.

【0028】[0028]

【発明の効果】以上のように本発明の実装済みプリント
基板の検査方法は、落射輝度を二値化し落射輝度の強弱
の2次元パターンを作成することにより、半田などの光
沢性があり傾斜の多いものであっても、光電変換素子の
受光量から形状を認識することができ、正確な半田検査
を行うことができる。
As described above, according to the method for inspecting a mounted printed circuit board of the present invention, by binarizing the epi-illumination and forming a two-dimensional pattern of the intensity of the epi-illumination, there is glossiness and inclination of solder or the like. Even if the number is large, the shape can be recognized from the amount of light received by the photoelectric conversion element, and accurate solder inspection can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実装済みプリント基板の検査方法が適
用される検査装置の一例を示す斜視図
FIG. 1 is a perspective view showing an example of an inspection apparatus to which an inspection method for a mounted printed circuit board according to the present invention is applied.

【図2】計測エリアの設定例を示す平面図FIG. 2 is a plan view showing an example of setting a measurement area.

【図3】計測エリアを分割した分割エリアを示す平面図FIG. 3 is a plan view showing a divided area obtained by dividing the measurement area.

【図4】落射輝度パターンの分類図FIG. 4 is a classification diagram of epi-illumination patterns.

【図5】半田の計測開始端を説明する落射輝度パターン
FIG. 5 is an epi-illumination pattern diagram for explaining a measurement start end of solder.

【図6】半田の計測開始端を説明する落射輝度パターン
FIG. 6 is an epi-illumination pattern diagram for explaining the measurement start end of solder.

【図7】半田の連続性を説明する落射輝度パターン図FIG. 7 is an epi-illumination pattern diagram for explaining the continuity of solder.

【図8】半田の計測終端部を説明する落射輝度パターン
FIG. 8 is an epi-illumination pattern diagram for explaining a measurement end portion of solder.

【図9】不濡れ形状を説明する断面図、落射輝度の平面
図及び落射輝度パターン図
9A and 9B are a cross-sectional view illustrating a non-wetting shape, a plan view of epi-illumination, and an epi-illumination pattern diagram.

【図10】不濡れ形状を説明する落射輝度パターン図FIG. 10 is an epi-illumination pattern diagram for explaining a non-wetting shape.

【符号の説明】[Explanation of symbols]

1 光源 2 コリメートレンズ系 3 ポリゴンミラー 5 投光fθレンズ 6 実装済みプリント基板 7 トンネルミラー 8 レンズ 9 絞り 10 フォトダイオード 11 テーブル 21 リード 22 半田 23 ランド 24 計測エリア 25 分割エリア 1 Light Source 2 Collimating Lens System 3 Polygon Mirror 5 Projection fθ Lens 6 Mounted Printed Circuit Board 7 Tunnel Mirror 8 Lens 9 Aperture 10 Photodiode 11 Table 21 Lead 22 Solder 23 Land 24 Measurement Area 25 Divided Area

フロントページの続き (72)発明者 永井 大介 香川県高松市古新町8番地の1 松下寿電 子工業株式会社内Front page continued (72) Inventor Daisuke Nagai 1 8-8 Koshinmachi, Takamatsu City, Kagawa Prefecture Matsushita Judenko Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】実装済みプリント基板上を微小ビーム光に
より走査し、微小ビーム光の照射位置から前記微小ビー
ム光の照射光軸に沿った反射光を光電変換素子で受光し
て、半田形状を取得する方法であって、 検査すべき計測領域を複数の小領域に分割し、前記光電
変換素子で受光した反射光の光量から前記各小領域の輝
度を二値化し、輝度の強弱の2次元パターンを作成する
ことにより、表面形状を取得することを特徴とする実装
済みプリント基板の検査方法。
1. A mounted printed circuit board is scanned with a minute beam light, and reflected light along an irradiation optical axis of the minute beam light is received by a photoelectric conversion element from a position where the minute beam light is irradiated, and a solder shape is formed. This is a method of acquiring, in which a measurement region to be inspected is divided into a plurality of small regions, and the brightness of each of the small regions is binarized based on the amount of reflected light received by the photoelectric conversion element. A method for inspecting a mounted printed circuit board, wherein a surface shape is acquired by creating a pattern.
JP12618194A 1994-06-08 1994-06-08 Inspection method of mounted printed circuit board Expired - Fee Related JP3277691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12618194A JP3277691B2 (en) 1994-06-08 1994-06-08 Inspection method of mounted printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12618194A JP3277691B2 (en) 1994-06-08 1994-06-08 Inspection method of mounted printed circuit board

Publications (2)

Publication Number Publication Date
JPH07332955A true JPH07332955A (en) 1995-12-22
JP3277691B2 JP3277691B2 (en) 2002-04-22

Family

ID=14928697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12618194A Expired - Fee Related JP3277691B2 (en) 1994-06-08 1994-06-08 Inspection method of mounted printed circuit board

Country Status (1)

Country Link
JP (1) JP3277691B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200964A (en) * 2005-01-19 2006-08-03 Matsushita Electric Ind Co Ltd Inspection picture imaging device
JP2006234465A (en) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd Visual inspection device and visual inspection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200964A (en) * 2005-01-19 2006-08-03 Matsushita Electric Ind Co Ltd Inspection picture imaging device
JP4654693B2 (en) * 2005-01-19 2011-03-23 パナソニック株式会社 Inspection image imaging device
JP2006234465A (en) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd Visual inspection device and visual inspection method

Also Published As

Publication number Publication date
JP3277691B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
US5298977A (en) Visual inspection method for part mounted on printed circuit board
US5780866A (en) Method and apparatus for automatic focusing and a method and apparatus for three dimensional profile detection
KR100669845B1 (en) Scanning method and system for inspecting anomalies on surface
US7599076B2 (en) Method for optically detecting height of a specimen and charged particle beam apparatus using the same
US4641527A (en) Inspection method and apparatus for joint junction states
JP4359689B2 (en) Inspection apparatus and inspection method, pattern substrate manufacturing method
JPH034081B2 (en)
JPH07332955A (en) Inspection of mounted printed board
JPH0544961B2 (en)
JP3203851B2 (en) Inspection device for mounted printed circuit boards
JPH04221705A (en) Visual inspection device
JPH09196625A (en) Coplanarity inspection apparatus
JP3232811B2 (en) Inspection method of mounted printed circuit board
JPH0711410B2 (en) Parts inspection device
JP3162872B2 (en) Electronic component outline recognition apparatus and outline recognition method
JPS6250605A (en) Inspecting instrument for body to be inspected
JPH0729483Y2 (en) Mounted printed circuit board automatic inspection device
JP3754144B2 (en) Lead float inspection method
JPS61205808A (en) Shape detection apparatus
JPH02162205A (en) Pattern checking apparatus
JP3203853B2 (en) Inspection device for mounted printed circuit boards
JP4298809B2 (en) Electronic component floating detection method
JPH06258041A (en) Method and equipment for inspecting lead of semiconductor package
JP3156402B2 (en) Solder appearance inspection method
JPH0672776B2 (en) Inspection device for mounted printed circuit boards

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20140215

LAPS Cancellation because of no payment of annual fees