JP2006234465A - Visual inspection device and visual inspection method - Google Patents

Visual inspection device and visual inspection method Download PDF

Info

Publication number
JP2006234465A
JP2006234465A JP2005046762A JP2005046762A JP2006234465A JP 2006234465 A JP2006234465 A JP 2006234465A JP 2005046762 A JP2005046762 A JP 2005046762A JP 2005046762 A JP2005046762 A JP 2005046762A JP 2006234465 A JP2006234465 A JP 2006234465A
Authority
JP
Japan
Prior art keywords
specular reflection
unit
image data
inspection object
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005046762A
Other languages
Japanese (ja)
Inventor
Katsuhiko Ito
克彦 伊藤
Kenichi Horiuchi
憲一 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005046762A priority Critical patent/JP2006234465A/en
Publication of JP2006234465A publication Critical patent/JP2006234465A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for correcting a deteriorated image generated, after specular reflection is generated, at imaging of inspection image for visually inspecting a printed circuit board. <P>SOLUTION: This device is provided with a sensor part 1 for scanning a light beam polarized by a polygon mirror 3 along an S-axial direction on an inspected object 8, and for receiving the reflected beam by a light-receiving element 7; an image buffer part 17 for storing rectangular image data, obtained by conducting sequentially one-line scans output from the sensor part 1; a mirror face detecting part 22 for outputting a specular reflection generating signal, when the generation of the specular reflection of making the reflected beam of a prescribed light intensity incident into the light receiving element is detected; and a specular reflection part recording part 25 for recording an image data, obtained by scanning an imaging part generated by the specular reflection along a direction reverse to the S-axial direction, and composites the image data from the image buffer part 17 with the image data from the specular reflection part recording part 25, when the specular reflection generating signal for indication the generation of the specular reflection exists. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、外観検査装置及び外観検査方法に関するものであり、より詳細には、プリント基板外観検査の検査画像撮像時において鏡面反射発生後に生じる劣化画像を補正する外観検査に関するものである。   The present invention relates to an appearance inspection apparatus and an appearance inspection method, and more particularly to an appearance inspection that corrects a deteriorated image that occurs after occurrence of specular reflection when an inspection image is captured in a printed circuit board appearance inspection.

従来の外観検査装置では、被検査物を撮像する際に光ビームと被検査物の表面の材質、状態、角度等の要因及び受光素子の位置関係より鏡面反射が発生した場合、受光素子に対して処理能力を超える光が突然入射することがある。このような場合にはセンサ回路の処理速度が十分に追いつかず鏡面反射該当部のみならず、それに続く画素にも画像の劣化が発生するためセンサ回路の該当部に対しクランプダイオードの挿入や、受光素子への過度な入射光を回避するためNDフィルタの導入などを行い鏡面反射が発生した場合においても画像の劣化を軽減する取り組みが行われている。   In conventional visual inspection equipment, when specular reflection occurs due to factors such as the material, state, angle, etc. of the light beam and the surface of the inspection object and the positional relationship of the light receiving element when imaging the inspection object, In some cases, light exceeding the processing capacity may suddenly enter. In such a case, the processing speed of the sensor circuit cannot sufficiently catch up, and image deterioration occurs not only in the specular reflection corresponding part but also in the subsequent pixels. In order to avoid excessive incident light on the element, efforts are being made to reduce image degradation even when specular reflection occurs by introducing an ND filter or the like.

また、鏡面反射が生じやすい被検査物に対して互いに違った角度から照明光を照射することのできる2つの照明装置及び被検査物に対して視点が異なるように配置された複数の撮影装置を用意し、2つの照明装置から順番に照明光の照射を行い、鏡面反射が発生した場合でも、いずれの照明装置がオンしているかによって撮影された画像上における鏡面反射の位置が異なることを利用することで影響を除去する方法が開示されている(例えば、特許文献1参照。)。   In addition, two illumination devices that can irradiate illumination light from different angles to an inspection object that easily causes specular reflection, and a plurality of imaging devices that are arranged with different viewpoints with respect to the inspection object Prepare and irradiate illumination light sequentially from the two lighting devices, and even if specular reflection occurs, use the fact that the position of the specular reflection on the captured image differs depending on which lighting device is on Thus, a method for removing the influence is disclosed (for example, see Patent Document 1).

更に、発生した尾引き現象の補正を行う方法として、発光体が発光するときの残光特性の影響による尾引きが原因で発生する画像の劣化に対し、劣化した画素領域を隣接画素間の画素値を比較することで得られる差分値から検出を行い、検出位置での差分値に基づいた補正係数より各画素ごとに補正を行う方法が開示されている(例えば、特許文献2参照。)。   Furthermore, as a method for correcting the generated tailing phenomenon, the degraded pixel region is defined as a pixel between adjacent pixels against the degradation of the image caused by tailing due to the afterglow characteristic when the light emitter emits light. A method is disclosed in which detection is performed from a difference value obtained by comparing values, and correction is performed for each pixel using a correction coefficient based on the difference value at the detection position (see, for example, Patent Document 2).

更に、超音波診断装置において超音波をよく反射する強反射体が存在する場合、その受信信号の信号レベルが高くなりその後に尾引き信号を伴う場合があるため、尾引き信号を減衰させる目的で受信信号の基準電圧を越える部分のみ取り出して2つに分岐し、一方を積分器に入力することで生成される減衰量制御信号を、もう一方の受信信号に乗じることで元の信号レベルを減衰させ尾引き信号のレベルを抑えようとする方法が開示されている(例えば、特許文献3参照。)。
特開2002−260017号公報 特開平7−129764号公報 特開平7−303014号公報
Furthermore, when there is a strong reflector that reflects ultrasonic waves well in an ultrasonic diagnostic apparatus, the signal level of the received signal becomes higher and may be accompanied by a tail signal, so that the tail signal is attenuated. Extract only the part of the received signal that exceeds the reference voltage, branch it into two, and attenuate the original signal level by multiplying the other received signal by the attenuation control signal generated by inputting one to the integrator. A method for suppressing the level of the trailing signal is disclosed (for example, see Patent Document 3).
JP 2002-260017 A JP-A-7-129964 Japanese Patent Laid-Open No. 7-303014

しかしながら、鏡面反射が発生する状況下ではクランプダイオードを挿入する電気的対策を講じた場合においても現状の受光素子、増幅器、ダイオード等の電子部品の仕様内で十分な改善は見込めず、またNDフィルタを導入する光学的対策を講じた場合には非鏡面反射時の受光素子に対する入射光をもフィルタリングしてしまい画像情報全体のダイナミックレンジを減少させてしまうという課題を有している。   However, in the situation where specular reflection occurs, even when electrical measures are taken to insert a clamp diode, sufficient improvements cannot be expected within the specifications of current electronic components such as light receiving elements, amplifiers, and diodes, and ND filters In the case of taking an optical measure to introduce the light, there is a problem that the incident light to the light receiving element at the time of non-specular reflection is also filtered and the dynamic range of the entire image information is reduced.

また、鏡面反射に対して取り組んだ前記特許文献1の構成では、複数の照明装置及び撮影装置を必要とするためセンサの容量が大きくなると共に、プリント基板外観検査装置においては被検査物表面の情報を詳細に知る必要があるため、垂直方向の反射光情報を得られることが望ましいが、特許文献1の方法を用いた場合には垂直方向の反射光情報は十分に得られないという課題を有している。   Further, in the configuration of the above-mentioned Patent Document 1 that tackles against specular reflection, a plurality of illumination devices and imaging devices are required, so that the capacity of the sensor is increased, and in the printed circuit board visual inspection device, information on the surface of the inspection object Therefore, it is desirable to obtain reflected light information in the vertical direction. However, when the method of Patent Document 1 is used, there is a problem that the reflected light information in the vertical direction cannot be sufficiently obtained. is doing.

また、発生した尾引き現象の補正に取り組んだ前記特許文献2においては尾引き現象による画像の劣化を補正する際に必要となる補正係数は実験的に求めテーブル化を行う必要があるためユーザ自身による調整が必要であり、ユーザ間におけるばらつき等が発生しプリント基板外観検査装置では量産時における検査精度のばらつきに反映する可能性の面から課題を有している。   Further, in the above-mentioned Patent Document 2, which has been working on correcting the generated tailing phenomenon, the correction coefficient necessary for correcting the image degradation due to the tailing phenomenon needs to be experimentally obtained and tabulated. Therefore, the printed circuit board appearance inspection apparatus has a problem in that it may be reflected in the variation in inspection accuracy during mass production.

更に超音波診断装置における尾引き現象の補正に取り組んだ前記特許文献3の構成は、一連の受信信号において基準電圧を超える部分のみを取り出して減衰量制御信号を乗算し元の信号レベルを減衰させ尾引き信号のレベルを押さえるため、尾引き発生部前後の信号との相関関係に課題を有している。   Furthermore, the configuration of the above-mentioned Patent Document 3 that has worked on correcting the tailing phenomenon in the ultrasonic diagnostic apparatus extracts only the portion exceeding the reference voltage in a series of received signals and multiplies the attenuation control signal to attenuate the original signal level. In order to suppress the level of the trailing signal, there is a problem in the correlation with the signals before and after the trailing generator.

本発明は、前記従来の課題を解決するもので、被検査物に対して垂直方向から照射される光ビームに対する垂直方向の反射光を受光素子にて受光する場合、鏡面反射が原因で引き起こされる検査画像の劣化に対し、該被検査物を180度回転させた状態で撮像を行ったデータをもとに検査画像の補正を行うことが可能な外観検査装置を提供する事を目的とする。   The present invention solves the above-described conventional problems, and is caused by specular reflection when a light receiving element receives reflected light in a vertical direction with respect to a light beam irradiated from a vertical direction on an object to be inspected. An object of the present invention is to provide an appearance inspection apparatus capable of correcting an inspection image on the basis of data obtained by imaging the inspection object in a state where the inspection object is rotated by 180 degrees against deterioration of the inspection image.

前記従来の課題を解決するために、本発明の外観検査装置は、被検査物に光ビームを照射して該検査物の形状を測定する外観検査装置において、ポリゴンミラーにより光ビームを偏向し被検査物に対しX軸方向と略一致するS軸方向に前記偏向された光ビームを走査して該被検査物からの反射光を受光素子にて受光するセンサ部と、前記センサ部から出力される当該S軸方向の1ライン走査を順次行うことで得られるY軸方向の所定の長さの前記被検査物の短冊状画像データを記憶する画像バッファ部と、前記反射光から得られる信号電圧と基準電圧の比較を行い所定の光強度以上の反射光が前記受光素子に入射する鏡面反射が発生したことを検出すると鏡面反射発生信号を出力する鏡面検出部と、前記鏡面反射発生信号に基づき鏡面反射が発生した撮像位置のラインの再走査を通常のS軸方向と逆方向に走査を行って画像データの記録を行う鏡面反射部記録部と、を備え、当該鏡面反射が発生したことを示す前記鏡面反射発生信号が存在するときは、前記画像バッファ部からの画像データと前記鏡面反射部記録部からの画像データを合成して検査画像を生成することを特徴としたものである。   In order to solve the above-described conventional problems, an appearance inspection apparatus according to the present invention is an appearance inspection apparatus that measures the shape of an inspection object by irradiating the inspection object with a light beam. A sensor unit that scans the deflected light beam in the S-axis direction substantially coincident with the X-axis direction with respect to the inspection object and receives reflected light from the inspection object by a light receiving element, and is output from the sensor unit An image buffer unit for storing strip-shaped image data of the inspection object having a predetermined length in the Y-axis direction obtained by sequentially performing one line scanning in the S-axis direction, and a signal voltage obtained from the reflected light And a reference voltage, and when it is detected that reflected light having a predetermined light intensity or more is incident on the light receiving element, a specular reflection generating signal is output, and based on the specular reflection generating signal Specular reflection A specular reflection unit recording unit that records image data by performing rescanning of the line of the generated imaging position in the direction opposite to the normal S-axis direction, and indicates that the specular reflection has occurred When a reflection generation signal exists, the inspection image is generated by synthesizing the image data from the image buffer unit and the image data from the specular reflection unit recording unit.

また、本発明の外観検査方法は、被検査物に光ビームを照射して該検査物の形状を測定する外観検査方法において、ポリゴンミラーにより光ビームを偏向し被検査物に対しX軸方向と略一致するS軸方向に前記偏向された光ビームを走査して該被検査物からの反射光を受光素子にて受光するセンサ部を有し、前記センサ部から出力される当該S軸方向の1ライン走査を順次行うことで得られるY軸方向の所定の長さの前記被検査物の短冊状画像データを画像バッファ部に記憶し、前記反射光から得られる信号電圧と基準電圧の比較を行い所定の光強度以上の反射光が前記受光素子に入射する鏡面反射が発生したことを検出すると鏡面反射発生信号を出力し、前記鏡面反射発生信号に基づき鏡面反射が発生した撮像位置のラインの再走査を通常のS軸方向と逆方向に走査を行って画像データを鏡面反射部記録部に記録し、当該鏡面反射が発生したことを示す前記鏡面反射発生信号が存在するときは、前記画像バッファ部からの画像データと前記鏡面反射部記録部からの画像データを合成して検査画像を生成することを特徴としたものである。   Further, the appearance inspection method of the present invention is an appearance inspection method for measuring the shape of an inspection object by irradiating the inspection object with a light beam. A sensor unit that scans the deflected light beam in a substantially coincident S-axis direction and receives reflected light from the object to be inspected by a light receiving element, and that is output from the sensor unit in the S-axis direction. The strip-shaped image data of the inspection object having a predetermined length in the Y-axis direction obtained by sequentially performing one-line scanning is stored in the image buffer unit, and the signal voltage obtained from the reflected light is compared with the reference voltage. When it is detected that specular reflection occurs when reflected light of a predetermined light intensity or more is incident on the light receiving element, a specular reflection generation signal is output, and the line of the imaging position where the specular reflection has occurred is output based on the specular reflection generation signal. Normal rescan Scanning is performed in the direction opposite to the S-axis direction, image data is recorded in the specular reflection unit recording unit, and when the specular reflection generation signal indicating that the specular reflection has occurred, an image from the image buffer unit is present. The inspection image is generated by combining the data and the image data from the specular reflection unit recording unit.

本発明の外観検査装置によれば、被検査物に対して垂直方向から照射される光ビームを被検査物上に走査させ受光素子に入射する反射光を検出して画像化する装置に関し、反射光のうち垂直方向成分を受光素子にて受光する場合に鏡面反射が発生することが原因で生じる検査画像の劣化に対し、被検査物上の光ビーム走査方向を2種類設けそれぞれの方向による撮像で得た画像を用いた補正を行うことで、より精密な検査画像を得ることが可能となる。   According to the appearance inspection apparatus of the present invention, the present invention relates to an apparatus that scans a light beam irradiated from a vertical direction onto an inspection object and detects reflected light incident on a light receiving element to form an image. Two types of light beam scanning directions on the object to be inspected are provided for the deterioration of the inspection image caused by the occurrence of specular reflection when the light receiving element receives the vertical component of light. By performing the correction using the image obtained in (1), it becomes possible to obtain a more precise inspection image.

以下に、本発明の外観検査装置を使用して、被検査物に対して垂直方向から照射される光ビームの垂直方向の反射光を受光素子にて受光する場合、鏡面反射が原因で引き起こされる検査画像の劣化に対し、該被検査物を通常の走査方向に対し、逆方向の180度回転させた走査方向で撮像を行ったデータをもとに検査画像の補正を行うものであり、以下に、図面とともに詳細に説明する。   In the following, when using the appearance inspection apparatus of the present invention to receive the reflected light in the vertical direction of the light beam irradiated from the vertical direction on the inspection object, it is caused by specular reflection. The inspection image is corrected on the basis of data obtained by imaging in the scanning direction in which the inspection object is rotated 180 degrees in the opposite direction with respect to the normal scanning direction with respect to the deterioration of the inspection image. The details will be described with reference to the drawings.

図1は本発明に係る外観検査装置における検査画像撮像から外観検査までの手順を示すフローチャートである。まず始めに図中S1からS9で示した各工程の簡単な説明を行う。 S1において、外観検査の開始指令が出されると、S2の検査画像撮像において、垂直方向から照射される光ビームの被検査物による垂直方向の反射光を受光素子で受光することにより検査画像の撮像が行われる。その際、S3では、被検査物上に実装された部品のリード部等の反射係数が大きい場合に鏡面反射が発生する場合がある。鏡面反射が発生するとそれに伴い検査画像の劣化が生じてしまうため、鏡面反射が発生したことを検知し画像の劣化による外観検査精度の低下を抑制するため鏡面反射の発生箇所を記録する必要がある。その方法としてS4においては、受光素子からの出力電圧と基準電圧との比較を行い、鏡面反射発生位置に対応する専用の記録部にフラグ信号の出力を行う。更に、S5において、鏡面反射が発生した被検査物に対して走査方向を180度変更後、S6においてフラグ信号が示す範囲の撮像を行い、S7で、当該範囲の画像データを記録する。   FIG. 1 is a flowchart showing a procedure from inspection image capturing to appearance inspection in the appearance inspection apparatus according to the present invention. First, a brief description of each process shown in S1 to S9 in the figure will be given. When a start command for appearance inspection is issued in S1, imaging of the inspection image is performed by receiving, in the inspection image capturing of S2, vertical reflected light from the inspection object of the light beam irradiated from the vertical direction by the light receiving element. Is done. At this time, in S3, specular reflection may occur when the reflection coefficient of the lead portion of the component mounted on the inspection object is large. When specular reflection occurs, the inspection image deteriorates accordingly. Therefore, it is necessary to detect the occurrence of specular reflection and to record the occurrence of specular reflection in order to suppress the deterioration of the appearance inspection accuracy due to the image deterioration. . In S4, the output voltage from the light receiving element is compared with the reference voltage, and a flag signal is output to a dedicated recording unit corresponding to the specular reflection occurrence position. Further, in S5, the scan direction is changed by 180 degrees with respect to the inspected object in which the specular reflection has occurred, and then the range indicated by the flag signal is imaged in S6, and the image data in the range is recorded in S7.

S7で記憶された画像データの読み出しは、通常のS軸方向と逆方向に読み出して、S2の撮像で得た鏡面反射が発生した部分の画像データと合成する。   The image data stored in S7 is read out in the direction opposite to the normal S-axis direction, and is combined with the image data of the portion where the specular reflection is obtained in the imaging in S2.

このようなステップにて、鏡面反射による画像の劣化を最小限に抑えた鏡面反射発生部分の画像データを得ることができる。更に、鏡面反射が発生しなかった部分の画像データとS7の手順で得られた画像データをS8において被検査物に相当する検査画像に合成することで、S9にて、より正確な外観検査を実施することが可能になる。本発明の外観検査装置及び外観検査方法は、以上の工程を1サイクルとするものである。   Through such steps, it is possible to obtain image data of a specular reflection occurrence portion that minimizes image degradation due to specular reflection. Further, by combining the image data of the part where the specular reflection did not occur and the image data obtained in the procedure of S7 into an inspection image corresponding to the inspection object in S8, a more accurate appearance inspection is performed in S9. It becomes possible to carry out. In the appearance inspection apparatus and the appearance inspection method of the present invention, the above process is performed as one cycle.

以下、図1の各工程についてさらに詳細な説明を行う。図2にはセンサ部を、図3にはセンサ部を含む外観検査装置全体の構成を模式的に示す。   In the following, each step in FIG. 1 will be described in more detail. FIG. 2 schematically shows the configuration of the sensor unit, and FIG. 3 schematically shows the overall configuration of the appearance inspection apparatus including the sensor unit.

まず始めにセンサ部の構造について図2を用いて説明を行う。   First, the structure of the sensor unit will be described with reference to FIG.

センサ部1は光源2(レーザ光源)、ポリゴンミラー3、走査レンズ4からなる走査光学系とハーフミラー5、集光レンズ6、受光素子7とからなる受光光学系にて構成される。走査光学系は、レーザ光源2からの光ビーム(レーザ)をポリゴンミラー3により偏向し、走査レンズ4を介して被検査物8に対して垂直方向よりレーザを照射する。さらに、ポリゴンミラー3が回転することで偏向されたレーザは走査レンズ4に対する入射位置を順次変え、被検査物8上で1ライン走査を順次繰り返し撮像を行う。1ライン撮像幅は、30mmであり、走査方向はX軸方向と略一致するS軸方向とする。一方の受光光学系は、被検査物8からの垂直方向への反射光をハーフミラー5で偏向し、集光レンズ6により受光素子7に集光させることで被検査物8の画像信号を得る。   The sensor unit 1 includes a scanning optical system including a light source 2 (laser light source), a polygon mirror 3, and a scanning lens 4, and a light receiving optical system including a half mirror 5, a condensing lens 6, and a light receiving element 7. The scanning optical system deflects the light beam (laser) from the laser light source 2 by the polygon mirror 3 and irradiates the inspection object 8 with the laser from the vertical direction via the scanning lens 4. Further, the laser deflected by the rotation of the polygon mirror 3 sequentially changes the incident position with respect to the scanning lens 4 and sequentially performs one-line scanning on the inspection object 8 to perform imaging. The one-line imaging width is 30 mm, and the scanning direction is the S-axis direction that substantially matches the X-axis direction. One light receiving optical system obtains an image signal of the inspection object 8 by deflecting the reflected light in the vertical direction from the inspection object 8 by the half mirror 5 and condensing it on the light receiving element 7 by the condenser lens 6. .

続いて各軸駆動部と被検査物8の撮像について図3を用いて説明を行う。
Y軸位置検知部9は、CPU10から撮像開始の指示が出るとレーザ走査位置と被検査物8の位置と被検査物8の撮像開始希望位置のY座標より撮像開始希望位置到達信号A2を生成し撮像制御部11に出力する。被検査物8の載置テーブル12は、Y軸方向駆動部13により被検査物8の撮像に必要な距離だけY軸方向に移動する。
Next, imaging of each axis driving unit and the inspection object 8 will be described with reference to FIG.
When an instruction to start imaging is output from the CPU 10, the Y-axis position detection unit 9 generates an imaging start desired position arrival signal A2 from the laser scanning position, the position of the inspection object 8, and the Y coordinate of the imaging start desired position of the inspection object 8. Output to the imaging control unit 11. The placement table 12 of the inspection object 8 is moved in the Y-axis direction by a distance necessary for imaging the inspection object 8 by the Y-axis direction driving unit 13.

一方、ポリゴンミラー駆動部14は偏向されたレーザを被検査物8上でY軸方向に対し略直角のS軸方向に走査するためポリゴンミラー3を回転させる。また図4、図5にはポリゴンミラー3とS軸撮像開始位置告知信号A1の関係をそれぞれ模式的に示した。ポリゴンミラー3の面境界にレーザが照射された場合を表す図4において、偏向されたレーザは被検査物8上を走査することが不可能であり、このときのS軸撮像開始位置告知信号A1は図4の信号位置1に相当する。   On the other hand, the polygon mirror driving unit 14 rotates the polygon mirror 3 in order to scan the deflected laser on the inspection object 8 in the S-axis direction substantially perpendicular to the Y-axis direction. 4 and 5 schematically show the relationship between the polygon mirror 3 and the S-axis imaging start position notification signal A1. In FIG. 4 showing the case where the surface boundary of the polygon mirror 3 is irradiated with the laser, the deflected laser cannot scan the inspection object 8, and the S-axis imaging start position notification signal A1 at this time Corresponds to signal position 1 in FIG.

しかしポリゴンミラーがさらに回転後レーザが照射されると、偏向されたレーザは図5に示す通り被検査物8上のS軸撮像開始可能位置に到達する。このときS軸位置検知部15は図5の信号位置2に相当するS軸撮像開始位置告知信号A1を撮像制御部11に出力する。このように、S軸撮像開始位置告知信号A1は前記S軸撮像開始可能位置にレーザが照射される角度に回転するポリゴンミラー3が位置する度に撮像制御部11に対し出力されるものである。   However, when the polygon mirror is further rotated and then irradiated with laser, the deflected laser reaches the S-axis imaging start possible position on the inspection object 8 as shown in FIG. At this time, the S-axis position detection unit 15 outputs an S-axis imaging start position notification signal A1 corresponding to the signal position 2 in FIG. As described above, the S-axis imaging start position notification signal A1 is output to the imaging control unit 11 every time the polygon mirror 3 that rotates at an angle at which the laser is irradiated is positioned at the S-axis imaging start possible position. .

撮像制御部11は、撮像開始希望位置到達信号A2の入力でトリガ待ち状態になり、S軸撮像開始位置告知信号A1の入力で1ライン撮像が開始される。ここで、通常検査時における被検査物8の載置方向を0度撮像方向と呼ぶものとし、このときセンサ回路出力切替部16は画像バッファ部17側を選択するものである。   The imaging control unit 11 enters a trigger waiting state when the desired imaging start position arrival signal A2 is input, and one-line imaging is started when the S-axis imaging start position notification signal A1 is input. Here, the placement direction of the inspection object 8 during the normal inspection is referred to as a 0-degree imaging direction, and at this time, the sensor circuit output switching unit 16 selects the image buffer unit 17 side.

本装置では、12面構造かつ40000rpmにて回転するポリゴンミラー3が用いられておりS軸撮像開始位置告知信号A1の周期は125μsである。ポリゴンミラー1面の走査可能なS軸方向走査幅(1ライン撮像幅)は30mmで、その中を1500ポイント、即ち20μmの分解能で撮像が行われ、その反射光は受光素子7に入力後センサ回路部18で増幅、A/D変換等が行われ画像バッファ部17に一時的に保存される。さらに、被検査物8の載置テーブル12は撮像実行中、一定速度(分解能20μm/1ライン撮像の周期)で所定の長さだけY軸方向に移動することで短冊状画像データが得られ、1つの短冊状画像を撮像し終えるとX軸方向駆動部19が、センサ部1をY軸方向に対して略直角方向のX軸方向に30mm移動させセンサ部1は再び撮像を開始する。この動作を被検査物8全体が撮像できるまで繰り返し行い画像合成部20において短冊状画像の貼り合わせ実施後、検査部21にて被検査物8の検査が行われる。   In this apparatus, a polygon mirror 3 having a 12-surface structure and rotating at 40000 rpm is used, and the cycle of the S-axis imaging start position notification signal A1 is 125 μs. The scan width in the S-axis direction (one line imaging width) that can be scanned on one surface of the polygon mirror is 30 mm, and imaging is performed with a resolution of 1500 points, that is, 20 μm, and the reflected light is input to the light receiving element 7 after being sensor Amplification, A / D conversion, and the like are performed by the circuit unit 18 and temporarily stored in the image buffer unit 17. Furthermore, the strip table image data is obtained by moving the mounting table 12 of the inspection object 8 in the Y-axis direction by a predetermined length at a constant speed (resolution 20 μm / 1 line imaging cycle) during imaging execution. When the imaging of one strip-shaped image is completed, the X-axis direction driving unit 19 moves the sensor unit 1 by 30 mm in the X-axis direction substantially perpendicular to the Y-axis direction, and the sensor unit 1 starts imaging again. This operation is repeated until the entire inspection object 8 can be imaged, and after the strip-shaped images are pasted together in the image composition unit 20, the inspection unit 21 inspects the inspection object 8.

しかしながら、前記の通り受光素子7に入射するレーザは被検査物8の垂直方向の反射光であるため、被検査物8上に配置されたICやコネクタのリード部等反射係数の大きい部品においては光軸と受光素子7との位置関係によって鏡面反射が発生する。鏡面反射は受光素子7に突然の激しい入射光をもたらし受光素子7及びセンサ回路部18は飽和状態になり1ライン撮像データは図6に示すように該鏡面反射発生から数画素後に至るまで鏡面反射の影響を受け画像が劣化するため、検査部21において正常な検査が行えず改善を必要とする。図6に示す鏡面反射が原因で生じる鏡面反射発生後の画像の劣化を尾引き現象と呼ぶことにする。   However, as described above, since the laser incident on the light receiving element 7 is reflected light in the vertical direction of the inspection object 8, in a component having a large reflection coefficient such as an IC or a lead portion of a connector arranged on the inspection object 8. Specular reflection occurs depending on the positional relationship between the optical axis and the light receiving element 7. The specular reflection causes sudden and intense incident light to the light receiving element 7, and the light receiving element 7 and the sensor circuit unit 18 are saturated, and the one-line imaging data is specularly reflected from the occurrence of the specular reflection until several pixels later as shown in FIG. 6. Therefore, the inspection unit 21 cannot perform normal inspection and needs to be improved. The deterioration of the image after the occurrence of the specular reflection caused by the specular reflection shown in FIG. 6 is referred to as a tailing phenomenon.

即ち、鏡面反射が発生した場合、その鏡面反射の発生後の劣化が尾引き現象となるので、発生後の画像データの劣化部分が長くなる。この尾引き現象の発生部分の画像データを除去するため通常のS軸方向と逆方向に走査し、尾引き現象の影響のない鏡面反射の発生部分の前後の画像データを利用するものである。もちろん、鏡面反射の発生部分の画像データは、除去できず劣化したままであるが、鏡面反射による画像データの劣化部分を減らすことができる。   That is, when specular reflection occurs, the deterioration after the occurrence of the specular reflection becomes a tailing phenomenon, so that the deteriorated portion of the image data after the occurrence becomes long. In order to remove the image data of the portion where the tailing phenomenon occurs, scanning is performed in the direction opposite to the normal S-axis direction, and image data before and after the portion where the specular reflection does not occur is used. Of course, the image data of the portion where the specular reflection occurs cannot be removed and remains deteriorated, but the deteriorated portion of the image data due to the specular reflection can be reduced.

なお、ポリゴンミラー3がS軸撮像開始可能位置に到達する度にS軸位置検知部15によってS軸撮像開始位置告知信号を生成する代わりに、レーザの走査位置を検出する受光素子を別に設けることでS軸撮像開始位置告知信号を生成し、撮像制御部11に出力することも可能である。   In addition, instead of generating the S-axis imaging start position notification signal by the S-axis position detection unit 15 every time the polygon mirror 3 reaches the S-axis imaging start possible position, a separate light receiving element for detecting the laser scanning position is provided. It is also possible to generate an S-axis imaging start position notification signal and output it to the imaging control unit 11.

また本装置では、前記被検査物8の載置テーブル12を所定の長さだけY軸方向に移動させ短冊状画像データの取得を行い、さらにセンサ部1をX軸方向に移動させることで被検査物8全体の撮像を行うがその代わりに、センサ部1をY軸方向に所定の長さだけ移動させ短冊状画像データの取得を行い、さらに被検査物8の載置テーブル12をX軸方向に移動させることで被検査物8全体の撮像を実現することも可能である。   In this apparatus, the mounting table 12 of the inspection object 8 is moved in the Y-axis direction by a predetermined length to acquire strip-shaped image data, and the sensor unit 1 is further moved in the X-axis direction. The entire inspection object 8 is imaged, but instead, the sensor unit 1 is moved by a predetermined length in the Y-axis direction to acquire strip-shaped image data, and the placement table 12 of the inspection object 8 is further moved to the X-axis. It is also possible to realize imaging of the entire inspection object 8 by moving in the direction.

続いて尾引き現象が発生した場合の補正について更に詳しく説明を行う。鏡面反射が発生した場合には通常、図7に示すように1ライン撮像の進行方向に鏡面反射が原因の尾引き現象が現れ検査画像に劣化が起こる。ここで、短冊状画像の四隅の位置を明解に示すためA〜Dの各文字を付与する。鏡面検出部22は受光素子7から出力される画像信号の強度を基準電圧と比較し、画像信号の出力が基準電圧より大きい場合に鏡面反射が発生しているものと判断し、図8に示したように鏡面反射が発生した短冊状画像の1ライン撮像位置に対応する鏡面反射発生記録部23にフラグ信号(鏡面反射発生信号)の入力をもって鏡面反射発生位置の記録を行う。また、鏡面反射が発生した場合においても該被検査物8全体の撮像が一通り終了するまで検査画像の撮像を実施し、該鏡面反射部以外にも鏡面反射が存在する場合には都度1ライン撮像位置に対応する鏡面反射発生記録部23に鏡面反射発生位置の記録を行う。   Subsequently, the correction when the tailing phenomenon occurs will be described in more detail. When specular reflection occurs, normally, as shown in FIG. 7, a tailing phenomenon caused by specular reflection appears in the traveling direction of one-line imaging, and the inspection image is deteriorated. Here, in order to clearly indicate the positions of the four corners of the strip-shaped image, the letters A to D are given. The mirror surface detection unit 22 compares the intensity of the image signal output from the light receiving element 7 with a reference voltage, and determines that mirror reflection has occurred when the output of the image signal is greater than the reference voltage, as shown in FIG. As described above, the specular reflection occurrence position is recorded by inputting the flag signal (specular reflection occurrence signal) to the specular reflection occurrence recording unit 23 corresponding to the one-line imaging position of the strip-like image in which the specular reflection occurs. Even when specular reflection occurs, the inspection image is picked up until the entire image of the inspection object 8 is completed. When there is specular reflection in addition to the specular reflection portion, one line is obtained each time. The specular reflection occurrence position is recorded in the specular reflection occurrence recording unit 23 corresponding to the imaging position.

被検査物8に対する0度撮像方向での撮像終了後、鏡面反射発生記録部23に鏡面反射発生信号の記録がある場合には鏡面反射が発生した被検査物8を載置テーブル12より取り出し180度回転させた状態で再載置し、鏡面反射発生信号の記録位置より鏡面反射位置検出部24において導出される範囲内の撮像を行う。もちろん再載置後において、被検査物8の全体を再走査してもよい。ここで、180度回転させた状態で載置テーブル12に被検査物8を載置し撮像を行う方向を180度撮像方向と呼ぶものとする。ここでは、被検査物8の大きさをX(mm)×Y(mm)、被検査物8の端から撮像開始位置までの余白をX軸方向ではA(mm)、Y軸方向ではB(mm)、鏡面反射が発生した位置を撮像開始位置よりカウントしてx番目の短冊状画像を構成するyライン目において検出したものとし、それぞれに対し図9に示すとおり座標を与えると、本装置の1ライン撮像幅は30(mm)かつY軸方向の分解能は20(μm)であることより、
a(mm)=30(x−1)+A から 30x+A・・・(1)
b(μm)=20(y−1)+B から 20y+B・・・(2)
の範囲内に鏡面反射発生位置が存在することが明らかになる。さらに、被検査物8の180度撮像方向による撮像範囲は、
A´(MM)=X−(30X+A) から X−{30(X−1)+A}・・・(3)
B´(μM)=Y−(20Y+B) から Y−{20(Y−1)+B}・・・(4)
で表すことができる。CPU10から撮像指令が出力されると式(3)、(4)で導出された範囲の撮像が行われる。もちろん180度撮像方向の撮像範囲はx、yの値を変化させることにより所望の範囲を指定することが可能である。
After the imaging in the 0 degree imaging direction with respect to the inspection object 8 is completed, when the specular reflection generation signal is recorded in the specular reflection generation recording unit 23, the inspection object 8 in which the specular reflection occurs is taken out from the mounting table 12 180. Then, the image is captured within the range derived by the specular reflection position detection unit 24 from the recording position of the specular reflection occurrence signal. Of course, the entire inspection object 8 may be re-scanned after re-mounting. Here, the direction in which the inspection object 8 is placed on the placement table 12 while being rotated 180 degrees and the imaging is performed is referred to as a 180-degree imaging direction. Here, the size of the inspection object 8 is X (mm) × Y (mm), the margin from the end of the inspection object 8 to the imaging start position is A (mm) in the X-axis direction, and B ( mm), the position where the specular reflection occurs is counted from the imaging start position and detected at the y-th line constituting the xth strip-shaped image, and given coordinates as shown in FIG. 1 line imaging width is 30 (mm) and the resolution in the Y-axis direction is 20 (μm).
a (mm) = 30 (x−1) + A to 30x + A (1)
b (μm) = 20 (y−1) + B to 20y + B (2)
It becomes clear that the specular reflection occurrence position exists within the range of. Furthermore, the imaging range of the inspection object 8 by the 180-degree imaging direction is
A ′ (MM) = X− (30X + A) to X− {30 (X−1) + A} (3)
B ′ (μM) = Y− (20Y + B) to Y− {20 (Y−1) + B} (4)
It can be expressed as When the imaging command is output from the CPU 10, imaging in the range derived by the equations (3) and (4) is performed. Of course, the imaging range in the 180-degree imaging direction can be designated by changing the values of x and y.

センサ回路出力切替部16は、180度撮像方向で被検査物8を撮像するとき鏡面反射部記録部25側を選択して画素の配列が0度撮像方向の時とは逆方向のままの状態で180度撮像時の画像データを鏡面反射部記録部25に記録する。また、図10は図7の短冊状画像を180度撮像方向にて撮像されたものにA〜Dの各文字を付与したものであり、A〜Dの各文字が示す位置は図7及び図10で対応しているものとする。180度撮像方向による撮像では図10からも解るように尾引き現象は鏡面反射発生部に対して1ライン撮像の進行方向に現れるため、0度撮像方向時に尾引き現象の影響を受けた画素部分に対して尾引き現象の影響がない正確な画素情報を得ることが可能となる。もちろん180度撮像方向においても0度撮像方向時の鏡面反射部と同一部で鏡面反射が発生することが予測できるが、鏡面反射が原因で発生する尾引き現象は1ライン撮像の進行方向に発生するため、尾引き現象の発生する部位も0度撮像方向と180度撮像方向では互いに異なる。   The sensor circuit output switching unit 16 selects the specular reflection unit recording unit 25 side when imaging the inspection object 8 in the 180-degree imaging direction, and remains in the direction opposite to that when the pixel array is in the 0-degree imaging direction. The image data at the time of 180-degree imaging is recorded in the specular reflection unit recording unit 25. FIG. 10 is obtained by adding the letters A to D to the strip-like image of FIG. 7 taken in the 180-degree imaging direction, and the positions indicated by the letters A to D are shown in FIGS. It is assumed that 10 corresponds. As can be seen from FIG. 10, in the imaging in the 180 degree imaging direction, the tailing phenomenon appears in the traveling direction of the one-line imaging with respect to the specular reflection generation unit. Therefore, the pixel portion affected by the tailing phenomenon in the 0 degree imaging direction. Therefore, it is possible to obtain accurate pixel information that is not affected by the tailing phenomenon. Of course, even in the 180 degree imaging direction, it can be predicted that specular reflection will occur in the same part as the specular reflection part in the 0 degree imaging direction, but the tailing phenomenon caused by the specular reflection occurs in the traveling direction of one line imaging. Therefore, the part where the tailing phenomenon occurs is also different between the 0-degree imaging direction and the 180-degree imaging direction.

鏡面反射部記録部25は、鏡面反射発生記録部23に鏡面反射発生を示すHレベルが短冊状画像内に存在する場合にのみ、該当する0度撮像方向により撮像された短冊状画像データ全体の読み出しを画像バッファ部17より行う。鏡面反射部記録部25に記録されている180度撮像方向の1ライン撮像データは図11に示すように、0度方向撮像の画像データと逆向きになっているので逆方向の読み出しを行い、画像バッファ部17より読み出した0度撮像方向における鏡面反射の発生した1ライン撮像データを含む短冊状画像データより尾引き現象の影響が少ない短冊状画像を生成する。   The specular reflection unit recording unit 25, when the H level indicating the occurrence of specular reflection exists in the specular reflection generation recording unit 23 in the strip-shaped image, the entire strip-shaped image data captured in the corresponding 0-degree imaging direction. Reading is performed from the image buffer unit 17. As shown in FIG. 11, the one-line imaging data in the 180-degree imaging direction recorded in the specular reflection unit recording unit 25 is in the opposite direction to the image data in the 0-degree imaging, so that reading in the opposite direction is performed. A strip-like image having less influence of the tailing phenomenon than the strip-like image data including the one-line imaging data in which specular reflection occurs in the 0-degree imaging direction read from the image buffer unit 17 is generated.

一方、短冊状画像内に鏡面反射発生信号のHレベルが存在しないとき画像合成部20は、画像バッファ部17より直接短冊状画像データの読み出しを行う。   On the other hand, when the H level of the specular reflection occurrence signal does not exist in the strip image, the image composition unit 20 reads the strip image data directly from the image buffer unit 17.

即ち、画像合成部20は、鏡面反射が存在しない場合には画像バッファ部17から画像データを読み出し短冊状画像の合成を行うが、鏡面反射が存在する場合は、一度鏡面反射部記録部25に鏡面反射が発生した短冊状画像を読み出し、鏡面反射で劣化した1ライン撮像データ部分が最小になるように補正後、画像合成部20で鏡面反射の影響の存在しない短冊状画像データと合成することで被検査物8に相当する検査画像を得る。この場合、短冊状画像全体を補正してもよいが、鏡面反射が存在するライン部分のみを補正して画像合成部20で画像データと合成してもよい。   That is, when there is no specular reflection, the image composition unit 20 reads the image data from the image buffer unit 17 and synthesizes the strip-shaped image. When there is specular reflection, the image composition unit 20 once stores the specular reflection in the specular reflection unit recording unit 25. A strip-shaped image in which specular reflection has occurred is read out, corrected so that the one-line imaging data portion deteriorated by the specular reflection is minimized, and then synthesized by the image synthesis unit 20 with strip-shaped image data that is not affected by the specular reflection. Thus, an inspection image corresponding to the inspection object 8 is obtained. In this case, the entire strip-shaped image may be corrected, or only the line portion where the specular reflection exists may be corrected and combined with the image data by the image combining unit 20.

なお、被検査物8を取り出して180度回転させた状態で載置テーブル12に再載置する代わりに、被検査物8を載置したテーブルが180度旋廻することにより同様の撮像を行うことも可能である。   In addition, instead of re-mounting the inspection object 8 on the mounting table 12 in a state where the inspection object 8 is rotated 180 degrees, the same image is obtained by rotating the table on which the inspection object 8 is rotated 180 degrees. Is also possible.

また、被検査物8を180度回転させ撮像を行うことで、同一部位の撮像を行う1ライン撮像方向を180度変化させる代わりに、ポリゴンミラー3の回転方向を逆向きにすることで1ライン撮像方向を180度変化させることも可能である。   In addition, by rotating the object to be inspected 180 degrees and performing imaging, instead of changing the one-line imaging direction in which the same part is imaged by 180 degrees, the polygon mirror 3 is rotated in the opposite direction to rotate one line. It is also possible to change the imaging direction by 180 degrees.

更に、本装置の外観検査装置及び外観検査方法は、被検査物8に対して垂直方向から照射されるレーザの垂直方向の反射光を受光素子にて受光するセンサの代わりに、被検査物に対して垂直ではない角度を持った方向から照射されるレーザの反射光を任意の方向で設置された受光素子にて受光するセンサで実施を行うことも可能である。   Further, the appearance inspection apparatus and the appearance inspection method of the present apparatus are applied to the inspection object instead of the sensor that receives the reflected light in the vertical direction of the laser irradiated from the vertical direction to the inspection object 8 by the light receiving element. It is also possible to carry out with a sensor that receives reflected light of a laser irradiated from a direction having an angle that is not perpendicular to a light receiving element installed in an arbitrary direction.

本発明による外観検査装置及び外観検査方法を使用して、被検査物8からの垂直方向の反射光を受光素子7にて受光する場合、鏡面反射が原因で引き起こされる検査画像の尾引き現象に対し、該被検査物8を180度回転させた状態で撮像を行ったデータをもとに検査画像の補正を行うことで尾引き現象に影響の少ない検査画像の入手が可能となる。これにより高精度な検査画像を得ること、高精度な検査を実施することが実現し、高密度化が進むプリント基板に対処する必要のある外観検査装置の性能をより充実させることが可能となる。   When the reflected light in the vertical direction from the inspection object 8 is received by the light receiving element 7 using the appearance inspection apparatus and the appearance inspection method according to the present invention, the tailing phenomenon of the inspection image caused by the specular reflection is caused. On the other hand, it is possible to obtain an inspection image with little influence on the tailing phenomenon by correcting the inspection image based on data obtained by imaging the inspection object 8 in a state of being rotated 180 degrees. As a result, it is possible to obtain a high-accuracy inspection image and to carry out a high-accuracy inspection, and it is possible to further enhance the performance of an appearance inspection apparatus that needs to cope with a printed circuit board whose density is increasing. .

本発明にかかる外観検査装置は、被検査物にレーザを照射し垂直方向の反射光を受光することによって被検査物の表面状態を画像化する外観検査装置等において、被検査物上で発生する鏡面反射が原因で生じる尾引き現象の補正を行う手段として有用である。   An appearance inspection apparatus according to the present invention occurs on an inspection object in an appearance inspection apparatus that images the surface state of the inspection object by irradiating the inspection object with a laser and receiving reflected light in the vertical direction. This is useful as a means for correcting a tailing phenomenon caused by specular reflection.

本発明の実施例1における外観検査装置の撮像方法を示すフローチャート1 is a flowchart showing an imaging method of an appearance inspection apparatus in Embodiment 1 of the present invention. 本発明の実施例1における外観検査装置の光学系の構成を示す図The figure which shows the structure of the optical system of the external appearance inspection apparatus in Example 1 of this invention. 本発明の実施例1における外観検査装置の全体の構成を示す図The figure which shows the whole structure of the external appearance inspection apparatus in Example 1 of this invention. 外観検査装置におけるポリゴンミラーの面とS軸位置検知部出力との関係を表す図The figure showing the relationship between the surface of the polygon mirror in a visual inspection apparatus, and an S-axis position detection part output 外観検査装置におけるポリゴンミラーの面とS軸撮像開始位置告知信号との関係を表す図The figure showing the relationship between the surface of the polygon mirror in a visual inspection apparatus, and an S-axis imaging start position notification signal 従来の方法で鏡面反射が発生する被検査物を1ライン撮像した場合を示す図The figure which shows the case where 1 line of the to-be-inspected object which a specular reflection generate | occur | produces by the conventional method is imaged 本発明の実施例1における0度撮像方向にて鏡面反射が発生する被検査物を撮像した短冊状画像を示す図The figure which shows the strip-shaped image which imaged the to-be-inspected object which specular reflection generate | occur | produces in the 0 degree imaging direction in Example 1 of this invention. 本発明の実施例1における鏡面反射が発生した1ライン撮像場所の記録を示す図The figure which shows the recording of the 1 line imaging location where the specular reflection generate | occur | produced in Example 1 of this invention 本発明の実施例1における0度撮像方向にて鏡面反射が発生した被検査物上の場所の特定方法を示す図The figure which shows the identification method of the place on the to-be-inspected object which specular reflection generate | occur | produced in the 0 degree imaging direction in Example 1 of this invention. 本発明の実施例1における180度撮像方向にて鏡面反射が発生する被検査物を撮像した短冊状画像を示す図The figure which shows the strip-shaped image which imaged the to-be-inspected object which specular reflection generate | occur | produces in the 180 degree | times imaging direction in Example 1 of this invention. 本発明の実施例1における180度撮像方向にて撮像された1ライン撮像データを0度撮像方向の1ライン撮像データに変換することを示す図The figure which shows converting 1 line imaging data imaged in the 180 degree | times imaging direction in Example 1 of this invention into 1 line imaging data of 0 degree | times imaging direction.

符号の説明Explanation of symbols

1 センサ部
2 光源(レーザ)
3 ポリゴンミラー
7 受光素子
8 被検査物
17 画像バッファ部
22 鏡面検出部
25 鏡面反射部記録部

1 Sensor part 2 Light source (laser)
3 Polygon mirror 7 Light receiving element 8 Inspected object 17 Image buffer unit 22 Mirror surface detection unit 25 Specular reflection unit recording unit

Claims (5)

被検査物に光ビームを照射して該検査物の形状を測定する外観検査装置において、
ポリゴンミラーにより光ビームを偏向し被検査物に対しX軸方向と略一致するS軸方向に前記偏向された光ビームを走査して該被検査物からの反射光を受光素子にて受光するセンサ部と、
前記センサ部から出力される当該S軸方向の1ライン走査を順次行うことで得られるY軸方向の所定の長さの前記被検査物の短冊状画像データを記憶する画像バッファ部と、
前記反射光から得られる信号電圧と基準電圧の比較を行い所定の光強度以上の反射光が前記受光素子に入射する鏡面反射が発生したことを検出すると鏡面反射発生信号を出力する鏡面検出部と、
前記鏡面反射発生信号に基づき鏡面反射が発生した撮像位置のラインの再走査を通常のS軸方向と逆方向に走査を行って画像データの記録を行う鏡面反射部記録部と、
を備え、
当該鏡面反射が発生したことを示す前記鏡面反射発生信号が存在するときは、前記画像バッファ部からの画像データと前記鏡面反射部記録部からの画像データを合成して検査画像を生成することを特徴とする外観検査装置。
In the appearance inspection apparatus that measures the shape of the inspection object by irradiating the inspection object with a light beam,
A sensor that deflects a light beam by a polygon mirror, scans the deflected light beam in the S-axis direction substantially coincident with the X-axis direction with respect to the inspection object, and receives reflected light from the inspection object by a light receiving element. And
An image buffer unit for storing strip-shaped image data of the inspection object having a predetermined length in the Y-axis direction obtained by sequentially performing one-line scanning in the S-axis direction output from the sensor unit;
A specular detection unit that compares a signal voltage obtained from the reflected light with a reference voltage and detects that specular reflection occurs when reflected light having a predetermined light intensity or more is incident on the light receiving element; ,
A specular reflection unit recording unit that records image data by performing rescanning of a line at an imaging position where specular reflection has occurred based on the specular reflection generation signal in a direction opposite to the normal S-axis direction;
With
When the specular reflection occurrence signal indicating that the specular reflection has occurred, the inspection data is generated by combining the image data from the image buffer unit and the image data from the specular reflection unit recording unit. A visual inspection device.
前記鏡面反射部記録部からの画像データは、該鏡面反射部記録部への記録時と逆向きに読み出すことを特徴とする請求項1に記載の外観検査装置。 The appearance inspection apparatus according to claim 1, wherein the image data from the specular reflection unit recording unit is read in a direction opposite to that during recording in the specular reflection unit recording unit. 前記逆方向のS軸走査は、前記ポリゴンミラーの回転を逆方向回転して前記被検査物を走査することを特徴とする請求項1に記載の外観検査装置。 2. The appearance inspection apparatus according to claim 1, wherein the reverse S-axis scanning scans the inspection object by rotating the polygon mirror in the reverse direction. 被検査物に光ビームを照射して該検査物の形状を測定する外観検査方法において、
ポリゴンミラーにより光ビームを偏向し被検査物に対しX軸方向と略一致するS軸方向に前記偏向された光ビームを走査して該被検査物からの反射光を受光素子にて受光するセンサ部を有し、
前記センサ部から出力される当該S軸方向の1ライン走査を順次行うことで得られるY軸方向の所定の長さの前記被検査物の短冊状画像データを画像バッファ部に記憶し、
前記反射光から得られる信号電圧と基準電圧の比較を行い所定の光強度以上の反射光が前記受光素子に入射する鏡面反射が発生したことを検出すると鏡面反射発生信号を出力し、
前記鏡面反射発生信号に基づき鏡面反射が発生した撮像位置のラインの再走査を通常のS軸方向と逆方向に走査を行って画像データを鏡面反射部記録部に記録し、
当該鏡面反射が発生したことを示す前記鏡面反射発生信号が存在するときは、前記画像バッファ部からの画像データと前記鏡面反射部記録部からの画像データを合成して検査画像を生成することを特徴とする外観検査方法。
In the appearance inspection method for measuring the shape of the inspection object by irradiating the inspection object with a light beam,
A sensor that deflects a light beam by a polygon mirror, scans the deflected light beam in the S-axis direction substantially coincident with the X-axis direction with respect to the inspection object, and receives reflected light from the inspection object by a light receiving element. Part
The strip-shaped image data of the inspection object having a predetermined length in the Y-axis direction obtained by sequentially performing the one-line scanning in the S-axis direction output from the sensor unit is stored in the image buffer unit,
A comparison between the signal voltage obtained from the reflected light and a reference voltage is performed, and when it is detected that specular reflection occurs when reflected light having a predetermined light intensity or more is incident on the light receiving element, a specular reflection generation signal is output,
Based on the specular reflection generation signal, rescanning the line at the imaging position where the specular reflection has occurred is scanned in the direction opposite to the normal S-axis direction, and image data is recorded in the specular reflection unit recording unit,
When the specular reflection occurrence signal indicating that the specular reflection has occurred, the inspection data is generated by combining the image data from the image buffer unit and the image data from the specular reflection unit recording unit. Characteristic visual inspection method.
前記鏡面反射部記録部からの画像データは、該鏡面反射部記録部への記録時と逆向きに読み出すことを特徴とする請求項4に記載の外観検査方法。

5. The appearance inspection method according to claim 4, wherein the image data from the specular reflection unit recording unit is read in a direction opposite to that when recording to the specular reflection unit recording unit.

JP2005046762A 2005-02-23 2005-02-23 Visual inspection device and visual inspection method Pending JP2006234465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046762A JP2006234465A (en) 2005-02-23 2005-02-23 Visual inspection device and visual inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046762A JP2006234465A (en) 2005-02-23 2005-02-23 Visual inspection device and visual inspection method

Publications (1)

Publication Number Publication Date
JP2006234465A true JP2006234465A (en) 2006-09-07

Family

ID=37042297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046762A Pending JP2006234465A (en) 2005-02-23 2005-02-23 Visual inspection device and visual inspection method

Country Status (1)

Country Link
JP (1) JP2006234465A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320585A (en) * 1988-06-22 1989-12-26 Fujitsu Ltd Circuit parts mounted condition checking device
JPH05215692A (en) * 1992-01-23 1993-08-24 Nec Corp Inspecting apparatus for appearance
JPH06213631A (en) * 1993-01-14 1994-08-05 Taiyo Yuden Co Ltd Shape examination device
JPH07332955A (en) * 1994-06-08 1995-12-22 Matsushita Electric Ind Co Ltd Inspection of mounted printed board
JPH1019792A (en) * 1996-07-05 1998-01-23 Topcon Corp Surface inspection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320585A (en) * 1988-06-22 1989-12-26 Fujitsu Ltd Circuit parts mounted condition checking device
JPH05215692A (en) * 1992-01-23 1993-08-24 Nec Corp Inspecting apparatus for appearance
JPH06213631A (en) * 1993-01-14 1994-08-05 Taiyo Yuden Co Ltd Shape examination device
JPH07332955A (en) * 1994-06-08 1995-12-22 Matsushita Electric Ind Co Ltd Inspection of mounted printed board
JPH1019792A (en) * 1996-07-05 1998-01-23 Topcon Corp Surface inspection system

Similar Documents

Publication Publication Date Title
US8355044B2 (en) Reticle defect inspection apparatus and reticle defect inspection method
US20030002746A1 (en) Image creating device and image creating method
JP5296967B2 (en) 3D shape measuring device
JPH04105341A (en) Method and equipment for detecting bending and floating of lead of semiconductor device
JP2004226128A (en) Apparatus and method for visual inspection
JP4275149B2 (en) Boundary position determination apparatus, method for determining boundary position, program for causing computer to function as the apparatus, and recording medium
JP4680640B2 (en) Image input apparatus and image input method
JP2004333446A (en) Appearance inspection method, appearance inspection apparatus, program therefor, and recording medium therefor
JP2002181732A (en) Apparatus and method for visual inspection
KR20180038964A (en) Method for confirming reference image, method for inspecting mask, and apparatus for inspecting mask
JP2010164377A (en) Surface profile measurement device and surface profile measuring method
JP4083854B2 (en) Image detection device
JP2006234465A (en) Visual inspection device and visual inspection method
JP2004235671A (en) Electronic component mounting device
JP2003315014A (en) Inspection method and inspection device
JP4654693B2 (en) Inspection image imaging device
JP4266286B2 (en) Distance information acquisition device and distance information acquisition method
JP4049897B2 (en) Image input device
JP2005065992A (en) Image flaw classifying method, apparatus therefor and program
JP5747846B2 (en) Chart inspection method, inspection apparatus, and image sensor for shading correction of image sensor using defocus
JP2001067455A (en) Device of reading number of sheets
JP6938397B2 (en) Inspection equipment and inspection method
JP2000121337A (en) Method and device for image correction
JP2009186217A (en) Three-dimensional shape measuring device and method
JP2009058382A (en) Image acquisition method by multiple scan, image acquisition device, and sample inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080118

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20080213

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD01 Notification of change of attorney

Effective date: 20091120

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A02