JPH0731129B2 - Semiconductor wafer particle detector - Google Patents

Semiconductor wafer particle detector

Info

Publication number
JPH0731129B2
JPH0731129B2 JP59225717A JP22571784A JPH0731129B2 JP H0731129 B2 JPH0731129 B2 JP H0731129B2 JP 59225717 A JP59225717 A JP 59225717A JP 22571784 A JP22571784 A JP 22571784A JP H0731129 B2 JPH0731129 B2 JP H0731129B2
Authority
JP
Japan
Prior art keywords
light
semiconductor wafer
light receiving
foreign matter
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59225717A
Other languages
Japanese (ja)
Other versions
JPS61104244A (en
Inventor
光義 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59225717A priority Critical patent/JPH0731129B2/en
Publication of JPS61104244A publication Critical patent/JPS61104244A/en
Publication of JPH0731129B2 publication Critical patent/JPH0731129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体LSIウエハ、特にLSI製造中間工程でのパ
ターン付ウエハ上の微小異物を高速、高感度で検出する
のに好適な異物検出装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to a semiconductor LSI wafer, and more particularly to a foreign matter detection apparatus suitable for detecting minute foreign matter on a patterned wafer in an LSI manufacturing intermediate step with high speed and high sensitivity. .

〔発明の背景〕[Background of the Invention]

従来のウエハ上の異物検査装置では(i)レーザ光の一
次元高速走査と試料の並進低速移動の組み合せや(ii)
試料の高速回転と並進低速移動との組合せによるら線状
走査を用いて、試料全面の走査・検出を行っていた。
又、特開昭57−80546(公知例1)では自己走査型一次
元光電変換素子アレイの電気的走査と試料低速移動を組
み合せて上記(i)と同等の走査を実現している。更
に、Automatic Microcircuit and Wafer Inspection,El
ectronics Test,Vol.4,No5,May 1981,PP.60−70(公知
例2)では試料ウエハの半径位置に自己走査型一次元光
電変換素子アレイを配置し、これと試料の回転移動を組
み合せて上記(ii)と同等の走査を実現している。
In a conventional foreign matter inspection apparatus on a wafer, (i) a combination of one-dimensional high-speed scanning of laser light and translation low-speed movement of a sample, or (ii)
The entire surface of the sample was scanned and detected by using a linear scan which is a combination of high-speed rotation of the sample and translational low-speed movement.
Further, in JP-A-57-80546 (known example 1), a scanning equivalent to the above (i) is realized by combining the electrical scanning of the self-scanning type one-dimensional photoelectric conversion element array and the low speed movement of the sample. In addition, Automatic Microcircuit and Wafer Inspection, El
In ectronics Test, Vol.4, No5, May 1981, PP.60-70 (known example 2), a self-scanning type one-dimensional photoelectric conversion element array is arranged at the radial position of the sample wafer, and this is combined with the rotational movement of the sample. As a result, scanning equivalent to that in (ii) above is realized.

しかし、公知例1,2の方法では、個々の光電変換素子絵
素の隣接部に存在する不感帯が異物を走査した場合の異
物の“見逃し”を避けることが出来ない。厳密にこれを
避ける為には、不感帯をカバーする様に複数の光電素子
アレイを重複して設置する必要がある。これは必要以上
に信号処理回路量を多くして、かつ信頼性を低下させる
原因となる。しかし、光電素子アレイを重複しなくても
上記不感体幅に比べて検出すべき異物の大きさが十分大
きい場合や、光電変換素子絵素幅の合計に比べ不感帯幅
の合計が無視出来る程度に小さい場合には、上記“見逃
し”は大きな問題とならない。公知例1,2の方法ではこ
のような観点から不感帯による“見逃し”は無視してい
る。
However, according to the methods of the publicly known examples 1 and 2, it is inevitable to "miss" the foreign matter when the dead zone existing in the adjacent portion of each photoelectric conversion element picture element scans the foreign matter. In order to strictly avoid this, it is necessary to install a plurality of photoelectric element arrays so as to overlap the dead zone. This causes an increase in the number of signal processing circuits and a decrease in reliability. However, even if the photoelectric element arrays do not overlap, if the size of the foreign matter to be detected is sufficiently larger than the insensitive body width, or if the total dead band width is negligible compared to the total photoelectric conversion element pixel width. If it is small, the "missing" is not a big problem. In the methods of the known examples 1 and 2, the "missing" due to the dead zone is ignored from such a viewpoint.

〔パターン付ウエハ上の異物検出〕[Detection of foreign matter on patterned wafer]

LSI製造の中間工程でのパターン付ウエハ上の異物検査
作業は、製品歩留り向上、信頼性向上の為に不可欠であ
る。この作業の自動化は特開昭55−149829,特開昭54−1
01390,特開昭55−94145,特開昭56−30630等の一連の特
許に示されている様に偏光を利用した検出方法により実
現されている。この原理を第19図〜第26図を使用して説
明する。
The foreign material inspection work on patterned wafers in the intermediate process of LSI manufacturing is indispensable for improving product yield and reliability. Automation of this work is disclosed in JP-A-55-149829 and JP-A-54-1.
This is realized by a detection method using polarized light as shown in a series of patents such as 01390, JP-A-55-94145 and JP-A-56-30630. This principle will be described with reference to FIGS. 19 to 26.

第19図に示す如く、照明光4をウエハ1表面に対して傾
斜角度φで射照したのみでは、パターン2と異物3から
同時に反射光と散乱光5,6が発生するので、パターン2
から異物3のみを弁別して検出することは出来ない。そ
こで照明光4として、偏光レーザ光を使用し、異物3を
検出する工夫を行った。
As shown in FIG. 19, if the illumination light 4 is only projected onto the surface of the wafer 1 at an inclination angle φ, the reflected light and the scattered light 5, 6 are simultaneously generated from the pattern 2 and the foreign matter 3, so that the pattern 2
Therefore, it is not possible to distinguish and detect only the foreign matter 3. Therefore, a device for detecting the foreign matter 3 by using polarized laser light as the illumination light 4 was made.

第20図(a)に示す如く、ウエハ1上に存在するパター
ン2にS偏光レーザ光4を照射する。(ここで、レーザ
光4の電気ベクトル10がウエハ表面に平行な場合をS偏
光レーザ照明と呼ぶ。)一般にパターン2の表面凹凸は
微視的に見ると照明光の波長に比べ十分小さく、光学的
に滑らかであるので、その反射光5もS偏光成分11が保
たれる。従って、S偏光遮光の検光子13を反射光5光路
中に設置すれば、反射光5は遮光され、光電変換素子7
には到達しない。一方、第20図(b)に示す如く、異物
3からの散乱光6にはS偏光成分11に加えてP偏光成分
12も含まれる。これは、異物3表面に粗く、偏光が解消
される結果、P偏光成分12が発生するからである。従っ
て、検光子13に通過するP偏光成分14を光電変換素子7
により検出すれば、異物3の検出が出来る。
As shown in FIG. 20 (a), the pattern 2 existing on the wafer 1 is irradiated with the S-polarized laser light 4. (Here, the case where the electric vector 10 of the laser beam 4 is parallel to the wafer surface is referred to as S-polarized laser illumination.) Generally, the surface irregularities of the pattern 2 are sufficiently smaller than the wavelength of the illumination light when viewed microscopically. Since it is smooth, the reflected light 5 also holds the S-polarized component 11. Therefore, if the analyzer 13 which shields S-polarized light is installed in the optical path of the reflected light 5, the reflected light 5 is shielded and the photoelectric conversion element 7
Does not reach. On the other hand, as shown in FIG. 20 (b), in addition to the S-polarized component 11, the P-polarized component is included in the scattered light 6 from the foreign matter 3.
12 is also included. This is because the P-polarized light component 12 is generated as a result of the roughening of the surface of the foreign substance 3 and the elimination of polarization. Therefore, the P-polarized component 14 passing through the analyzer 13 is transferred to the photoelectric conversion element 7
The foreign substance 3 can be detected by the detection.

ここでパターン反射光は、第19図に示す様にレーザ光4
に対してパターン2の長手方向となす角度が直角の場合
には、反射光5は検光子13により完全に遮光されるが、
この角度が直角と異なる場合は完全には遮光されない。
この考察は計測自動制御学会論文集のVol.17,No2,P.232
〜P242,1981.に述べている。これによれば、この角度が
直角より±30゜以内の範囲のパターンからの反射光のみ
が、ウエハ上方に設置した対物レンズに入射するので、
この範囲のパターン反射光5は検光子13により完全には
遮光されないが、その強度は2〜3μm異物散乱光と弁
別出来る程度に小さいので、実用上問題とならない。
Here, the pattern reflected light is laser light 4 as shown in FIG.
On the other hand, when the angle formed with the longitudinal direction of the pattern 2 is right, the reflected light 5 is completely blocked by the analyzer 13,
If this angle is different from the right angle, the light is not completely shielded.
This consideration is Vol.17, No2, P.232 of the Society of Instrument and Control Engineers.
~ P242, 1981. According to this, since only the reflected light from the pattern whose angle is within ± 30 ° from the right angle is incident on the objective lens installed above the wafer,
The pattern reflected light 5 in this range is not completely shielded by the analyzer 13, but its intensity is small enough to be discriminated from the foreign substance scattered light of 2 to 3 μm, so that there is no practical problem.

ここで、偏光レーザ光4の傾斜角度φは1゜〜3゜程度
に設定している。これは以下に示す理由による。第21図
に示す実験では、S偏光レーザ4に対する2μmφ異物
散乱光の検光子13通過成分14の強度VSとパターン反射光
5の検光子通過成分強度VPを対物レンズ9(倍率40X,N.
A=0.55)を用いて測定した。実験結果を第22図に示
す。これはレーザ傾斜角度φを横軸にとり、異物・パタ
ーンの弁別比VS/VPをプロットした。同図より傾斜角度
φが5゜以下の場合にVSはVPと容易に弁別出来るので、
安定な異物検出が可能となる。又、設計的な事柄を考慮
すると、φ=1゜〜3゜が最適である。(特開昭56−30
630参照) ここで、レーザ光源15は左右から2ケ用いているのは、
異方性を有する散乱光を発生する異物に対して安定な検
出を可能とする目的からである。
Here, the tilt angle φ of the polarized laser light 4 is set to about 1 ° to 3 °. This is for the following reason. In the experiment shown in FIG. 21, the intensity V S of the analyzer 13 passing component 14 and the analyzer passing component intensity V P of the pattern reflected light 5 of the 2 μmφ foreign substance scattered light with respect to the S-polarized laser 4 were set to the objective lens 9 (magnification 40X, N .
A = 0.55) was used for the measurement. The experimental results are shown in FIG. The horizontal axis represents the laser tilt angle φ, and the discrimination ratio V S / V P of the foreign matter / pattern was plotted. From the figure, V S can be easily discriminated from V P when the inclination angle φ is 5 ° or less.
Stable foreign object detection is possible. In consideration of design matters, φ = 1 ° to 3 ° is optimal. (JP-A-56-30
630) Here, two laser light sources 15 are used from the left and right,
This is for the purpose of enabling stable detection of a foreign substance that generates scattered light having anisotropy.

次にこの検出原理を用いた異物検査方法を第23〜第26図
に説明する。
Next, a foreign matter inspection method using this detection principle will be described with reference to FIGS. 23 to 26.

第23図(a)に示す様に、検出範囲を制限する為にスリ
ット8を試料結像面に設ける。これによりスリット8の
開口部の試料上への投影面積8aの範囲内の散乱光のみが
一度に検出されるので、この面積内でのパターン反射光
P成分の積算強度14pに比べて異物散乱光P成分14dが十
分大きければ、異物3が安定に検出出来る。故に、この
面積8aは検出すべき異物の大きさ(2〜3μm)と同程
度の大きさにすれば、検出感度が最適となるが、第23図
(b)に示す様な走査回数が多くなり、長時間の検査時
間を有する。逆に開口面積8aを大きくすると、短時間に
検査が出来るが、検出感度が劣化する結果となる。これ
を考慮して、現在では面積8aを10×200μm2として、2
〜3μmの異物を約2分で(150cmφウエハの場合)検
査している。この様子を第24図,第25図を用いて説明す
る。
As shown in FIG. 23 (a), a slit 8 is provided on the sample image forming surface to limit the detection range. As a result, only the scattered light within the range of the projected area 8a of the opening of the slit 8 on the sample is detected at a time. Therefore, the scattered light of foreign matter is larger than the integrated intensity 14p of the pattern reflected light P component within this area. If the P component 14d is sufficiently large, the foreign matter 3 can be detected stably. Therefore, if this area 8a is made to have the same size as the size of the foreign matter to be detected (2 to 3 μm), the detection sensitivity will be optimum, but the number of scans as shown in FIG. 23 (b) is large. And has a long inspection time. On the contrary, if the opening area 8a is increased, the inspection can be performed in a short time, but the detection sensitivity is deteriorated. Considering this, the area 8a is now set to 10 × 200 μm 2 and 2
(For 150 cm phi wafer) foreign substances ~3μm about 2 minutes being inspected. This situation will be described with reference to FIGS. 24 and 25.

まず、第24図ではウエハ表面の平面図(a)と断面図
(b)を示す。パターン2には(i)パターンの僅かな
凹みや(ii)レーザ光4の照射方向に対して直角以外の
角度を有する個所があり、この個所(パターン2のエッ
ジの凹みや角部)の各々からは僅かにP偏光成分(S偏
光成分以外)を含む散乱光(主としてS偏光成分)が発
生するため、このP偏光成分がS偏光遮光の検光子13を
透過することになり、第25図(a)に示すようなP偏光
成分(S偏光成分以外)の散乱光が検出され、開口8aで
受光することにより第25図(b)に示す信号14pが得ら
れる。一方2μm以上の大異物3bからは、第25図(b)
に示すように、上記(i)、(ii)の個所の各々に比べ
て大きな強度のP偏光成分を有する信号14dが検出され
る。しかし、0.5〜2μm程度の大きさの微小異物3aか
らは、第25図(b)に示すように、上記(i)、(ii)
の個所の各々に比べて同程度のP偏光成分を有する信号
14dが検出される。そのため0.5〜2μm程度の大きさの
微小異物3aを、パターン2のエッジの凹みや角部と弁別
できないという課題を有していた。
First, FIG. 24 shows a plan view (a) and a sectional view (b) of the wafer surface. The pattern 2 has (i) a slight depression of the pattern and (ii) a portion having an angle other than a right angle with respect to the irradiation direction of the laser beam 4, and each of these portions (the depression and the corner portion of the edge of the pattern 2) Since scattered light (mainly S-polarized light component) containing a small amount of P-polarized light component (other than S-polarized light component) is generated, the P-polarized light component passes through the S-polarized light shielded analyzer 13, and FIG. The scattered light of the P-polarized component (other than the S-polarized component) as shown in (a) is detected and received by the aperture 8a, whereby the signal 14p shown in FIG. 25 (b) is obtained. On the other hand, from a large foreign substance 3b of 2 μm or more, FIG. 25 (b)
As shown in FIG. 7, the signal 14d having the P-polarized component having a larger intensity than that of each of the points (i) and (ii) is detected. However, from the minute foreign matter 3a having a size of about 0.5 to 2 μm, as shown in FIG. 25 (b), the above (i), (ii)
Signal having the same degree of P-polarized component as each of the
14d is detected. Therefore, there is a problem that the minute foreign matter 3a having a size of about 0.5 to 2 μm cannot be discriminated from the dents and the corners of the edge of the pattern 2.

第25図には、開口8aが試料上を走査した場合の光電変換
素子7の信号出力を示す。同図(a)ではP成分14p
(回路パターン)及び14d(異物)の試料上の分布を示
す。この分布上を開口8aが走査すると同図(b)に示す
出力を得る。この例では小異物3aとパターン2のエッジ
からの出力が同一であるので、破線で示す閾値はこの出
力より高い位置に設定せざるを得ないので、この結果、
大異物のみの検出に限定される。
FIG. 25 shows the signal output of the photoelectric conversion element 7 when the aperture 8a scans the sample. In the figure (a), P component 14p
The distributions of (circuit pattern) and 14d (foreign matter) on the sample are shown. When the aperture 8a scans over this distribution, the output shown in FIG. In this example, the outputs from the small foreign matter 3a and the edge of the pattern 2 are the same, so the threshold value indicated by the broken line must be set to a position higher than this output.
Limited to detecting only large foreign matter.

しかし、256Kbitメモリ−LSIに代表される高集積LSIの
製造においては、1μmの大きさの異物の存在が製品歩
留りに大きく影響するので、1μm異物の検出感度が必
要となる。これは第5図に示す装置で開口8aを5×5μ
m2以下に制限すれば、前記(i),(ii)の散乱光P成
分の積算効果が、開口8aが10×200μm2の場合に比べて
低減されるので、その結果、1μm異物検出が可能とな
る。しかし、この場合、検査時間が約40倍となり、製造
スループットとの同期が取れず、実用化に問題がある。
However, in manufacturing a highly integrated LSI typified by a 256 Kbit memory-LSI, the presence of foreign matter having a size of 1 μm has a great influence on the product yield, so that the detection sensitivity of the foreign matter of 1 μm is required. This is the device shown in FIG.
If it is limited to m 2 or less, the cumulative effect of the scattered light P component of (i) and (ii) is reduced as compared with the case where the opening 8a is 10 × 200 μm 2 , and as a result, 1 μm foreign matter is detected. It will be possible. However, in this case, the inspection time becomes about 40 times, which is not synchronized with the manufacturing throughput, and there is a problem in practical use.

〔発明の目的〕[Object of the Invention]

本発明の目的は、上記従来技術の課題を解決すべく、回
路パターンを有する半導体ウエハ上に存在する2μm以
下の微小異物を、回路パターンの向きにかかわらず回路
パターンのエッジに対して高感度で弁別し、且つ見逃す
ことなく高速度で検出できるようにした半導体ウエハ異
物検出装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art with high sensitivity to minute foreign particles of 2 μm or less existing on a semiconductor wafer having a circuit pattern, regardless of the orientation of the circuit pattern. It is an object of the present invention to provide a semiconductor wafer foreign matter detection device capable of discriminating and detecting at high speed without overlooking.

〔発明の概要〕[Outline of Invention]

即ち、本発明は、上記目的を達成するために、回路パタ
ーンが形成された半導体ウエハ上に、該ウエハ面に対し
て5゜以下の傾斜角度でもって直線偏光レーザ光を照明
する照明光学手段を設け、該照明光学手段によって照明
された直線偏光レーザ光によって上記半導体ウエハ上か
ら反射して該半導体ウエハの表面に対してほぼ垂直方向
に生じる散乱光を集光して受光部上に拡大結像する拡大
集光光学系と、該集光光学系で拡大結像して集光された
散乱光の内、回路パターンのエッジから発生する上記直
線偏光散乱光を遮光する遮光光学系と、上記集光光学系
で拡大結像して集光され、上記遮光光学系を通して得ら
れる上記直線偏光以外の散乱光を受光する各受光部を方
形形状にして連続して配列し、微小異物の見逃しを避け
るように隣接する方形形状の受光部間が、少なくとも走
査方向に直角な方向に対して重なり合うように上記各受
光部間に不感帯を設けて各受光部から並列に出力して高
速走査を可能にした半導体固体撮像素子アレイとを備え
て、該半導体固体撮像素子アレイの各受光部の大きさと
上記集光光学系の拡大結像倍率との関係を、上記遮光光
学系を通して得られる上記直線偏光以外の散乱光の内各
受光部において受光する回路パターンのエッジから生じ
る散乱光量に比べて半導体ウエハ上の2μm以下の大き
さの微小異物から生じる散乱光量が大きくなるように上
記各受光部が半導体ウエハ上において約10μm×10μm
以下の方形形状の部分を受光すべく設定された検出光学
手段を設け、上記半導体ウエハを上記半導体固体撮像素
子アレイの受光部の配列方向に対して交わる上記走査方
向に走査する走査手段を設け、上記半導体ウエハ表面か
らの反射光像を上記集光光学系を通して光電変換手段で
受光して該光電変換手段から得られる信号に基づいて上
記半導体ウエハを上下方向に微動して半導体ウエハ表面
を上記照明光学手段および検出光学手段に対して合焦点
状態に制御する合焦点制御手段を設け、該合焦点制御手
段により合焦点状態に制御された半導体ウエハを上記走
査手段により走査して半導体固体撮像素子アレイの各受
光部から並列に、且つ同時に出力される信号の論理和を
とる論理和回路を設け、該論理和回路から得られる論理
和信号に基づいて回路パターンを有する半導体ウエハ上
の2μm以下の大きさを有する微小異物を検出するよう
に構成したことを特徴とする半導体ウエハ異物検出装置
である。
That is, to achieve the above object, the present invention provides an illumination optical means for illuminating linearly polarized laser light on a semiconductor wafer having a circuit pattern formed thereon at an inclination angle of 5 ° or less with respect to the wafer surface. Provided, the scattered light reflected from the semiconductor wafer by the linearly polarized laser light illuminated by the illumination optical means and generated in a direction substantially perpendicular to the surface of the semiconductor wafer is condensed to form an enlarged image on the light receiving portion. And a light-shielding optical system that shields the linearly polarized scattered light generated from the edge of the circuit pattern among the scattered light that is magnified and image-formed by the light-collecting optical system. Avoid the overlooking of minute foreign matter by arranging each light receiving part that receives the scattered light other than the linearly polarized light obtained through the light blocking optical system that is enlarged and image-formed by the optical optical system in a rectangular shape and is continuously arranged. As adjacent to Solid-state image sensor capable of performing high-speed scanning by providing a dead zone between the light-receiving portions so that the light-receiving portions of each shape are overlapped with each other at least in a direction perpendicular to the scanning direction and the light-receiving portions output in parallel. An array, the relationship between the size of each light receiving portion of the semiconductor solid-state imaging device array and the magnifying image-forming magnification of the condensing optical system is calculated based on the scattered light other than the linearly polarized light obtained through the light shielding optical system. Each of the light-receiving portions has a size of about 10 μm on the semiconductor wafer so that the amount of scattered light generated by a minute foreign substance having a size of 2 μm or less on the semiconductor wafer is larger than the amount of scattered light generated by the edge of the circuit pattern received by each light-receiving portion. 10 μm
Providing a detection optical means set to receive the following rectangular shaped portion, the scanning means for scanning the semiconductor wafer in the scanning direction intersecting with the arrangement direction of the light receiving portion of the semiconductor solid-state imaging device array, The reflected light image from the surface of the semiconductor wafer is received by the photoelectric conversion means through the condensing optical system, and the semiconductor wafer is finely moved in the vertical direction based on the signal obtained from the photoelectric conversion means to illuminate the surface of the semiconductor wafer. Focusing control means for controlling the focusing means to the optical means and the detection optical means is provided, and the semiconductor wafer controlled to the focusing state by the focusing means is scanned by the scanning means to form a semiconductor solid-state imaging device array. A logical sum circuit for taking a logical sum of signals output from the respective light receiving units in parallel at the same time is provided, and based on the logical sum signal obtained from the logical sum circuit. A semiconductor wafer foreign substance detecting device characterized by being configured to detect the fine foreign matter with a 2μm or less in size on a semiconductor wafer having a road pattern.

〔発明の実施例〕Example of Invention

第1図〜第18図を用いて本発明の実施例を詳述する。 An embodiment of the present invention will be described in detail with reference to FIGS.

第1図では、従来例第26図のスリット8に代り、固体撮
像素子アレイ20を用いる様子を示す。
FIG. 1 shows a state in which a solid-state image sensor array 20 is used instead of the slit 8 of the conventional example shown in FIG.

第2図は固体撮像素子アレイ20の例を説明する。受光部
20aはシリコンフォトダイオードやGaAsPフォトダイオー
ドであり、このうちで特にPIN接合型のものが、高速応
答性、高感度の特性を有し、本発明の用途に最適であ
る。各々の受光部(画素)20aは固体撮像素子アレイの
配列方向に対して傾斜させ、(当然不感帯20bも傾斜
し、)その受光部(画素)20aの大きさ(縦横)の幅は5
00μmであり、隣接する画素(受光部)の間には幅50μ
mの不感帯20bがある。固体撮像素子アレイ20が画素数
(受光部数)として40ケを有している場合、例えば検出
系の総合拡大結像倍率を100倍(対物レンズ9の拡大倍
率40Xとリレーレンズ(図示せず)の拡大倍率2.5Xの場
合)とすれば、1画素(各受光部)が受光する大きさ
は、試料(ウエハ1)面上において5μm×5μm(但
し傾斜している。)となり、結局固体撮像素子アレイ20
は試料面上において5μm×220μmの範囲を検出しな
がら走査していることになり、従来と同程度の検査速度
となる。
FIG. 2 illustrates an example of the solid-state image sensor array 20. Light receiving section
Reference numeral 20a denotes a silicon photodiode or a GaAsP photodiode, of which the PIN junction type is particularly suitable for the application of the present invention because it has characteristics of high-speed response and high sensitivity. Each light receiving portion (pixel) 20a is tilted with respect to the array direction of the solid-state imaging device array (and naturally the dead zone 20b is also tilted), and the width (length and width) of the light receiving portion (pixel) 20a is 5
00μm, width 50μ between adjacent pixels (light receiving part)
There is a dead zone 20b of m. When the solid-state imaging device array 20 has 40 pixels (the number of light receiving parts), for example, the total magnification of the detection system is 100 times (the magnification of the objective lens 9 is 40X and the relay lens (not shown)). If the magnification is 2.5X), the size of light received by one pixel (each light receiving part) is 5 μm × 5 μm (however, it is tilted) on the surface of the sample (wafer 1), and eventually solid-state imaging Element array 20
Means that scanning is performed while detecting a range of 5 μm × 220 μm on the sample surface, and the inspection speed is approximately the same as the conventional one.

この固体撮像素子アレイ20の効果を第3図に説明する。
比較の為同図(a),(b),(c)に固体撮像素子ア
レイ20の場合を示し、同図(d),(e),(f)に第
23図に示す従来例の場合を示す。同図(a)は固体撮像
素子アレイ20がウエハ上を走査して検出する状態を示
し、同図(b)は固体撮像素子アレイ20の各々の画素
(i,j,h,l,m)から得られる映像信号i1,j1,h1,l1,m1
示し、同図(c)は各映像信号i1,j1,h1,l1,m1を各々閾
値VTHで二値化して得られる二値化信号i2,j2,h2,l2,m2
を示す図である。更に同図(d)はスリット8がウエハ
上を走査させて光電変換素子7で検出する状態を示し、
同図(e)は光電変換素子7から得られる映像信号Vを
示し、同図(f)はこの映像信号VTH′の閾値で二値化
された二値化信号を示す図である。なお、同図(a),
(b),(c)には説明を簡単にするため、画素数を5
ケ(i,j,h,l,m)としている。即ち、前記したように検
出系の総合拡大結像倍率により各受光部(画素)の大き
さを試料面上において5μm×5μmにし、該各受光部
(画素)がS偏光遮光の検光子13を透過したS偏光成分
以外の散乱光を受光するようにしたため、パターン2の
エッジから生じるS偏光成分以外の散乱光量に比べて0.
5〜2μm程度の大きさの微小異物3aから生じるS偏光
成分以外の散乱光量が大きくなり、第3図に示す如く画
素hの出力信号h1を閾値VTHで二値化すれば、二値化信
号h2は小異物3aでも“1"となり、従来に比べて感度向上
が得られる。
The effect of this solid-state image sensor array 20 will be described with reference to FIG.
For comparison, the case of the solid-state imaging device array 20 is shown in FIGS. 8A, 8B, and 8C, and the solid-state image pickup device array 20 is shown in FIGS.
The case of the conventional example shown in FIG. 23 is shown. The figure (a) shows the state where the solid-state imaging device array 20 scans and detects on the wafer, and the figure (b) shows each pixel (i, j, h, l, m) of the solid-state imaging device array 20. The video signals i 1 , j 1 , h 1 , l 1 , m 1 obtained from the above are shown. In FIG. 7C, each video signal i 1 , j 1 , h 1 , l 1 , m 1 is set to a threshold value V TH. Binarized signal i 2 , j 2 , h 2 , l 2 , m 2
FIG. Further, FIG. 6D shows a state in which the slit 8 scans the wafer and the photoelectric conversion element 7 detects the slit.
FIG. 7E shows the video signal V obtained from the photoelectric conversion element 7, and FIG. 6F shows the binarized signal binarized by the threshold value of the video signal V TH ′. In addition, FIG.
In order to simplify the description, the number of pixels is 5 in (b) and (c).
K (i, j, h, l, m). That is, as described above, the size of each light receiving portion (pixel) is set to 5 μm × 5 μm on the sample surface according to the total magnifying imaging magnification of the detection system, and each light receiving portion (pixel) forms an S-polarized light-shielding analyzer 13. Since the scattered light other than the transmitted S-polarized component is received, the amount of scattered light other than the S-polarized component generated from the edge of the pattern 2 is 0.
The amount of scattered light other than the S-polarized component generated from the minute foreign substance 3a having a size of about 5 to 2 μm becomes large, and if the output signal h 1 of the pixel h is binarized by the threshold value V TH as shown in FIG. The converted signal h 2 becomes “1” even for the small foreign matter 3 a, and the sensitivity can be improved as compared with the conventional case.

第4図には、固体撮像素子アレイ20の各々の画素の信号
処理方法を示す。画素i〜nの各々の出力は二値化回路
21で並列に同時に二値化されて、二値化信号(“1")は
OR回路22に導かれ、少なくとも一つの画絵で異物が検出
された場合にOR回路の出力は“1"となり、異物メモリ23
に入力する。この方法により、40ケの画素出力は同時並
列処理され、自己走査型撮像素子を用いた場合に比べて
大幅な検査速度及び検出感度の向上が計れる。
FIG. 4 shows a signal processing method of each pixel of the solid-state imaging device array 20. The output of each of the pixels i to n is a binarization circuit.
It is simultaneously binarized in parallel at 21 and the binarized signal (“1”) is
When the foreign matter is guided to the OR circuit 22 and the foreign matter is detected in at least one picture, the output of the OR circuit becomes “1”, and the foreign matter memory 23
To enter. By this method, 40 pixel outputs are processed in parallel at the same time, and the inspection speed and detection sensitivity can be greatly improved as compared with the case of using a self-scanning image sensor.

しかしながら、固体撮像素子アレイ20の不感帯20bは以
下に説明する欠点を生じさせる。この解決策を第5図〜
第8図に示す。即ち、第5図及び第7図に示す様に固体
撮像素子アレイ20の配列方向と走査方向とが直角の場
合、画素iとjの間の不感帯20bと小異物3cの関係が同
図の様な場合には、小異物3cを見逃してしまう。
However, the dead zone 20b of the solid-state image sensor array 20 causes the drawbacks described below. This solution is shown in FIG.
It is shown in FIG. That is, as shown in FIGS. 5 and 7, when the array direction of the solid-state imaging device array 20 and the scanning direction are at right angles, the relationship between the dead zone 20b between the pixels i and j and the small foreign matter 3c is as shown in FIG. In such a case, the small foreign matter 3c is missed.

そこで、第6図及び第8図に示す如く、固体撮像素子ア
レイ20の画素20aを配列方向にオーバラップするように
不感帯20bに大巾な傾斜を付けて配列すれば、上記見逃
しを避けることが出来る。なお、この傾斜量は検出しよ
うとする小異物の大きさ以上にしておくことが必要とな
る。
Therefore, as shown in FIGS. 6 and 8, if the dead band 20b is arranged with a large inclination so as to overlap the pixels 20a of the solid-state imaging device array 20 in the array direction, the above-mentioned overlooking can be avoided. I can. It should be noted that this amount of inclination needs to be equal to or larger than the size of the small foreign matter to be detected.

第6図及び第8図では小異物3cは画素j,hにより重複し
て検出される可能性があるので結果としてダブルカウン
トされる。しかし、このダブルカウントを避ける方法と
して特開昭56−132549や特開昭56−118187や特開昭57−
66345や特開昭56−126747や特開昭56−118647で述べて
いる方法を用いればよい。
In FIGS. 6 and 8, the small foreign matter 3c may be detected by the pixels j and h in an overlapping manner, so that the result is double counted. However, as a method of avoiding this double counting, there are JP-A-56-132549, JP-A-56-118187 and JP-A-57-
The methods described in 66345, JP-A-56-126747 and JP-A-56-118647 may be used.

第9図はら線状走査の場合での本発明の適用例を示す。FIG. 9 shows an application example of the present invention in the case of streak scanning.

第10図は実施例の全体構成を示す。ウエハ1は真空チュ
ーブ41でウエハチャック40に吸着されながら、Xステー
ジ46及びYステージ49によりXY方向に移動する。固体撮
像素子アレイ20で検出された異物情報は二値化回路21、
OR回路22を経て異物メモリ23を包含する制御回路32に至
り、表示装置33で表示される。
FIG. 10 shows the overall structure of the embodiment. The wafer 1 is moved in the XY directions by the X stage 46 and the Y stage 49 while being attracted to the wafer chuck 40 by the vacuum tube 41. The foreign substance information detected by the solid-state imaging device array 20 is binarized circuit 21,
The control circuit 32 including the foreign substance memory 23 is reached via the OR circuit 22 and displayed on the display device 33.

本発明では画素の大きさを5×5μm2(但し傾斜してい
る。)程度以下にしているので、ウエハ表面のうねりに
起因する焦点ずれが検査中に発生すると、異物検出感度
が著しく低下する。そこで、自動焦点検出部30により、
検査中に焦点ずれ量を検出して、焦点機構用モータ43の
ドライバー31にフィードバックする構成を用いることが
不可欠である。この自動焦点機能の原理は第22図SICE学
術講演会前刷集のP223〜P224に発表し、及び特開昭58−
70540に記載されている通りであるが、第11図〜第13図
を用いてこの原理を説明する。この方法は試料上のパタ
ーンに影響されずに安定に自動焦点を行うことに特徴が
あるので、本発明には最適である。
In the present invention, since the size of the pixel is set to about 5 × 5 μm 2 (however, it is inclined) or less, if a defocus occurs due to the waviness of the wafer surface during the inspection, the foreign matter detection sensitivity is significantly lowered. . Therefore, by the automatic focus detection unit 30,
It is essential to use a configuration in which the defocus amount is detected during inspection and is fed back to the driver 31 of the focus mechanism motor 43. The principle of this autofocus function was announced in Fig. 22 SICE Academic Lecture Preprints, P223-P224, and JP-A-58-
As described in 70540, this principle will be described with reference to FIGS. 11 to 13. This method is suitable for the present invention because it is characterized by stable autofocusing without being affected by the pattern on the sample.

第11図には自動焦点検出部30の主要部を示す。縞パター
ンガラス板上の縞パターン60a,60bは各々対物レンズ9
により試料上に投影されるが、各々の合焦点位置は撮像
素子アレイ20の合焦点に対して若干上がりすぎ及び下が
りすぎに設定されている。各々の縞パターン60a,60bの
試料上の像は対物レンズ9で拡大され、半透過ミラー3
4,62で反射され、撮像素子61の上に結像される。
FIG. 11 shows the main part of the automatic focus detection unit 30. Stripe patterns 60a and 60b on the glass plate are objective lenses 9 respectively.
The image is projected onto the sample by, but the respective in-focus positions are set slightly too high and too low with respect to the in-focus point of the image sensor array 20. The image of each striped pattern 60a, 60b on the sample is magnified by the objective lens 9 and the semi-transmissive mirror 3
The light is reflected by 4, 62 and imaged on the image pickup device 61.

第12図(a)はウエハ下りすぎ(Z<0)の場合、撮像
素子61上に結像される投影縞パターンを示し、第12図
(d)は第12図(a)に示す場合における撮像素子61で
検出される映像信号波形を示す。第12図(b)は合焦点
位置(Z=0)の場合、撮像素子61上に結像される投影
パターンを示し、第12図(e)は第12図(b)に示す場
合における撮像素子61で検出される映像信号波形を示
す。第12図(e)はウエハ上りすぎ(Z>0)の場合、
撮像素子61上に結像される投影縞パターンを示し、第12
図(f)は第12図(c)に示す場合における撮像素子61
で検出される映像信号波形を示す。
FIG. 12 (a) shows the projected fringe pattern imaged on the image pickup device 61 in the case of too much wafer down (Z <0), and FIG. 12 (d) shows the case in the case shown in FIG. 12 (a). 3 shows a video signal waveform detected by the image sensor 61. FIG. 12 (b) shows a projection pattern imaged on the image pickup device 61 in the case of the in-focus position (Z = 0), and FIG. 12 (e) shows an image pickup in the case shown in FIG. 12 (b). 3 shows a video signal waveform detected by the element 61. FIG. 12 (e) shows a case where the wafer is overly loaded (Z> 0),
The projected fringe pattern formed on the image sensor 61 is shown.
FIG. (F) shows the image sensor 61 in the case shown in FIG. 12 (c).
The video signal waveform detected by is shown.

従って撮像素子61の検出信号は撮像素子アレイ20が合焦
点の場合には縞パターン60aと60bに対応する個所で等し
くなるので両者の差信号は零となる。
Therefore, when the image pickup device array 20 is in focus, the detection signals of the image pickup device 61 are equal at the portions corresponding to the striped patterns 60a and 60b, so that the difference signal between the two is zero.

一方、上がりすぎ(又は下がりすぎ)の場合には撮像素
子20の合焦点からのずれと差信号の出力の大きさが対応
するので、第13図に示すサーボ信号が得られる。同図で
は試料面がアルミ面の場合と複雑なパターン(メモリー
セル面)の場合で差信号の実測例を示す。これにより±
0.5μm以内の焦点合せが可能となるので、対物レンズ
9の倍率40Xの場合には、安定した異物検出が可能とな
る。自動焦点機構として、例えば第10図に示すような、
モーター43、斜面45、球44、板バネ42を用いる構成が簡
単である。
On the other hand, if it rises too much (or falls too much), the deviation from the in-focus point of the image sensor 20 corresponds to the magnitude of the output of the difference signal, so that the servo signal shown in FIG. 13 is obtained. The figure shows an example of actual measurement of the difference signal when the sample surface is an aluminum surface and when it is a complicated pattern (memory cell surface). This gives ±
Since focusing can be performed within 0.5 μm, stable foreign matter detection can be performed when the objective lens 9 has a magnification of 40 ×. As an autofocus mechanism, for example, as shown in FIG.
The configuration using the motor 43, the slope 45, the ball 44, and the leaf spring 42 is simple.

次に本発明の他の一実施例を説明する。即ち第14図に示
すように受光部200aを台形に形成して不感帯200bを傾斜
させて配置しても、また第15図に示すように受光部201a
を配列方向にオーバラップするように千鳥状に配置して
も前記実施例と同様な作用効果を達成することができ
る。
Next, another embodiment of the present invention will be described. That is, as shown in FIG. 14, even if the light receiving portion 200a is formed in a trapezoidal shape and the dead zone 200b is inclined, the light receiving portion 201a is also formed as shown in FIG.
Even if they are arranged in a staggered manner so as to overlap in the arrangement direction, the same operational effect as in the above embodiment can be achieved.

このように固体撮像素子アレイは第16図,第17図及び第
18図に示すように外部ピンへ接続するために、ボンディ
ングパット部20e,200e,201e、配線20d,200d,201dが不可
欠であり、受光部(画素)20a,200a,201aは受光範囲以
上に広くする必要がある。
In this way, the solid-state image sensor array is shown in Figs.
As shown in Fig. 18, the bonding pads 20e, 200e, 201e and the wirings 20d, 200d, 201d are indispensable for connecting to external pins, and the light receiving parts (pixels) 20a, 200a, 201a are wider than the light receiving range. There is a need to.

そこで検出分解能を高める為、光学的遮光部20c,200c,2
01cを印刷等により貼り付け、ボンディングパット部20
e,200e,201eや受光範囲外の個所を遮光することが肝要
である。
Therefore, in order to increase the detection resolution, the optical shading parts 20c, 200c, 2
Paste 01c by printing, etc., and bond pad 20
It is important to block light at e, 200e, 201e and areas outside the light receiving range.

また、本発明はウエハに限定されず、ホトマスクやレチ
クル等の他の製品の検査にも適用可能である。
Further, the present invention is not limited to wafers and can be applied to inspection of other products such as photomasks and reticles.

また第27図に示す如く、固体撮像素子アレイ20の各受光
部(画素)の大きさ(x×y)と検出系(対物レンズ9
とリレーレンズ(図示せず)とからなる。)の総合拡大
結像倍率mとの関係を、ウエハ1の面上における(x×
y)/mの値が10μm×10μm程度でも、1.5μm〜2μ
mの微小異物を検出する場合には実用上差支えないこと
が実験により確認できている。即ち、ウエハ1の面上に
おいて約10μm×10μm以下になるように(x×y)/m
の値を設定すれば、各受光部(画素)が受光する2μm
以下の微小異物から生じるS偏光成分以外の散乱光量を
パターン2のエッジから生じるS偏光成分以外の散乱光
量に比べて大きくして2μm以下の微小異物を高感度で
検出することができる。
Further, as shown in FIG. 27, the size (x × y) of each light receiving portion (pixel) of the solid-state imaging device array 20 and the detection system (objective lens 9
And a relay lens (not shown). ) With the total magnification imaging magnification m of (x ×) on the surface of the wafer 1.
y) / m is about 10μm × 10μm, 1.5μm to 2μm
It has been confirmed by experiments that there is no practical problem in detecting a minute foreign substance of m. That is, (x × y) / m should be about 10 μm × 10 μm or less on the surface of the wafer 1.
If the value of is set, 2 μm received by each light receiving unit (pixel)
The amount of scattered light other than the S-polarized component generated from the following minute foreign matter is made larger than the amount of scattered light other than the S-polarized component generated from the edge of the pattern 2, and the minute foreign matter of 2 μm or less can be detected with high sensitivity.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、半導体ウエハ面に
対して5゜以下の傾斜角度でもって直線偏光レーザ光を
照明する照明手段と、該照明手段によって照明された直
線偏光レーザ光によって上記半導体ウエハ上から反射し
て該半導体ウエハの表面に対してほぼ垂直方向に生じる
散乱光を集光して拡大結像する集光光学系と、該集光光
学系で集光された散乱光の内、回路パターンのエッジか
ら発生する上記直線偏光散乱光を遮光する遮光光学系
と、該遮光光学系を通して得られる上記直線偏光以外の
散乱光の内、回路パターンのエッジから生じる散乱光量
に対して半導体ウエハ上の2μm以下の大きさの微小異
物から生じる散乱光量が大きくなるように拡大結像して
受光する受光部の大きさを上記集光光学系の拡大結像倍
率から半導体ウエハ上に換算して約10μm×10μm以下
の方形形状にしてこの受光部を連続して配列し、微小異
物の見逃しを避けるように隣接する方形形状の受光部間
が、少なくとも走査方向に直角な方向に対して重なり合
うように上記各受光部間に不感帯を設け、更に各受光部
から並列に出力して高速走査を可能にした半導体固体撮
像素子アレイと、上記半導体ウエハ表面からの反射光像
を上記集光光学系を通して光電変換手段で受光して該光
電変換手段から得らる信号に基づいて上記半導体ウエハ
を上下動させて半導体ウエハ表面を前記照明手段および
集光光学系に対して合焦点状態に制御する合焦点制御手
段とを備え、上記半導体固体撮像素子アレイの各受光部
の大きさを半導体ウエハ上に換算して約10μm×10μm
以下の方形形状にして上記合焦点制御手段を備えたこと
により、任意の位置に存在する2μm以下の微小異物か
ら発生する散乱光を各受光部が受光する散乱光強度を大
幅に向上させることができると共に、更に回路パターン
を有する半導体ウエハ上に存在する微小異物を、回路パ
ターンの向きにかからわず回路パターンのエッジに対し
て高感度で弁別し、且つ2μm以下の微小異物を見逃し
することなく高速度で検出できる効果を奏する。
As described above, according to the present invention, an illuminating means for illuminating the linearly polarized laser light with an inclination angle of 5 ° or less with respect to the surface of the semiconductor wafer, and the above-mentioned semiconductor by the linearly polarized laser light illuminated by the illuminating means. A condensing optical system that condenses and forms an image of scattered light that is reflected from the wafer and that occurs in a direction substantially perpendicular to the surface of the semiconductor wafer, and the scattered light that is condensed by the condensing optical system. A light-shielding optical system that shields the linearly polarized scattered light generated from the edge of the circuit pattern, and a semiconductor with respect to the scattered light amount generated from the edge of the circuit pattern among the scattered light other than the linearly polarized light obtained through the light-shielding optical system. The size of the light-receiving portion that magnifies and forms an image so that the amount of scattered light generated from a minute foreign substance having a size of 2 μm or less on the wafer is large, is determined from the magnifying imaging magnification of the condensing optical system. Converted to form a rectangular shape with a size of about 10 μm × 10 μm or less, and arrange these light-receiving parts in a row, so that the space between adjacent square-shaped light-receiving parts is at least perpendicular to the scanning direction to avoid overlooking small foreign particles. A dead zone is provided between the light-receiving portions so that they overlap with each other, and further, the semiconductor solid-state imaging device array capable of outputting in parallel from each light-receiving portion to enable high-speed scanning, and the reflected light image from the surface of the semiconductor wafer are collected. The semiconductor wafer is moved up and down based on a signal received by the photoelectric conversion means through the optical optical system and obtained from the photoelectric conversion means to bring the surface of the semiconductor wafer into a focused state with respect to the illumination means and the focusing optical system. And a focusing control unit for controlling the size of each light receiving portion of the semiconductor solid-state image pickup device array on the semiconductor wafer, converted to about 10 μm × 10 μm.
By providing the focusing control means with the following rectangular shape, it is possible to significantly improve the scattered light intensity received by each light receiving unit of the scattered light generated from a minute foreign substance of 2 μm or less existing at an arbitrary position. In addition to being able to detect the minute foreign matter existing on the semiconductor wafer having the circuit pattern with high sensitivity to the edge of the circuit pattern regardless of the direction of the circuit pattern, and to miss the minute foreign matter of 2 μm or less. It has the effect that it can be detected at high speed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の半導体固体撮像素子アレイが用いられ
る異物検査装置の一実施例を示す構成図、第2図は第1
図に示す半導体固体撮像素子アレイの詳細を示す斜視
図、第3図は本発明と従来例との比較を説明するための
図、第4図は第1図に示す半導体固体撮像素子の出力信
号処理回路を示す図、第5図は不感帯と異物との位置関
係を示す図、第6図は本発明での画素(受光部)と異物
との位置関係を示す図、第7図は第5図における半導体
固体撮像素子のウエハとの相対的走査方向を示す図、第
8図は第6図における半導体固体撮像素子のウエハとの
相対的走査方向を示す図、第9図は半導体固体撮像素子
のウエハとの相対的らせん状走査を示す図、第10図は第
1図に示す実施例を更に具体的に示した構成図、第11図
は第10図に示す自動焦点検出部を示す斜視図、第12図は
自動焦点検出を説明するための図、第13図は第11図に示
す自動焦点検出部から得られる差出力と焦点ずれとの関
係を示した図、第14図及び第15図は各々第2図と異なる
他の半導体固体撮像素子アレイを示す図、第16図は第2
図に示すものを具体的に示した図、第17図は第14図に示
すものを更に具体的に示した図、第18図は第15図に示す
ものを更に具体的に示した図、第19図はウエハを示す断
面図、第20図は照射されたレーザ光に対するウエハ上の
回路パターンと異物からの反射状態を示す図、第21図は
従来の異物検出方法の第1例を示す概略斜視図、第22図
は第21図で傾斜角度φを変化させた場合の出力比VS/VP
の測定データを示すグラフ、第23図は従来の異物検出方
法の第2例を示す概略斜視図、第24図はウエハ上の回路
パターンと異物からの反射状態を示す図、第25図は第23
図に示す如くスリットを相対的にウエハ上を走査して得
られる映像信号の関係等を示す図、第26図は第23図に示
す第2例を同様に従来の異物検出方法を示す概略斜視
図、第27図は第1図に示す本発明の異物検査装置の一実
施例を示す構成において固体撮像素子アレイの各受光部
の大きさと検出系の総合拡大結像倍率と各受光部が受光
するウエハの面上の画素の大きさとの関係を説明するた
めの斜視図である。 (符号の説明) 1……ウエハ、 2……回路パターン、 3……異物、 9……対物レンズ、 13……検光子、 15……偏光レーザ光源、 20……光電変換用固体撮像素子アレイ、 20a,200a,201a……受光部、 20b,200b,201b……不感帯。
FIG. 1 is a block diagram showing an embodiment of a foreign matter inspection apparatus in which a semiconductor solid-state imaging device array of the present invention is used, and FIG.
FIG. 3 is a perspective view showing details of the semiconductor solid-state imaging device array shown in FIG. 3, FIG. 3 is a diagram for explaining a comparison between the present invention and a conventional example, and FIG. 4 is an output signal of the semiconductor solid-state imaging device shown in FIG. FIG. 5 is a diagram showing a processing circuit, FIG. 5 is a diagram showing a positional relationship between a dead zone and a foreign substance, FIG. 6 is a diagram showing a positional relation between a pixel (light receiving portion) and a foreign substance in the present invention, and FIG. The figure which shows the relative scanning direction with respect to the wafer of the semiconductor solid-state image sensor in the figure, FIG. 8 is the figure which shows the relative scanning direction with the wafer of the semiconductor solid-state image sensor in FIG. 6, and FIG. 9 is a semiconductor solid-state image sensor. Showing relative spiral scanning with respect to the wafer of FIG. 10, FIG. 10 is a block diagram showing the embodiment shown in FIG. 1 more specifically, and FIG. 11 is a perspective view showing the automatic focus detection unit shown in FIG. Fig. 12 is a diagram for explaining auto focus detection, Fig. 13 is obtained from the auto focus detection unit shown in Fig. 11. Diagram showing the relationship between the differential output and the defocus which, Figure 14 and Figure 15 each show a second drawing and other different semiconductor solid-state imaging device array FIG, FIG. 16 second
The figure specifically showing what is shown in FIG. 17, FIG. 17 is a figure more specifically showing what is shown in FIG. 14, and FIG. 18 is a figure showing more specifically what is shown in FIG. FIG. 19 is a cross-sectional view showing a wafer, FIG. 20 is a view showing a circuit pattern on a wafer with respect to an irradiated laser beam and a reflection state from a foreign matter, and FIG. 21 is a first example of a conventional foreign matter detecting method. Fig. 22 is a schematic perspective view, and Fig. 22 is the output ratio V S / V P when the tilt angle φ is changed in Fig. 21.
FIG. 23 is a schematic perspective view showing a second example of a conventional foreign matter detection method, FIG. 24 is a diagram showing a circuit pattern on a wafer and a reflection state from the foreign matter, and FIG. twenty three
FIG. 26 is a diagram showing the relationship of video signals obtained by scanning the slit relatively on the wafer, and FIG. 26 is a schematic perspective view showing a conventional foreign matter detecting method similarly to the second example shown in FIG. FIG. 27 and FIG. 27 show the size of each light receiving portion of the solid-state image pickup device array, the overall magnifying image forming magnification of the detection system, and the light receiving portion receiving light in the configuration showing the embodiment of the foreign matter inspection apparatus of the present invention shown in FIG. FIG. 6 is a perspective view for explaining the relationship with the size of pixels on the surface of the wafer. (Description of symbols) 1 ... Wafer, 2 ... Circuit pattern, 3 ... Foreign matter, 9 ... Objective lens, 13 ... Analyzer, 15 ... Polarized laser light source, 20 ... Photoelectric conversion solid-state image sensor array , 20a, 200a, 201a …… light receiving part, 20b, 200b, 201b …… dead zone.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】回路パターンが形成された半導体ウエハ上
に、該ウエハ面に対して5゜以下の傾斜角度でもって直
線偏光レーザ光を照明する照明光学手段を設け、該照明
光学手段によって照明された直線偏光レーザ光によって
上記半導体ウエハ上から反射して該半導体ウエハの表面
に対してほぼ垂直方向に生じる散乱光を集光して受光部
上に拡大結像する拡大集光光学系と、該集光光学系で拡
大結像して集光された散乱光の内、回路パターンのエッ
ジから発生する上記直線偏光散乱光を遮光する遮光光学
系と、上記集光光学系で拡大結像して集光され、上記遮
光光学系を通して得られる上記直線偏光以外の散乱光を
受光する各受光部を方形形状にして連続して配列し、微
小異物の見逃しを避けるように隣接する方形形状の受光
部間が、少なくとも走査方向に直角な方向に対して重な
り合うように上記各受光部間に不感帯を設けて各受光部
から並列に出力して高速走査を可能にした半導体固体撮
像素子アレイとを備えて、該半導体固体撮像素子アレイ
の各受光部の大きさと上記集光光学系の拡大結像倍率と
の関係を、上記遮光光学系を通して得られる上記直線偏
光以外の散乱光の内各受光部において受光する回路パタ
ーンのエッジから生じる散乱光量に比べて半導体ウエハ
上の2μm以下の大きさの微小異物から生じる散乱光量
が大きくなるように上記各受光部が半導体ウエハ上にお
いて約10μm×10μm以下の方形形状の部分を受光すべ
く設定された検出光学手段を設け、上記半導体ウエハを
上記半導体固体撮像素子アレイの受光部の配列方向に対
して交わる上記走査方向に走査する走査手段を設け、上
記半導体ウエハ表面からの反射光像を上記集光光学系を
通して光電変換手段で受光して該光電変換手段から得ら
れる信号に基づいて上記半導体ウエハを上下方向に微動
して半導体ウエハ表面を上記照明光学手段および検出光
学手段に対して合焦点状態に制御する合焦点制御手段を
設け、該合焦点制御手段により合焦点状態に制御された
半導体ウエハを上記走査手段により走査して半導体固体
撮像素子アレイの各受光部から並列に、且つ同時に出力
される信号の論理和をとる論理和回路を設け、該論理和
回路から得られる論理和信号に基づいて回路パターンを
有する半導体ウエハ上の2μm以下の大きさを有する微
小異物を検出するように構成したことを特徴とする半導
体ウエハ異物検出装置。
1. A semiconductor wafer having a circuit pattern formed thereon is provided with illumination optical means for illuminating linearly polarized laser light at an inclination angle of 5 ° or less with respect to the wafer surface, and is illuminated by the illumination optical means. An enlarged condensing optical system for condensing scattered light that is reflected from the semiconductor wafer by the linearly polarized laser light and occurs in a direction substantially perpendicular to the surface of the semiconductor wafer, and magnifies and forms an image on a light receiving portion; Of the scattered light that is magnified and imaged by the condensing optical system and condensed, the light blocking optical system that blocks the linearly polarized scattered light generated from the edge of the circuit pattern, and the magnified image by the condensing optical system The light receiving parts that receive the scattered light other than the linearly polarized light that is condensed and obtained through the light-shielding optical system are arranged in a square shape and are arranged consecutively, and adjacent square shape light receiving parts are provided so as to avoid overlooking minute foreign matter. At least A semiconductor solid-state image sensor array capable of performing high-speed scanning by providing a dead zone between the light-receiving portions so as to overlap with each other in a direction perpendicular to the scanning direction and outputting the light-receiving portions in parallel from each other, The relationship between the size of each light receiving portion of the image pickup device array and the magnifying image forming magnification of the above-mentioned condensing optical system is shown by the circuit pattern of each scattered light other than the linearly polarized light obtained through the above light shielding optical system. Each of the above-mentioned light receiving parts receives a square-shaped portion of about 10 μm × 10 μm or less on the semiconductor wafer so that the amount of scattered light generated from a minute foreign substance having a size of 2 μm or less on the semiconductor wafer is larger than the amount of scattered light generated from the edge. Scanning for scanning the semiconductor wafer in the scanning direction intersecting with the arrangement direction of the light receiving portions of the semiconductor solid-state imaging device array, by providing detection optical means set as necessary. A step is provided, and the reflected light image from the surface of the semiconductor wafer is received by the photoelectric conversion means through the condensing optical system, and the semiconductor wafer is finely moved in the vertical direction based on a signal obtained from the photoelectric conversion means. Focusing control means for controlling the surface to the focusing optical state with respect to the illumination optical means and the detection optical means is provided, and the semiconductor wafer controlled in the focusing state by the focusing point controlling means is scanned by the scanning means to form a semiconductor. On a semiconductor wafer having a circuit pattern which is provided with a logical sum circuit for taking a logical sum of signals output from the respective light receiving parts of the solid-state imaging device array in parallel and at the same time, and having a circuit pattern based on the logical sum signal obtained from the logical sum circuit. A semiconductor wafer foreign matter detection device, which is configured to detect a minute foreign matter having a size of 2 μm or less.
【請求項2】上記半導体固体撮像素子アレイにおいて、
隣接する方形形状の受光部間の不感帯を少なくとも走査
方向に直角な方向に傾斜させて各受光部が重なり合うよ
うに受光部を配列して構成したことを特徴とする特許請
求の範囲第1項記載の半導体ウエハ異物検出装置。
2. The semiconductor solid-state image sensor array as set forth above,
The light receiving section is arranged such that the dead zones between adjacent light receiving sections of a rectangular shape are inclined at least in a direction perpendicular to the scanning direction, and the light receiving sections are arranged so that the respective light receiving sections are overlapped with each other. Semiconductor wafer foreign matter detection device.
【請求項3】上記半導体固体撮像素子アレイにおいて、
隣接する方形形状の受光部間の不感帯に、少なくとも走
査方向に直角な方向に対して受光部が重なり合うように
受光部を千鳥状に配列して構成したことを特徴とする特
許請求の範囲第1項記載の半導体ウエハ異物検出装置。
3. The semiconductor solid-state image sensor array as set forth above,
The light receiving units are arranged in a staggered manner so that the light receiving units overlap at least in a direction perpendicular to the scanning direction in a dead zone between adjacent square light receiving units. Item 6. The semiconductor wafer foreign matter detection device as described in the item.
JP59225717A 1984-10-29 1984-10-29 Semiconductor wafer particle detector Expired - Lifetime JPH0731129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59225717A JPH0731129B2 (en) 1984-10-29 1984-10-29 Semiconductor wafer particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225717A JPH0731129B2 (en) 1984-10-29 1984-10-29 Semiconductor wafer particle detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP25033494A Division JP2539182B2 (en) 1994-10-17 1994-10-17 Foreign matter inspection method on semiconductor wafer

Publications (2)

Publication Number Publication Date
JPS61104244A JPS61104244A (en) 1986-05-22
JPH0731129B2 true JPH0731129B2 (en) 1995-04-10

Family

ID=16833704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225717A Expired - Lifetime JPH0731129B2 (en) 1984-10-29 1984-10-29 Semiconductor wafer particle detector

Country Status (1)

Country Link
JP (1) JPH0731129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157638A (en) * 2006-12-20 2008-07-10 Hitachi High-Technologies Corp Surface flaw inspection device of sample, and flaw detection method using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533610B2 (en) * 1988-04-15 1996-09-11 株式会社日立製作所 Foreign matter inspection device
US5410400A (en) * 1991-06-26 1995-04-25 Hitachi, Ltd. Foreign particle inspection apparatus
JP3314440B2 (en) * 1993-02-26 2002-08-12 株式会社日立製作所 Defect inspection apparatus and method
US7746459B2 (en) * 2007-08-10 2010-06-29 Kla-Tencor Technologies Corp. Systems configured to inspect a wafer
JP5927010B2 (en) * 2012-04-09 2016-05-25 株式会社日立ハイテクノロジーズ Inspection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS476397U (en) * 1971-02-17 1972-09-21
JPS5599049A (en) * 1979-01-24 1980-07-28 Toshiba Corp Defect detector
JPS5686340A (en) * 1979-12-17 1981-07-14 Hitachi Ltd Automatic detector for foreign matter
JPS5780546A (en) * 1980-11-07 1982-05-20 Nippon Kogaku Kk <Nikon> Detecting device for foreign substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157638A (en) * 2006-12-20 2008-07-10 Hitachi High-Technologies Corp Surface flaw inspection device of sample, and flaw detection method using the same
JP4638864B2 (en) * 2006-12-20 2011-02-23 株式会社日立ハイテクノロジーズ Sample surface defect inspection system

Also Published As

Publication number Publication date
JPS61104244A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
US7869023B2 (en) System for detecting anomalies and/or features of a surface
US7088443B2 (en) System for detecting anomalies and/or features of a surface
US7352457B2 (en) Multiple beam inspection apparatus and method
EP0979398B1 (en) Optical scanning system for surface inspection
KR920007196B1 (en) Method and apparatus for detecting foreign matter
JP2002328099A (en) Optical scan device and defect detecting device
JPH0580497A (en) Surface state inspecting device
JP3978528B2 (en) Pattern defect inspection apparatus and laser microscope
JPH0435025B2 (en)
JP2539182B2 (en) Foreign matter inspection method on semiconductor wafer
JP3453128B2 (en) Optical scanning device and defect detection device
JPH05100413A (en) Foreign matter detecting device
JPS6365904B2 (en)
JPH0731129B2 (en) Semiconductor wafer particle detector
US5602639A (en) Surface-condition inspection method and apparatus including a plurality of detecting elements located substantially at a pupil plane of a detection optical system
JP3282790B2 (en) Defect inspection system for phase shift mask
JPS61104242A (en) Apparatus for inspecting foreign matter
JPS61104659A (en) Array of semiconductor solid-state image pickup element
JPS61104658A (en) Array of semiconductor solid-state image pickup element
JPH0646182B2 (en) Apparatus and method for inspecting foreign matter on mask
JP2021167794A (en) Defect inspection apparatus, defect inspection method, and scattered light detection system
JPS6347641A (en) Apparatus for inspecting surface state
JPH05662B2 (en)
JPH1183755A (en) Flaw inspecting device
JPH0816651B2 (en) Double-sided foreign matter detection method and device