JPS61104659A - Array of semiconductor solid-state image pickup element - Google Patents

Array of semiconductor solid-state image pickup element

Info

Publication number
JPS61104659A
JPS61104659A JP59225716A JP22571684A JPS61104659A JP S61104659 A JPS61104659 A JP S61104659A JP 59225716 A JP59225716 A JP 59225716A JP 22571684 A JP22571684 A JP 22571684A JP S61104659 A JPS61104659 A JP S61104659A
Authority
JP
Japan
Prior art keywords
detection
state image
array
image sensor
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59225716A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Koizumi
小泉 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59225716A priority Critical patent/JPS61104659A/en
Publication of JPS61104659A publication Critical patent/JPS61104659A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To enable image pickup by even scanning of the object to be detected, by a method wherein the array of solid-state image pickup elements is arranged in staggered form in the direction of the array arrangement and allowed parallel output. CONSTITUTION:The photo receiving part 20a is arranged in staggered form. The width of a picture element is 500mum, and non-sensitive zones are provided between adjacent picture elements. In the case of 40 picture elements, when the total magnification factor of the detection system is 100, the size of one picture element is 5X8mum<2> on the sample plane, which leads to detection over a range of 5X220mum<2>: almost the same speed of inspection as that of the conventional case. The output of picture elements i-n are turned binary in parallel at the same time by a binary circuit 21; accordingly, the outputs of 40 picture elements are processed in parallel at the same time. Then, large improvement in inspection speed and in detection sensitivity can be contrived. Since the picture element overlaps widely, the miss-detection of small foreign matters 3C can be avoided. The amount of this overlap can be made nearly equal to the diameter of the small foreign matter 3C required to be detected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は例えば半導体LSIウェへ、特にLSI製造中
間工程でのパターン付ウェハ上の最小異物を高速、高感
度で検出する異物検査装置等に用いられる半導体固体撮
像素子アレイに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is applicable to, for example, a foreign matter inspection device for detecting the smallest foreign matter on semiconductor LSI wafers, particularly on patterned wafers in intermediate steps of LSI manufacturing, at high speed and with high sensitivity. The present invention relates to a semiconductor solid-state image sensor array.

〔発明の背景〕[Background of the invention]

以下ウニへ上の異物検査装置を例にして発明の詳細な説
明する。
The invention will be described in detail below using a foreign matter inspection device on sea urchins as an example.

従来のウェハ上の異物検査装置では(:)レーザ光の一
次元高速走査と試料の並進低速移動の組み合わせや(I
I)特開昭55−155551 (公知・列4)に示す
様な試料の高速回転と並進低速移動との組合わせによる
ら線状走査を用いて、試料全面の走査・検出を行なって
いた。又、vj開昭57−8054S(公知例1)では
自己走萱型−次元光電変換素子アレイの電気的走査と試
料低速移動を組み合わせて上記(1)と同等の走査を実
現している。更に1.kwlorrvdirc、 1%
(AcycLルcaAf antl VVatl鵜1r
wp<ciirtn。
Conventional foreign particle inspection equipment on wafers uses a combination of (:) one-dimensional high-speed scanning of the laser beam and low-speed translational movement of the sample, or (I).
I) Scanning and detection of the entire surface of the sample was performed using a linear scan based on a combination of high-speed rotation and low-speed translational movement of the sample as shown in Japanese Patent Application Laid-Open No. 55-155551 (publicly known, column 4). In addition, in vj 57-8054S (known example 1), scanning equivalent to the above (1) is realized by combining electrical scanning of a self-scanning type dimensional photoelectric conversion element array and low-speed movement of the sample. Furthermore 1. kwlorrvdirc, 1%
(AcycL le caAf antl VVatl cormorant 1r
wp<ciirtn.

H,1!4ci44−rLLcz T<d、 Vd、 
4. m5. M(Ll 1981 、 PP、60−
70、(公知例2)は試料クエへの半径位置に自己走査
型−次元光電変換素子アレイを配置し、これと試料の回
転移動を組み合わせて上記(Il)と同等の走査を実現
している。
H, 1!4ci44-rLLcz T<d, Vd,
4. m5. M(LL 1981, PP, 60-
70, (Known Example 2) places a self-scanning type -dimensional photoelectric conversion element array at a radial position to the sample query, and achieves scanning equivalent to the above (Il) by combining this with rotational movement of the sample. .

しかし、公知例1,2の方法では、個々の光電変換素子
絵素の隣接部に存在する不感帯が異物を走査した場合の
異物のぎ見逃し“を避ける事が出来ない。厳密にこれを
避けるためには、不感帯をカバーする様に複数の光電素
子アレイを重膜して設置する必要がある。これは必要以
上に信号処理回装置を多くして、かつ信頼性を低丁させ
る原因となる。しかし、光電末子アレイを重複しなくて
も上記不感帯幅に比べて検出すべき異物の大きさが十分
大きい場合や、光電変換素子絵未幅の合計に比へ不感帯
幅の合d[が無視出来る程度に小さい場合には、上記1
見逃。
However, in the methods of Known Examples 1 and 2, it is impossible to avoid "missing a foreign object" when scanning a foreign object due to the dead zone existing in the adjacent portion of each photoelectric conversion element picture element.To strictly avoid this, In this case, it is necessary to install a plurality of photoelectric element arrays in a layered manner so as to cover the dead zone.This increases the number of signal processing circuits more than necessary and reduces reliability. However, even if the photoelectron arrays do not overlap, the size of the foreign object to be detected is sufficiently large compared to the above dead zone width, or the sum of the dead zone widths d[ is negligible compared to the total width of the photoelectric conversion element picture width. If it is smaller than 1.
Overlooked.

し“は大きな問題とならない。公知例1,2の方法では
このような観点から不感帯による1見逃し“は無視して
おり論じていない。
This is not a big problem. From this point of view, the methods of Known Examples 1 and 2 ignore and do not discuss the possibility of one miss due to the dead zone.

〔パターン付ウェハ上の異物検出〕[Detection of foreign matter on patterned wafer]

LSfJ造の中間工程でのパターン付りエハ上の異物検
査作業は、製品歩留り向上、信頼性向上の為に不叫決で
ある。この作業の自動化は特開昭55−149829.
特開昭54−101390.特開昭55−94145.
特開昭56−30650等の一連の特許に示されている
様に偏光を利用した検出方法により実現されている。こ
の原理を第21〜第28図を使用して説明する。
Inspection of foreign substances on patterned wafers during the intermediate process of LSfJ manufacturing is essential to improve product yield and reliability. Automation of this work is described in Japanese Patent Application Laid-Open No. 55-149829.
JP-A-54-101390. Japanese Patent Publication No. 55-94145.
This is realized by a detection method using polarized light, as shown in a series of patents such as Japanese Patent Laid-Open No. 56-30650. This principle will be explained using FIGS. 21 to 28.

第17図に示す如く、照明光4をウェハ1人面に対して
傾斜角度−で照射したのみでは、ノ曳ターン2.と異物
3から同時に反射光と散乱光5゜6が発生するので、パ
ターン2から異物5のみを弁別して検出することは出来
ない。そこで照6射光4として、偏光レーザ光を使用し
、異物3゜を検出する工夫を行なった。
As shown in FIG. 17, only irradiating the illumination light 4 with respect to the surface of one wafer at an inclination angle of -2. Since reflected light and scattered light 5.6 are simultaneously generated from the foreign object 3, it is not possible to distinguish and detect only the foreign object 5 from the pattern 2. Therefore, a device was devised to use polarized laser light as the irradiation light 4 to detect foreign objects at 3°.

第18図(cL)に示す如く、ウェハ1上に存在す。As shown in FIG. 18(cL), it exists on the wafer 1.

るパターン2にS偏光レーザ光4を照射する。−(ここ
で、レーザ光4の゛電気ベクトル10がクエ。
The S-polarized laser beam 4 is irradiated onto the pattern 2. -(Here, the electric vector 10 of the laser beam 4 is the query.

ハ表1mに平行な場合を8偏光レーザ照明と呼ぶ。、)
一般如、パターン20衣而凹凸は微視的に見ると照IJ
FJ+′tt/)波長に比べ十分小さく、光学的に滑ら
かでろるりで、その反射光5もSuj光成分11が保た
れる。従って、S偏光遮光の検光子13を反射光5光路
中に設置すれば、反射光5は遮光され、光電変換素子7
には致達しない。一方、第18図(句に示す如く、異物
3からの散乱光6r(はS偏光1戊分11に加えてP−
制光成分12も含まれる。これは、異物3表面は徂く、
偏光が解消される結果、P偏光成分12が発生するから
である。従って、検光子13を通過するP偏光成分14
イ光鷹変換累子7によジ検出すれば、異物3の検出が出
来る。
The case where the beam is parallel to the 1 m surface is called 8-polarized laser illumination. ,)
Generally speaking, the unevenness of pattern 20 is microscopically visible.
It is sufficiently small compared to the FJ+'tt/) wavelength, is optically smooth and smooth, and its reflected light 5 also maintains the Suj light component 11. Therefore, if the S-polarized light shielding analyzer 13 is installed in the optical path of the reflected light 5, the reflected light 5 will be blocked and the photoelectric conversion element 7
will not be reached. On the other hand, as shown in FIG.
A light control component 12 is also included. This means that the surface of the foreign object 3 is further away.
This is because the P-polarized light component 12 is generated as a result of depolarization. Therefore, the P polarized light component 14 passing through the analyzer 13
The foreign object 3 can be detected by detecting it using the light hawk conversion element 7.

ここでパターン反射光は、第17図に示す様にレーザ光
4に対してパターン2の長手方向となす角度が直角の場
合如は、反射光5は検光子13により完全に遮光される
が、この角度が直角と異なる場合は完全には遮光されな
い。この考察は計測自動制御字余論文集のVOI/ 1
7.蔗2. P262〜P242.1981 、に述べ
ている。これによれば、この角1耀が直角より±3D 
 以内の範17Hのパターンからの反射光のみが、ウェ
ハ上方に設置した対物レンズに入射するので、この範囲
のパターン反射光5は検光子13により完全には遮光さ
れないが、その強度は2〜3μrn異物散乱元と弁別出
来る程度に小さいので、実用上問題とならない。
Here, as shown in FIG. 17, if the angle between the longitudinal direction of the pattern 2 and the laser beam 4 is at right angles, the reflected light 5 will be completely blocked by the analyzer 13. If this angle is different from the right angle, light will not be completely blocked. This discussion is included in VOI/1 of the collection of automatic measurement and control characters.
7. Potato 2. P262 to P242.1981. According to this, this angle 10 is ±3D from the right angle
Only the reflected light from the pattern in range 17H within the range 17H enters the objective lens installed above the wafer, so the pattern reflected light 5 in this range is not completely blocked by the analyzer 13, but its intensity is 2 to 3 μrn. Since it is small enough to be distinguished from the source of foreign matter scattering, it does not pose a practical problem.

ここで偏光レーザ光4の傾斜角度−は1°〜6゜程度忙
設定している。5これは以下に示す理由による。第19
図に示す実験では、S偏光レーザ4に対する2μm−異
物散乱光の検光子13通過成分14の強度Vsとバター
・ン反射光5の検光子成分強K Vp 全対物しy:I
9(倍率40x、 N−A=0.55ンを用いて測定し
た。実験結果を第20図に示す。これはレーザ煩斜角度
φを横軸にと9、異物・パターンの弁別比Vs/Vpを
プロットした。同図よ。
Here, the inclination angle of the polarized laser beam 4 is set to about 1° to 6°. 5 This is due to the following reasons. 19th
In the experiment shown in the figure, the intensity Vs of the 2 μm foreign object scattered light passing through the analyzer 13 component 14 for the S-polarized laser 4, and the analyzer component strength K Vp of the butter-n reflected light 5, y:I
9 (magnification 40x, N-A = 0.55) The experimental results are shown in Fig. 20. I plotted Vp. Same figure.

シ#4斜角度φが5°以下の場合にVsはVpと容易に
弁別出来るので、安定な異物検出が可能となる。
Since Vs can be easily distinguished from Vp when the #4 oblique angle φ is 5° or less, stable foreign object detection is possible.

又、設計的な事柄を考慮すると、φ=1°〜3°が最適
である。(特開昭56−30630参照)ここで、レー
ザ光源15は左右から2り用いて。
Further, considering design matters, φ=1° to 3° is optimal. (Refer to Japanese Unexamined Patent Publication No. 56-30630) Here, two laser light sources 15 are used from the left and right.

いるのは、異方性を有する散乱光を発生ずる異物に対し
て安定な検出を可能とする目的からである。
The reason for this is to enable stable detection of foreign substances that generate anisotropic scattered light.

次に、この検出原理を用いた異物検量方法を第21〜第
24図に説明する。
Next, a foreign matter calibration method using this detection principle will be explained with reference to FIGS. 21 to 24.

第21図(−)に示す様に、検出範囲を制限する為にス
リ、ト8を試料結像面に設ける。これによりスリット8
の開口部の試料上への投影面積8cLの範囲内の散乱光
のみが一度に検出されるので、この面積内でのパターン
反射光P成分の積算強度14PK比べて異物散乱光P成
分14dが十分大よければ、異物3が安定に検出出来る
。故に、この面o1t8*は検出すべよ異物の大きさく
2〜3μm)と同程度の大きさにすれば、検出感度が最
適となるが、第21図(旬に示す様な走査回数が多くな
り、長時間の検査時間を有する。逆に開口面構8cLを
大きくすると、短時間に検査が出来るが、検出感度が劣
化する結果となる。これを考慮して、現在では面積86
Lを10 X 200μmとして、2〜3μmの異物を
約2分で(150C1111ウエハの場合)検査してい
る。この様子な第22図、第23図を用いて説明する。
As shown in FIG. 21(-), a slot 8 is provided on the sample imaging surface to limit the detection range. This allows slit 8
Since only the scattered light within the projected area of 8 cL of the aperture onto the sample is detected at a time, the foreign object scattered light P component 14d is sufficient compared to the integrated intensity 14PK of the pattern reflected light P component within this area. If all is well, the foreign matter 3 can be detected stably. Therefore, if this surface o1t8* is made to be about the same size as the size of the foreign object to be detected (2 to 3 μm), the detection sensitivity will be optimal, but the number of scans will be increased as shown in Fig. , it has a long inspection time.On the other hand, if the aperture surface structure 8cL is made larger, inspection can be done in a shorter time, but the detection sensitivity deteriorates.In consideration of this, the area of 86
When L is 10 x 200 μm, foreign particles of 2 to 3 μm are inspected in about 2 minutes (in the case of 150C1111 wafer). This situation will be explained using FIGS. 22 and 23.

まず、第22図ではウェハ表面の平面図(−)と断面図
(b)を示す。パターン2には(1)パターンの僅かな
凹みや(11)レーザ光4の照射方向に対して直角以外
の角度を有する個所があシ、この個所の各々から僅かな
散乱光P成分14Pが発生する。一方、0.5〜2μm
程度の大きさの小異物3aと2μm以上の大異物3kか
らは、上記(1)(It)の個所の各々に比べて大きな
強度のP成分14iが発生する。
First, FIG. 22 shows a plan view (-) and a cross-sectional view (b) of the wafer surface. The pattern 2 has (1) a slight depression in the pattern and (11) a part having an angle other than perpendicular to the irradiation direction of the laser beam 4, and a small amount of scattered light P component 14P is generated from each of these parts. do. On the other hand, 0.5-2 μm
A P component 14i having a larger intensity than each of the locations (1) and (It) above is generated from the small foreign matter 3a having a size of about 2 μm or more and the large foreign matter 3k having a size of 2 μm or more.

第23図には、開口8aが試料上を走査した場合の光電
変換素子7の信号出力を示す。同図(cL)ではP成分
14p(回路パターン)及び14d(異物〕の試料上の
分布を示す。この分布上を開口8cLが走査すると同図
(b)に示す映像伯°号出力Vpを得、これを二値化す
ると同図(e)に示す欠陥信号が得られる。この例では
小異物3aとパターン2のエツジからの出力が同一であ
るので、破線で示す閾値はこの出力よシ高い位置に設定
せざるを得ないので、この結果、大異物のみの検出に限
定される。
FIG. 23 shows the signal output of the photoelectric conversion element 7 when the aperture 8a scans over the sample. The figure (cL) shows the distribution of the P components 14p (circuit pattern) and 14d (foreign matter) on the sample.When the aperture 8cL scans this distribution, the video output Vp shown in the figure (b) is obtained. , When this is binarized, the defect signal shown in the same figure (e) is obtained.In this example, the output from the small foreign object 3a and the edge of pattern 2 are the same, so the threshold shown by the broken line is higher than this output. As a result, detection is limited to only large foreign objects.

しかし、2SKb自メモ9−LSIに代衣される高集積
LSIの製造においては、1μmの大きさの異物の存在
が製品歩留りに大よく影響するので、1μrm異物の検
出感度が必要となる。これは刀・25図に示す装置で開
口8aを5×5μm2以下に制限すれは、前記(1) 
、 (II)の散乱光P成分の積算効果が、口8aが1
0X200μ−+C比べて低減されるので、その結果、
1μIII異物検出が可能となる。
However, in the manufacture of a highly integrated LSI that is substituted for a 2SKb personal memo 9-LSI, the presence of foreign matter of 1 μm in size greatly affects the product yield, so a detection sensitivity of 1 μrm of foreign matter is required. This is the device shown in Figure 25, and if the opening 8a is limited to 5 x 5 μm2 or less, the above (1)
, the cumulative effect of the scattered light P component in (II) is 1 when the mouth 8a is
Since it is reduced compared to 0X200μ-+C, as a result,
1μIII foreign matter detection becomes possible.

しかし、この場合、検量時間が約40倍とな多、製造ス
ループットとの同期が収れず、実用化に問題がある。
However, in this case, the calibration time is about 40 times longer, and synchronization with manufacturing throughput cannot be achieved, which poses a problem in practical use.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、被検出物体上を万遍ノIlt <走査
して撮像できるようにした半導体固体撮像素子アレイを
提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor solid-state image sensor array that can scan an object to be detected and take an image.

〔発明の概要〕[Summary of the invention]

本発明では固体撮像素子アレイの配列方向に対してアレ
イを千鳥型に配置し、連列に出力しつるように構成した
ことを特徴とする半導体固体撮像素子アレイである。
The present invention is a semiconductor solid-state image sensor array characterized in that the arrays are arranged in a staggered manner with respect to the arrangement direction of the solid-state image sensor array, so that the arrays are output in series.

〔発明の実施例〕[Embodiments of the invention]

第1図〜第15図を用いて本発明の実施例を詳細に説明
する。
Embodiments of the present invention will be described in detail with reference to FIGS. 1 to 15.

第1図では、従来例第23図のスジ、ト8に代夛、固体
撮像素子アレイ20を用いる様子を示す。
FIG. 1 shows how a solid-state image sensor array 20 is used in place of the stripe and g8 of the conventional example shown in FIG. 23.

第2図は固体撮像素子アレイ20の例を説明する。受光
部20aはシリコンフォトダイオードやQaAsPフォ
トダイオードであり、このうちで特にPIN接合型のも
のが、高速応答性、高感度の特性を有し、本発明の用途
にR遍である。各々の受光部20Qは千鳥型に配置して
(画素)の大きさの幅は500μmであり、lla[す
る画素の間には不感帯を設けた。画素数は40ケを有し
てい。
FIG. 2 explains an example of the solid-state image sensor array 20. The light receiving section 20a is a silicon photodiode or a QaAsP photodiode, and among these, the PIN junction type has characteristics of high speed response and high sensitivity, and is suitable for use in the present invention. Each of the light receiving sections 20Q was arranged in a staggered pattern, and the width of the (pixel) size was 500 μm, and a dead zone was provided between the pixels. The number of pixels is 40.

る場合、例えは検出系の総合倍率1oo1’l(対物。For example, if the total magnification of the detection system is 1001'l (objective).

レンズ90倍率40×と9レーレンズ(図示せず)の倍
率25×の場合)とすれは、1画素の大きさ、は試料面
上で5×8μrn2となり、結局5 x 220μm2
゜の範囲を検出しながら定食していることになシ、。
In the case of a 90 lens with a magnification of 40x and a 9-ray lens (not shown) with a magnification of 25x, the size of one pixel is 5 x 8 μrn2 on the sample surface, which is 5 x 220 μm2 in the end.
It means that you are eating a set meal while detecting the range of ゜.

従来と同程度の検査速度となる。The inspection speed is about the same as before.

この固体撮像素子アレイ20の効果を第3図に説明する
。比較の為、同図(cL)、(b)、(C)に固体撮像
素子アレイ20の場合を示し、同図(d)、(e)。
The effects of this solid-state image sensor array 20 will be explained with reference to FIG. For comparison, the case of the solid-state image sensor array 20 is shown in (cL), (b), and (C) of the same figure, and (d) and (e) of the same figure.

(f)に第23図に示す従来例の場合を示す。同図(α
)は固体撮像素子アレイ20がウェハ上を走査して検出
する状態を示し、同図(b)は固体撮像素子アレイ20
の各々の画素(”*/+’μ、?l’L)から得られる
映慮信号A1,71.4μm1m1を示し、同図(C)
は′?!rm 像信号L1.71.4 、A1.mlを
各々閾値VTH−Q二値化して得られる二値化信号L2
 pigμ2μ22m2を示す図である。更に同図(d
)はスリット8がウェハ上を走査されて光電変換素子7
で検出する状態を示し、同図(e)は光電変換素子7か
ら得られる映像信号Vを示し、同図(f)はこの映像信
号をVTR’の閾値で二値化された二値化信号を示す図
である。なお、同図(α)、(b)、(C) Kは説明
を簡単にするため、画素数を5ケ(L、jμ。
(f) shows the case of the conventional example shown in FIG. The same figure (α
) shows the state in which the solid-state image sensor array 20 scans and detects the wafer, and FIG.
(C) shows the consideration signal A1, 71.4μm1m1 obtained from each pixel ("*/+'μ, ?l'L).
teeth'? ! rm Image signal L1.71.4, A1. Binarized signal L2 obtained by binarizing each threshold value VTH-Q of ml
It is a figure showing pigμ2μ22m2. Furthermore, the same figure (d
), the slit 8 is scanned over the wafer and the photoelectric conversion element 7 is
(e) shows a video signal V obtained from the photoelectric conversion element 7, and (f) shows a binary signal obtained by converting this video signal into a binary signal using a threshold value of VTR'. FIG. In addition, in the figure (α), (b), and (C), K has 5 pixels (L, jμ) to simplify the explanation.

19m)としている。この図から明らかなように、画素
Aの出力信号A1を閾値VTHで二値化すれは二値化信
号〃2は小異物3aでも11″′となり、従来に比べて
感度向上が得られる。
19m). As is clear from this figure, when the output signal A1 of the pixel A is binarized using the threshold value VTH, the binarized signal 2 becomes 11'' even for the small foreign object 3a, and an improvement in sensitivity can be obtained compared to the conventional method.

第4図には、固体撮像素子アレイ20の谷々の画素の信
号処理方法を示す。画素L〜九の各々の出力は二値化回
路21モ並列に同時に二値化されて、二値化信号(’1
”)はOR回路22に導かれ、少なくても一つの画絵で
異物が検出された場合にOR回路の出力は′1″′とな
り、異物メモリ23に入力する。この方法により、40
りの画素出力は同時並列処理され、自己走肴型撮慮素子
を用いた場合に比べて大幅な検査速度及び検出感度の向
上が計れる。
FIG. 4 shows a signal processing method for pixels in the valleys of the solid-state image sensor array 20. The output of each pixel L to pixel 9 is simultaneously binarized by 21 binarization circuits in parallel, and a binarized signal ('1
”) is led to the OR circuit 22, and if a foreign object is detected in at least one picture, the output of the OR circuit becomes '1'' and is input to the foreign object memory 23. By this method, 40
The pixel outputs are simultaneously processed in parallel, and inspection speed and detection sensitivity can be significantly improved compared to when a self-running sensor is used.

しかしながら、固体撮像素子アレイ20の画素(受光部
)20αが大巾にオーバラップしているため牙5図に示
すようなことにはならない。
However, since the pixels (light receiving portions) 20α of the solid-state image sensor array 20 overlap to a large extent, the situation shown in FIG. 5 does not occur.

即ら第5図及びオフ図に示す様に固体撮鐵素子アレイ2
0′の配列方向と走査方向とが直角の場合で、画素りと
Jの間の不感帯と小異物6Gの関係が同図の様な場合に
は、小異物3Gを見逃してしまう。
That is, as shown in FIG.
When the arrangement direction of 0' and the scanning direction are perpendicular to each other, and the relationship between the dead zone between the pixel and J and the small foreign object 6G is as shown in the figure, the small foreign object 3G will be overlooked.

そこで、第6図及び第8図に示す如く、固体撮像素子ア
レイ20の画素20cLを配列方向にオーパラ、プする
ように千鳥型に配列すれば、上記見逃しを避けることが
出来る。なお、このオーバラップの量は検出しようとす
る小異物3Gの直径にほぼ等しくすればよい。
Therefore, as shown in FIGS. 6 and 8, if the pixels 20cL of the solid-state image sensor array 20 are arranged in a staggered manner so as to overlap in the arrangement direction, the above-mentioned oversight can be avoided. Note that the amount of overlap may be approximately equal to the diameter of the small foreign object 3G to be detected.

第6図及び第8図では小異物5Gは画素j、kにより重
複して検出されるI!能性があるので結果としてダブル
カウントされる。しかし、このダブルカウントを避ける
方法として特開昭56−132549や特開昭!M−1
18187や特開昭57−66345や特開昭56−1
26747や特開昭56−118647で述べている方
法を用いればよい。
In FIGS. 6 and 8, the small foreign object 5G is detected by pixels j and k in duplicate. As a result, it is double counted. However, as a way to avoid this double counting, there are methods such as JP-A-56-132549 and JP-A-Sho! M-1
18187, JP-A-57-66345, JP-A-56-1
The method described in No. 26747 or Japanese Unexamined Patent Publication No. 56-118647 may be used.

第9図は、ら線状走査の場合での本発明の適用例を示す
FIG. 9 shows an example of application of the invention in the case of spiral scanning.

第10図は実施例の全体構成を示す。クエハ1は真空チ
ューブ41でウェハチャック40に吸着されながら、X
ステージ46及びYステージ49によりXY方向に′$
励する。固体撮像素子アレイ20で検出された異物情報
は二値化回路21,0几回路22を経て異物メモリ23
を包含する制御回路32に至り、衆示装置33で衣示さ
れる。
FIG. 10 shows the overall configuration of the embodiment. The wafer 1 is sucked to the wafer chuck 40 by the vacuum tube 41 and
'$ in the XY direction by the stage 46 and the Y stage 49
encourage Foreign object information detected by the solid-state image sensor array 20 is sent to a foreign object memory 23 via a binarization circuit 21 and a zero-code circuit 22.
The control circuit 32 includes the following, and is displayed by a public display device 33.

本発明では画素の大きさを5X8μ−程度以下にしてい
るので、クエへ表面のうねシに起因する焦点ずれが検食
中に発生すると、異物検出感度が著しく低−ドする。そ
こで、自動焦点検出部30により、検査中に焦点ずれ量
を検出して、焦点機構用モータ43のドライバー31に
フィードバックする構成を用いることが不可欠である。
In the present invention, the pixel size is set to be approximately 5.times.8.mu. or less, so if a focus shift due to ridges on the surface of the square occurs during inspection, the foreign object detection sensitivity will be significantly reduced. Therefore, it is essential to use a configuration in which the automatic focus detection section 30 detects the amount of defocus during the inspection and feeds it back to the driver 31 of the focus mechanism motor 43.

この自動焦点機能の原理は第22回5ICE学術講演会
前刷果のP225〜P224に発表し、及び特開昭58
−70540に記載されている通りであるが、第11図
〜第13図を用いてこの原理を説明する。
The principle of this automatic focus function was announced on pages 225 to 224 of the preprint of the 22nd 5ICE Academic Conference, and
70540, this principle will be explained using FIGS. 11 to 13.

この方法は試料上のパターンに影響されずに安定に自動
焦点を行なうことに特徴があるので、本発明には最適で
ある。
This method is most suitable for the present invention because it is characterized by stable automatic focusing without being affected by the pattern on the sample.

第11図には自動焦点検出部30の主要部を示す。FIG. 11 shows the main parts of the automatic focus detection section 30.

i4パターンガラス板上の縞パターン60a、6a4 
ハ各々対物レンズ9により試料上に投影されるが、各々
の合焦点位置は撮像素子アレイ20の合焦点に対して若
干上がりすぎ及び下が9すぎに設定されいる。各々の縞
パターン6On、60−6の試料上  ゛の像は対物レ
ンズ9で拡大され、半透過ミラー34.62で反射され
、撮鍬素子61の上に結像される。
i4 pattern striped pattern 60a, 6a4 on glass plate
Each of the images is projected onto the sample by the objective lens 9, but the focal point position of each is set slightly too high and slightly below the focal point of the image pickup element array 20. The images of the respective striped patterns 6On and 60-6 on the sample are magnified by the objective lens 9, reflected by the semi-transmissive mirrors 34 and 62, and imaged onto the pick-up element 61.

第12図(cL)はウェハ丁がり(Z>0)の場合、撮
像素子61上に結像される投影縞パターンを示し、第1
2図(d)は第12図(cL)に示す場合における撮像
素子61で検出される映像信号波形を示す。
FIG. 12(cL) shows a projected fringe pattern imaged on the image sensor 61 in the case of wafer edge (Z>0), and the first
FIG. 2(d) shows the video signal waveform detected by the image sensor 61 in the case shown in FIG. 12(cL).

第12図(b)は合焦点位置(2=0)の場合、撮像素
子61上に結像される投影パターンを示し、第12図(
e)は第12図(b)に示す場合における撮像素子61
で検出される映像信号波形を示す。刀・12図(C)は
ウェハ上がシすr(Z>0)の場合、撮像素子61上に
結像される投影縞パターンを示し、第12図(f)は第
12図(C)に示す場合における撮飲素子61で検出さ
れる映像信号波形を示す。
FIG. 12(b) shows a projection pattern imaged on the image sensor 61 in the case of the focused position (2=0), and FIG.
e) is the image sensor 61 in the case shown in FIG. 12(b).
The figure shows the video signal waveform detected by . Figure 12 (C) shows the projected fringe pattern that is imaged on the image sensor 61 when the wafer is r (Z>0), and Figure 12 (f) shows the projected fringe pattern that is formed on the image sensor 61. 3 shows a video signal waveform detected by the sensor 61 in the case shown in FIG.

従って撮像素子61の検出信号は撮像素子アレイ20が
合焦点の場合には縞パターン60cLトロ0bに対応す
る個所で等しくなるので両者の差信号は零となる。
Therefore, when the image sensor array 20 is in focus, the detection signals of the image sensor 61 become equal at the locations corresponding to the striped patterns 60cL and 0b, and the difference signal between the two becomes zero.

一方、上がpすぎ(又は下がシすぎ)の場合には撮像素
子200合焦点からのずれと差信号の出力の大きさが対
応するので、第13図に示すツ・−車信号が得られる。
On the other hand, if the upper part is too p (or the lower part is too sharp), the deviation from the in-focus point of the image sensor 200 corresponds to the magnitude of the output of the difference signal, so the two-wheel signal shown in FIG. 13 is obtained. It will be done.

同図では試料面がアルミ面の場合と複雑なパターン(メ
モ9−セル面)の場合で差信号の実測例を示す。′これ
により±0.5μm以内の焦点合わせが可能となるので
、対物レンズ90倍率40×の場合には、安定した異物
検出が可能となる。自動焦点機構として、例えば第10
図に示すような、モータ43.斜面45゜球44.板バ
ネ42を用いる構成が簡単である。
The figure shows an example of actual measurement of the difference signal when the sample surface is an aluminum surface and when the sample surface has a complicated pattern (Memo 9 - cell surface). 'This allows focusing within ±0.5 μm, so when the objective lens has a magnification of 90×40, stable foreign object detection becomes possible. As an automatic focusing mechanism, for example, the 10th
A motor 43. as shown in the figure. Slope 45° ball 44. The configuration using the plate spring 42 is simple.

次に本発明の飴の一実施例を説明する。即ち第14図に
示すように受光部200tLを台形に形成し ゝて千鳥
状に配置しても前記実施例と同様な作用効果を達成する
ことがでよる。なお、200bは不感帯領域を示す。
Next, one embodiment of the candy of the present invention will be described. That is, even if the light receiving portions 200tL are formed into a trapezoidal shape and arranged in a staggered manner as shown in FIG. 14, the same effects as in the embodiment described above can be achieved. Note that 200b indicates a dead zone area.

このように固体撮像素子アレイは第15図及び第16図
に示すように外部ビンへ接続するために、ボンディング
バッド部20e、 200e、配@ 2od、2o。
As shown in FIGS. 15 and 16, the solid-state image sensor array has bonding pad portions 20e, 200e, and layouts @ 2od and 2o in order to connect to the external bin.

dが不可欠であシ、受光部(画素)20α、 2ooa
は受光範囲以上に広くする必要がある。
d is essential, light receiving part (pixel) 20α, 2ooa
needs to be wider than the light receiving range.

そこで検出分解能を高める為、光学的遮光部20c、 
200cを印刷等によシ貼p付け、ボンディングバット
部20e、 200eや受光範囲外の個所を遮光するこ
とが肝要である。
Therefore, in order to increase the detection resolution, an optical light shielding part 20c,
It is important to affix 200c by printing or the like, and to shield the bonding butt parts 20e, 200e and other parts outside the light-receiving range from light.

また本発明はウェハ如限定されず、ホトマスクやレチク
ル等の曲の製品の検査にも適用可能である。
Further, the present invention is not limited to wafers, but can also be applied to inspection of curved products such as photomasks and reticles.

また画素の大きさの制限は10 X 12μm程度でも
、1.5μm〜2.u導の異物を検出する場合には実用
上差支えないことが実験によシ確認できている。
In addition, the size of the pixel is limited to about 10 x 12 μm, but it is 1.5 μm to 2.5 μm. It has been confirmed through experiments that there is no practical problem when detecting U-conducting foreign objects.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、被検出対象物を走
査する方向に関係なく満遍無く撮像することがでよ、検
査の高速性を維持しつつ、微小異物等のパターン検出を
高感度かつ安定に行なうことの出来る効果を奏する。
As explained above, according to the present invention, it is possible to image the object to be detected evenly regardless of the scanning direction, and it is possible to detect patterns such as minute foreign objects with high sensitivity while maintaining the high speed of inspection. Moreover, it has the effect of being able to be carried out stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体固体撮像素子アレイが用いられ
る異物検査装置の一実施例を示す構成図、第2図は第1
図に示す半導体固体撮像素子アレイの詳細を示す斜視図
、第3図は本発明と従来例との比較を説明するための図
、第4図は第1図に示す半導体固体素子の出力信号処理
回路を示す図、第5図は不感帯と異物との位置関係ケ示
す図、第6図は本発明での画素(受光部)と異物との位
置関係を示す図、オフ図は第5図における半導体固体撮
像素子のクエへとの相対的走査方向を示す図、第8図は
第6図における半導体固体撮像素子のクエへとの相対的
走16・ 査方向を示す図、第9図は半導体固体撮像素子のクエへ
との相対的らせん状走査を示す図、第10図は第1図に
示す実施例を更に具゛体的に示した、構成図、第11図
は第10図に示す自動焦点検出部を示す斜視図、第12
図は自動焦点検出を説明するための図、第13図は第1
1図に示す自動焦点検出部から得られる差出力と焦点す
れとの関係を示した図、牙14図は第2図と異なる曲の
半導体固体撮1′J!素子アレイを示す図、第15図は
第14図に示すものを足に具体的に示した図、第16図
は第3図に示すものを更に具体的に示した図、第17図
はクエへを示す断面図、第18図は照射されたレーザ光
に対するウェハ上の回路パターンと異物からの反射状態
を示す図、第19図は従来の異物検出方法の第1例を示
す概略f+視図、第2口図は第19図で傾斜角度−を変
化させた場合の出力比Vs/Vpの測定データを示すグ
ラフ、第21図は従来の異物検出方法の第2例を示す概
略斜斜図、第22図はウェハ上の回路パターンと異物か
らの反射状態を示す図、第23図は第21図に示す如く
スリットを泪対的にウェハ上を走査して得られる映像信
号の関係等を示す図、1−24図は第21図に示す第2
例と同様に従来の異物検出方法を示す概略斜視図である
。 〔符号の#5i!明〕 20、200・・・光電変換用固体撮像素子アレイ、2
04.200a・・・受光部、20b、200b ・・
・不感帯。 菓1 ン 竿ZL 箪牛阻 笑ダ図 冨2図 箋77 20’ 竿8ワ 業n図 γ72図 箋 11 竿/+図 2oaf) 2θOcL ヱ15  図 2/ん図 箪/7図 /                  、、’   
      7草79図 O″5”      10” 革22  図 一一一りχ
FIG. 1 is a configuration diagram showing an embodiment of a foreign matter inspection device in which the semiconductor solid-state image sensor array of the present invention is used, and FIG.
3 is a diagram for explaining a comparison between the present invention and a conventional example, and FIG. 4 is an output signal processing of the semiconductor solid-state device shown in FIG. 1. A diagram showing the circuit, FIG. 5 is a diagram showing the positional relationship between the dead zone and the foreign object, FIG. 6 is a diagram showing the positional relationship between the pixel (light receiving part) and the foreign object in the present invention, and the OFF diagram is the same as in FIG. 5. 8 is a diagram showing the relative scanning direction of the semiconductor solid-state image sensor to the square in FIG. 6, and FIG. 9 is a diagram showing the relative scanning direction of the semiconductor solid-state image sensor to the square in FIG. FIG. 10 is a diagram showing the relative spiral scanning of the solid-state image sensor to the query. FIG. 10 is a configuration diagram showing the embodiment shown in FIG. 1 in more detail. FIG. 11 is shown in FIG. Perspective view showing the automatic focus detection section, 12th
The figure is a diagram for explaining automatic focus detection, and Figure 13 is the first
A diagram showing the relationship between the difference output obtained from the automatic focus detection unit and out-of-focus shown in Figure 1, and Figure 14 is a semiconductor solid-state camera 1'J! with a different song from Figure 2. FIG. 15 is a diagram showing the element array in detail, FIG. 16 is a diagram specifically showing what is shown in FIG. 3, and FIG. FIG. 18 is a diagram showing the circuit pattern on the wafer and the state of reflection from the foreign matter with respect to the irradiated laser beam, and FIG. 19 is a schematic f+ view showing the first example of the conventional foreign matter detection method. , the second diagram is a graph showing measurement data of the output ratio Vs/Vp when the inclination angle - is changed in FIG. 19, and FIG. 21 is a schematic oblique view showing a second example of the conventional foreign object detection method. , Fig. 22 shows the circuit pattern on the wafer and the state of reflection from foreign objects, and Fig. 23 shows the relationship between the video signals obtained by scanning the wafer with a slit in a horizontal manner as shown in Fig. 21. The figure shown in Figure 1-24 is the second figure shown in Figure 21.
It is a schematic perspective view which shows the conventional foreign object detection method similarly to an example. [Code #5i! [Bright] 20, 200...Solid-state image sensor array for photoelectric conversion, 2
04.200a... Light receiving section, 20b, 200b...
・Dead zone. 1 竿ZL 箪ushi-shoda zutomi 2 drawing paper 77 20' Rod 8 work n diagram γ 72 drawing paper 11 rod / + fig. 2 oaf) 2θOcL ヱ15 fig.
7 Grass 79 Figure O″5” 10” Leather 22 Figure 111 χ

Claims (1)

【特許請求の範囲】[Claims]  固体撮像素子アレイの配列方向に対してアレイを千鳥
型に配置し、並列に出力しうるように構成したことを特
徴とする半導体固体撮像素子アレイ。
1. A semiconductor solid-state image sensor array, characterized in that the array is arranged in a staggered manner with respect to the arrangement direction of the solid-state image sensor array, and is configured to output data in parallel.
JP59225716A 1984-10-29 1984-10-29 Array of semiconductor solid-state image pickup element Pending JPS61104659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59225716A JPS61104659A (en) 1984-10-29 1984-10-29 Array of semiconductor solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59225716A JPS61104659A (en) 1984-10-29 1984-10-29 Array of semiconductor solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPS61104659A true JPS61104659A (en) 1986-05-22

Family

ID=16833686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59225716A Pending JPS61104659A (en) 1984-10-29 1984-10-29 Array of semiconductor solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPS61104659A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149552U (en) * 1987-03-20 1988-10-03
US5410400A (en) * 1991-06-26 1995-04-25 Hitachi, Ltd. Foreign particle inspection apparatus
US6084664A (en) * 1992-11-30 2000-07-04 Hitachi, Ltd. Method of and apparatus for inspecting reticle for defects

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518592A (en) * 1974-07-09 1976-01-23 Murata Manufacturing Co Dojikukeeburuno setsuzokuho
JPS52143878A (en) * 1976-05-26 1977-11-30 Hitachi Ltd Silicon wafer defect detector
JPS55149829A (en) * 1979-05-11 1980-11-21 Hitachi Ltd Detector for foreign matter in wafer
JPS5875391A (en) * 1981-10-30 1983-05-07 Hitachi Ltd Parallel picture detector
JPS58120106A (en) * 1982-01-12 1983-07-16 Hitachi Ltd Detecting device for focal point

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518592A (en) * 1974-07-09 1976-01-23 Murata Manufacturing Co Dojikukeeburuno setsuzokuho
JPS52143878A (en) * 1976-05-26 1977-11-30 Hitachi Ltd Silicon wafer defect detector
JPS55149829A (en) * 1979-05-11 1980-11-21 Hitachi Ltd Detector for foreign matter in wafer
JPS5875391A (en) * 1981-10-30 1983-05-07 Hitachi Ltd Parallel picture detector
JPS58120106A (en) * 1982-01-12 1983-07-16 Hitachi Ltd Detecting device for focal point

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149552U (en) * 1987-03-20 1988-10-03
US5410400A (en) * 1991-06-26 1995-04-25 Hitachi, Ltd. Foreign particle inspection apparatus
US6084664A (en) * 1992-11-30 2000-07-04 Hitachi, Ltd. Method of and apparatus for inspecting reticle for defects

Similar Documents

Publication Publication Date Title
KR920007196B1 (en) Method and apparatus for detecting foreign matter
JP2796316B2 (en) Defect or foreign matter inspection method and apparatus
US7869023B2 (en) System for detecting anomalies and/or features of a surface
JP3314440B2 (en) Defect inspection apparatus and method
KR970000780B1 (en) Foreign particle inspection apparatus
US7489394B2 (en) Apparatus for inspecting a disk-like object
JPH0333645A (en) Surface state inspecting apparatus
JP3573587B2 (en) Micro-defect inspection method and apparatus, exposure method and semiconductor substrate manufacturing method
JPH0772093A (en) Detecting method and inspecting apparatus for defect such as foreign matter
KR970000781B1 (en) Foreign matter detection device
JPH0435025B2 (en)
JP2539182B2 (en) Foreign matter inspection method on semiconductor wafer
JP3453128B2 (en) Optical scanning device and defect detection device
JP4325909B2 (en) Defect inspection apparatus, defect inspection method, optical scanning apparatus, and semiconductor device manufacturing method
JPS61104659A (en) Array of semiconductor solid-state image pickup element
JPS61104244A (en) Apparatus for detecting foreign matter of semiconductive wafer
JPH10282007A (en) Defect inspection method of foreign matter and apparatus therefor
JPS61104242A (en) Apparatus for inspecting foreign matter
JP3282790B2 (en) Defect inspection system for phase shift mask
JP3053096B2 (en) Foreign object detection method and device
JPS61104658A (en) Array of semiconductor solid-state image pickup element
JPH01217243A (en) Method and apparatus for detecting foreign matter
JPH0646182B2 (en) Apparatus and method for inspecting foreign matter on mask
JP2021167794A (en) Defect inspection apparatus, defect inspection method, and scattered light detection system
JP3070748B2 (en) Method and apparatus for detecting defects on reticle