JPH07306157A - Method and device for defect inspection - Google Patents

Method and device for defect inspection

Info

Publication number
JPH07306157A
JPH07306157A JP12173094A JP12173094A JPH07306157A JP H07306157 A JPH07306157 A JP H07306157A JP 12173094 A JP12173094 A JP 12173094A JP 12173094 A JP12173094 A JP 12173094A JP H07306157 A JPH07306157 A JP H07306157A
Authority
JP
Japan
Prior art keywords
defect
inspected
light
output signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12173094A
Other languages
Japanese (ja)
Other versions
JP3396824B2 (en
Inventor
Masahiro Morikawa
雅弘 森川
Tomio Nakamura
富夫 中村
Yasushi Horii
康司 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP12173094A priority Critical patent/JP3396824B2/en
Publication of JPH07306157A publication Critical patent/JPH07306157A/en
Application granted granted Critical
Publication of JP3396824B2 publication Critical patent/JP3396824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To improve the reliability of a method and device for defect inspection by making defects and non-defects which cause signal changes against the ground signal level at a normal part distinguishable and bringing the discriminating level closer to an artificial inspection level. CONSTITUTION:A defect inspection device is provided with an illuminating means 31 which illuminates a surface to be inspected with illuminating light, detecting means 32 which receives reflected light from the surface to be inspected and obtains DC output signals and AC output signals by performing photoelectric conversion on the received reflected light, and defect discriminating and processing mean 33 which discriminates defects and non-defects from each other by combining primary processing for extracting the outputting direction and time width of signals against the DC output signal level obtained from reflected light from the normal part of the surface to be inspected and secondary processing for judging the continuity of coordinates on the surface to be inspected front which AC output signals higher than a threshold are generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、物体表面の欠陥を光
学的に検査し、欠陥、非欠陥の判別を行なう欠陥検査装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defect inspecting apparatus for optically inspecting defects on the surface of an object and discriminating between defects and non-defects.

【0002】[0002]

【従来の技術】光学的な表面欠陥検出を行なう欠陥検査
装置として、例えば特開平5−322791号公報に開
示されるように、被測定面に欠陥がある場合、欠陥があ
るために反射光、透過光の拡散具合が変化し、光電変換
器で受ける光量が正常部位からの光量レベルに対して増
減する特性を利用して、被測定面に例えば、レーザー光
を照射し、その反射光を光電変換器で受けて入射光量に
応じた電気信号を得て、所定の基準レベルと比較し、所
定レベル以上の信号変化の有無で欠陥を判定していた。
被測定面の地合成分が大きい場合には、コンパレータレ
ベルを複数持ち、しきい値を超える信号が幾つかまとま
ると欠陥を判断するようなグレード判定を行なっていた
が、欠陥と非欠陥の判別は、行なっていなかった。
2. Description of the Related Art As a defect inspection apparatus for optically detecting a surface defect, as disclosed in, for example, Japanese Patent Application Laid-Open No. 5-322791, when a surface to be measured has a defect, reflected light is generated because of the defect. By utilizing the characteristic that the diffusion of transmitted light changes and the amount of light received by the photoelectric converter increases or decreases with respect to the level of the amount of light from a normal part, the surface to be measured is irradiated with, for example, laser light, and the reflected light is photoelectrically converted. The electric signal received by the converter is obtained according to the amount of incident light, compared with a predetermined reference level, and a defect is judged by the presence or absence of a signal change above a predetermined level.
When the amount of ground composition on the surface to be measured is large, grades were judged by having multiple comparator levels and judging defects when several signals exceeding the threshold were collected. Did not do.

【0003】[0003]

【発明が解決しようとする課題】従来の欠陥検査装置で
は、所定レベル以上の信号変化の有無で欠陥を判定する
ので、非欠陥であっても信号変化が生じるような場合
に、欠陥と非欠陥を判別できないという問題点がある。
In the conventional defect inspection apparatus, since a defect is judged by the presence or absence of a signal change of a predetermined level or more, if there is a signal change even if it is a non-defect, the defect and the non-defect are detected. There is a problem in that it cannot be determined.

【0004】例えば、銅張積層板の表面において、打
痕、キズ等の欠陥を光学的に検査する場合、被測定面に
反射光強度変化があるにもかかわらず、外観検査上は良
品とみなされる部位、例えば光点、表面粗さ測定治具跡
等があるために、センサ信号のグレード判定では、欠陥
と非欠陥を判別できなかった。
For example, when optically inspecting for defects such as dents and scratches on the surface of a copper clad laminate, it is regarded as a good product in terms of appearance inspection even though there is a change in reflected light intensity on the surface to be measured. Due to the presence of parts such as light spots and marks on the surface roughness measuring jig, it was not possible to distinguish between defects and non-defects in the grade determination of the sensor signal.

【0005】また、従来の光学式検査機では、反射光強
度に変化があった場合には、一旦不良品として排出した
後、人の目で再検査、再仕分けしており、目視検査工程
を省けないでいた。
Further, in the conventional optical inspection machine, when the reflected light intensity changes, it is once discharged as a defective product and then re-inspected and sorted again by human eyes. I couldn't skip it.

【0006】また、照明に高周波点灯、白熱球を使用
し、ラインイメージセンサで撮像する場合に、欠陥、非
欠陥信号共に同方向に出るため、欠陥、非欠陥の判別処
理を困難にしていた。
Further, when high-frequency lighting and an incandescent lamp are used for illumination and a line image sensor takes an image, both defect and non-defect signals come out in the same direction, which makes it difficult to discriminate between defects and non-defects.

【0007】この発明は、かかる点に鑑みなされたもの
で、正常部地合信号レベルに対して信号変化のある欠陥
と非欠陥を判別可能とし、判別レベルを人為的な検査の
レベルに近づけ、信頼性を高めることができる欠陥検査
方法及び欠陥検査装置を提供することを目的としてい
る。
The present invention has been made in view of the above points. It is possible to discriminate between a defect and a non-defect having a signal change with respect to a normal portion formation signal level, and bring the discrimination level close to an artificial inspection level. An object of the present invention is to provide a defect inspection method and a defect inspection device that can improve reliability.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
に、請求項1記載の発明の欠陥検査方法は、照明光を被
検査面に照射し、この被検査面からの反射光を受光し光
電変換して直流出力信号と交流出力信号を得て、前記被
検査面の正常部位からの反射光による前記直流出力信号
レベルに対する信号出力方向と信号時間幅を抽出する1
次処理と、前記交流出力信号においてしきい値を超える
信号が発生する被検査面上の座標の連続性を判断する2
次処理を組み合わせて、欠陥と非欠陥とを判別すること
を特徴としている。
In order to solve the above-mentioned problems, the defect inspection method of the present invention according to claim 1 irradiates the surface to be inspected with illumination light and receives the light reflected from the surface to be inspected. A photoelectric conversion is performed to obtain a DC output signal and an AC output signal, and a signal output direction and a signal time width with respect to the DC output signal level due to reflected light from a normal portion of the surface to be inspected are extracted 1.
Subsequent processing and determining the continuity of coordinates on the surface to be inspected where a signal exceeding the threshold value is generated in the AC output signal 2
It is characterized in that a defect and a non-defect are discriminated by combining the following processes.

【0009】請求項2記載の発明の欠陥検査方法は、前
記被検査面が銅箔である場合に、照明光をレーザーフラ
イングスポット光とし、被検査面への入射角度を15〜
55°の範囲とし、正反射光成分を受光角度範囲15°
以内で受光することを特徴としている。
In the defect inspection method according to the second aspect of the present invention, when the surface to be inspected is a copper foil, the illumination light is laser flying spot light, and the incident angle to the surface to be inspected is 15 to 15.
55 ° range, specular reflection light component received angle range 15 °
The feature is that light is received within.

【0010】請求項3記載の発明の欠陥検査方法は、照
明光を被検査面に照射し、被検査面が銅箔である場合
に、照明光をレーザーフライングスポット光とし、被検
査面への入射角度を15〜55°の範囲とし、正反射光
成分を受光角度範囲15°以内で受光し、この被検査面
からの反射光を光電変換して直流出力信号と交流出力信
号を得て、前記直流出力信号と交流出力信号のうち、前
記被検査面の正常部位からの反射光による直流出力信号
レベルに対して正側なのか、負側なのかにより、打痕系
欠陥とキズ系を判別する1次処理と、時間幅コンパレー
タでキズ系のうち欠陥キズを抽出し、検査面上の座標の
連続性を判断する2次処理とで、非欠陥光点、非欠陥キ
ズと欠陥スリキズとを判別することを特徴としている。
In the defect inspection method according to the third aspect of the invention, the surface to be inspected is irradiated with illumination light, and when the surface to be inspected is a copper foil, the illumination light is made into laser flying spot light, and the surface to be inspected is irradiated. The incident angle is set in the range of 15 to 55 °, the regular reflection light component is received within the reception angle range of 15 °, and the reflected light from the surface to be inspected is photoelectrically converted to obtain a DC output signal and an AC output signal. Of the DC output signal and the AC output signal, the dent defect and the scratch system are discriminated depending on whether the DC output signal level due to the reflected light from the normal portion of the surface to be inspected is the positive side or the negative side. The non-defect light spot, the non-defect flaw and the defect scratches are detected by the primary processing for performing the following and the secondary processing for extracting the defect flaws in the flaw system by the time width comparator and determining the continuity of the coordinates on the inspection surface. It is characterized by making a distinction.

【0011】請求項4記載の発明の欠陥検査装置は、照
明光を被検査面に照射する照射手段と、この被検査面か
らの反射光を受光し光電変換して直流出力信号と交流出
力信号を得る検出手段と、前記被検査面の正常部位から
の反射光による前記直流出力信号レベルに対する信号出
力方向と信号時間幅を抽出する1次処理と、前記交流出
力信号においてしきい値を超える信号が発生する被検査
面上の座標の連続性を判断する2次処理を組み合わせ
て、欠陥と非欠陥とを判別する欠陥判定処理手段とを備
えることを特徴としている。
According to a fourth aspect of the present invention, there is provided a defect inspection apparatus in which an irradiation means for irradiating a surface to be inspected with an illuminating light and a reflected light from the surface to be inspected are received and photoelectrically converted to generate a DC output signal and an AC output signal. Detecting means, a primary process for extracting a signal output direction and a signal time width with respect to the DC output signal level by reflected light from a normal portion of the surface to be inspected, and a signal in the AC output signal exceeding a threshold value. Is combined with a secondary process for determining the continuity of the coordinates on the surface to be inspected, and a defect determination processing unit for determining a defect and a non-defect is provided.

【0012】請求項5記載の発明の欠陥検査装置は、前
記照明光をレーザーフライングスポット光とし、被検査
面への入射角度を15〜55°の範囲とし、正反射光成
分を受光角度範囲15°以内で受光することを特徴とし
ている。
According to a fifth aspect of the defect inspection apparatus of the present invention, the illumination light is laser flying spot light, the incident angle on the surface to be inspected is in the range of 15 to 55 °, and the specular reflection light component is in the light receiving angle range 15. It is characterized by receiving light within °.

【0013】請求項6記載の発明の欠陥検査装置は、前
記照明光をレーザーフライングスポット光とし、被検査
面への入射角度を15〜55°の範囲とする照射手段
と、正反射光成分を受光角度範囲15°以内で受光する
正反射光受光部を具備し、前記照明光を被検査面に照射
し、この被検査面からの反射光を光電変換して直流出力
信号と交流出力信号を得る検出手段と、前記直流出力信
号と交流出力信号のうち、前記正反射光検出手段の直流
出力信号において、前記被検査面の正常部位からの反射
光による直流出力信号レベルに対して正側なのか、負側
なのかにより、打痕系欠陥とキズ系を判別する1次処理
と、時間幅コンパレータでキズ系のうち欠陥キズを抽出
し、検査面上の座標の連続性を判断する2次処理とで、
非欠陥光点、非欠陥キズと欠陥スリキズとを判別する欠
陥判定処理手段とを備えることを特徴としている。
According to a sixth aspect of the defect inspection apparatus of the present invention, the illumination light is a laser flying spot light, the irradiation means for setting the incident angle on the surface to be inspected to be in the range of 15 to 55 °, and the specular reflection light component. A regular reflection light receiving section for receiving light within a light receiving angle range of 15 ° is provided, the surface to be inspected is irradiated with the illumination light, and the light reflected from the surface to be inspected is photoelectrically converted to generate a DC output signal and an AC output signal. Of the detecting means to obtain, the DC output signal and the AC output signal, in the DC output signal of the specular reflection light detecting means, the DC output signal level on the positive side relative to the DC output signal level due to the reflected light from the normal portion of the surface to be inspected Or the negative side, the primary processing for discriminating dent defect and flaw system, and the secondary process for determining the continuity of coordinates on the inspection surface by extracting defect flaws from the flaw system by the time width comparator. With processing,
It is characterized by comprising a non-defective light spot, a defect determination processing means for discriminating non-defective scratches and defective scratches.

【0014】[0014]

【作用】請求項1及び請求項4記載の発明では、被検査
面の正常部位からの反射光による直流出力信号レベルに
対する信号出力方向と信号時間幅を抽出する1次処理
と、交流出力信号においてしきい値を超える信号が発生
する被検査面上の座標の連続性を判断する2次処理を組
み合わせて、欠陥と非欠陥とを判別する。
According to the first and fourth aspects of the invention, in the primary processing for extracting the signal output direction and the signal time width with respect to the DC output signal level by the reflected light from the normal portion of the surface to be inspected, and the AC output signal, A defect and a non-defect are discriminated by combining a secondary process for discriminating the continuity of coordinates on the surface to be inspected where a signal exceeding a threshold value is generated.

【0015】請求項2及び請求項5記載の発明では、被
検査面が銅箔である場合に、照明光をレーザーフライン
グスポット光とし、被検査面への入射角度を15〜55
°の範囲とし、正反射光成分を受光角度範囲15°以内
で受光する。
According to the second and fifth aspects of the invention, when the surface to be inspected is a copper foil, the illumination light is laser flying spot light, and the incident angle to the surface to be inspected is 15 to 55.
The angle is within the range of 0 °, and the specular reflection light component is received within the light receiving angle range of 15 °.

【0016】請求項3及び請求項6記載の発明では、直
流出力信号と交流出力信号のうち、正反射光検出手段の
直流出力信号において、被検査面の正常部位からの反射
光による直流出力信号レベルに対して正側なのか、負側
なのかにより、打痕系欠陥とキズ系を判別する1次処理
と、時間幅コンパレータでキズ系のうち欠陥キズを抽出
し、検査面上の座標の連続性を判断する2次処理とで、
非欠陥光点、非欠陥キズと欠陥スリキズとを判別する。
According to the inventions of claims 3 and 6, of the DC output signal and the AC output signal, in the DC output signal of the specular reflection light detecting means, the DC output signal due to the reflected light from the normal portion of the surface to be inspected. Depending on whether it is the positive side or the negative side with respect to the level, the primary processing to discriminate the dent defect and the defect system, and the defect comparator to extract the defect defect from the defect system by the time width comparator, With the secondary processing to judge continuity,
A non-defective light spot, a non-defective scratch and a defective scratch are discriminated.

【0017】[0017]

【実施例】以下、この発明の欠陥検査方法及び欠陥検査
装置の実施例を図面に基づいて説明する。
Embodiments of the defect inspection method and the defect inspection apparatus of the present invention will be described below with reference to the drawings.

【0018】図1は欠陥検出の原理である。図1(a)
に示す通り、検査対象1の被検査面に光を照射し、反射
光量分布の差を検出するものである。欠陥がない場合に
は実線で示す反射光量分布2になり、欠陥がある場合に
は点線で示す反射光量分布3になる。これは、反射光を
利用しているが、検査対象1が透過体の場合には透過光
を用いても良い。
FIG. 1 shows the principle of defect detection. Figure 1 (a)
As shown in, the surface to be inspected of the inspection object 1 is irradiated with light to detect the difference in the distribution of reflected light amount. When there is no defect, the reflected light amount distribution 2 is shown by the solid line, and when there is a defect, the reflected light amount distribution 3 is shown by the dotted line. Although this uses reflected light, transmitted light may be used when the inspection target 1 is a transmissive body.

【0019】光量分布の差を検出するための具体的な手
段としては、図1(b)のように、拡散板4に遮光物体
4aのマスクにより中央部に形成されたスリット4bを
用いて正反射(正透過)光成分を透過させ、これを光電
子増倍管5(フォトマルチプライヤーチューブ:PM
T)で測定し、また図1(c)のように、拡散板6に遮
光物体6aのマスクにより正反射光成分を遮光し、拡散
反射(透過拡散)光成分を透過させ、これを光電子増倍
管7(フォトマルチプライヤーチューブ:PMT)で測
定し、この光電子増倍管5,7出力の変化を検出し、正
常部地合レベルとの差異の有無を検出する。
As a specific means for detecting the difference in the light amount distribution, as shown in FIG. 1B, a slit 4b formed in the central portion of the diffuser plate 4 by the mask of the light-shielding object 4a is used. The reflected (regularly transmitted) light component is transmitted, and this is transmitted to the photomultiplier tube 5 (photomultiplier tube: PM
As shown in FIG. 1 (c), the specular reflection light component is blocked by the mask of the light-shielding object 6a on the diffusion plate 6, and the diffuse reflection (transmission diffusion) light component is transmitted. It is measured by a multiplier 7 (photomultiplier tube: PMT), the change in the outputs of the photomultiplier tubes 5, 7 is detected, and the presence or absence of a difference from the normal part formation level is detected.

【0020】図2はレーザーフライングスポット方式の
光学系の例である。図2(a)は光学系の平面図、図2
(b)は光学系の側面図であり、HeNeレーザー10
からの光をコリメータレンズ11を介してポリゴンミラ
ー12に当て、このポリゴンミラー12の回転により走
査して凹面鏡13により平行光にして検査対象1の被検
査面に照射する。この検査対象1の被検査面からの反射
光量分布の差を、図1(b)の正反射光測定と、図1
(c)の拡散反射光測定により検出する。
FIG. 2 shows an example of a laser flying spot type optical system. 2A is a plan view of the optical system, FIG.
(B) is a side view of the optical system, and the HeNe laser 10
The light from is applied to the polygon mirror 12 through the collimator lens 11, and the polygon mirror 12 is rotated to scan the light and collimate the light by the concave mirror 13 to irradiate the surface to be inspected of the inspection object 1. The difference in the distribution of the amount of reflected light from the surface to be inspected of the inspection object 1 is shown in FIG.
It is detected by the diffuse reflection light measurement of (c).

【0021】図2(c)は光学系の他の実施例の平面
図、図2(d)は光学系の他の実施例の側面図であり、
HeNeレーザー10からの光をコリメータ集光レンズ
14を介してポリゴンミラー12に当て、このポリゴン
ミラー12の回転により走査して検査対象1の被検査面
に直接照射し、同様に検査対象1の被検査面からの反射
光量分布の差を、図1(b)の正反射光測定と、図1
(c)の拡散反射光測定により検出する。
FIG. 2C is a plan view of another embodiment of the optical system, and FIG. 2D is a side view of another embodiment of the optical system.
The light from the HeNe laser 10 is applied to the polygon mirror 12 through the collimator condensing lens 14, is scanned by the rotation of the polygon mirror 12, and is directly irradiated on the surface to be inspected of the inspection object 1, and similarly, the surface of the inspection object 1 is irradiated. The difference in the distribution of the amount of reflected light from the inspection surface is shown in FIG.
It is detected by the diffuse reflection light measurement of (c).

【0022】図3はこの発明に係る欠陥検査方法及び欠
陥検査装置の一実施例を示す処理ブロック図と、各部の
出力波形図である。
FIG. 3 is a processing block diagram showing an embodiment of the defect inspection method and the defect inspection apparatus according to the present invention, and an output waveform diagram of each part.

【0023】欠陥検査装置は、照明光を被検査物30の
被検査面に照射する照射手段31と、この被検査面から
の反射光を受光し光電変換して直流出力信号と交流出力
信号を得る検出手段32と、被検査面の正常部位からの
反射光による直流出力信号レベルに対する信号出力方向
と信号時間幅を抽出する1次処理と、交流出力信号にお
いてしきい値を超える信号が発生する被検査面上の座標
の連続性を判断する2次処理を組み合わせて、欠陥と非
欠陥とを判別する欠陥判定処理手段33とが設けられて
いる。ここで、非欠陥とは、被検査面正常部からの反射
光によるPMT出力レベルに対して、所定レベル以上の
信号変化が生じるが、欠陥とはみなさないものである。
また、欠陥には、A類とB類がある。A類は、表面の光
沢度が、正常部地合よりも増加するような、例えば、キ
ズ、光点、接触式表面粗さ計治具跡等のことであり、信
号レベルが被検査面正常部からの反射光による直流出力
レベルに対して明るくなる方向に出る。また、B類は、
表面の光沢度が、正常部地合とほぼ同等だが、凹または
凸状になっており、例えば、打痕(凹状)、ふくれ(凸
状)であり、信号レベルが被検査面正常部からの反射光
による直流出力レベルに対して暗くなる方向に出る。
The defect inspection apparatus irradiates the inspected surface of the inspected object 30 with illuminating light, and the reflected light from the inspected surface is received and photoelectrically converted to generate a DC output signal and an AC output signal. The detecting means 32 for obtaining, the primary processing for extracting the signal output direction and the signal time width with respect to the DC output signal level due to the reflected light from the normal portion of the surface to be inspected, and the AC output signal exceeding the threshold value are generated. A defect determination processing unit 33 that determines a defect and a non-defect by combining a secondary process that determines the continuity of coordinates on the surface to be inspected is provided. Here, the non-defect means that a signal change of a predetermined level or more occurs with respect to the PMT output level due to the reflected light from the normal portion of the surface to be inspected, but it is not regarded as a defect.
Further, there are types A and B in the defects. Class A is, for example, scratches, light spots, contact-type surface roughness meter jig marks, etc., whose surface glossiness is higher than that of the normal surface texture, and the signal level is normal on the surface to be inspected. It becomes brighter than the DC output level due to the reflected light from the section. In addition, class B is
The gloss of the surface is almost the same as that of the normal part, but it is concave or convex, for example, dents (concave), blister (convex), and the signal level from the normal part of the inspected surface. Appears in the direction of darkening relative to the DC output level due to reflected light.

【0024】照射手段31は、投光部34を備え、図2
に示すような光学系により構成される。
The irradiation means 31 is provided with a light projecting portion 34, and
It is composed of an optical system as shown in.

【0025】検出手段32は、受光部35を備え、この
受光部35からPMT出力が得られる。このPMT出力
の波形は、出力波形図(a)に示され、正常部位からの
反射光を反映した電気信号aに対し、欠陥信号bが生じ
る。このPMT出力は、交流フィルター36により交流
出力信号が得られ、出力波形図(b)に示される。ま
た、直流フィルター37により直流出力信号が得られ、
出力波形図(c)に示される。
The detecting means 32 includes a light receiving portion 35, and the PMT output is obtained from the light receiving portion 35. The waveform of the PMT output is shown in the output waveform diagram (a), and the defect signal b is generated with respect to the electric signal a reflecting the reflected light from the normal portion. An AC output signal is obtained from the PMT output by the AC filter 36 and is shown in the output waveform diagram (b). Also, a DC output signal is obtained by the DC filter 37,
It is shown in the output waveform diagram (c).

【0026】欠陥判定処理手段33は、交流処理部3
7、グレード処理部38、直流処理部39、グレード処
理部40及びCPU41を有している。交流処理部37
は、交流フィルター36通過後にマスク処理された交流
信号に対し、交流コンパレータをかけて、交流コンパレ
ータにかかった信号を幅手まるめ処理後、グレード処理
部40に送る。直流処理部39は、直流フィルター37
通過後にマスク処理された直流信号に対し、直流コンパ
レータをかけて、直流コンパレータにかかった信号を欠
陥幅判定処理、優先順位判定処理、幅手まるめ処理後、
グレード処理部40に送る。
The defect determination processing means 33 includes an AC processing section 3
7, a grade processing unit 38, a DC processing unit 39, a grade processing unit 40, and a CPU 41. AC processing unit 37
Applies an AC comparator to the masked AC signal after passing through the AC filter 36, sends the signal applied to the AC comparator to the grade processing unit 40 after performing a rounding process. The DC processing unit 39 includes the DC filter 37.
After passing the masked DC signal, the DC comparator is applied, and the signal applied to the DC comparator is subjected to defect width determination processing, priority determination processing, width rounding processing,
Send to the grade processing unit 40.

【0027】ここで、マスク処理は、図4に示すよう
に、被検査物30を搬送しながら走査し、そのPMT出
力の交流信号を得るが、エッジ部d1,d2及び位置座
標に規則性があるA類非欠陥部x1を信号処理しないよ
うに電気的マスクをかける。PMT出力の直流信号につ
いても同様なマスク処理が行なわれる。
Here, in the mask processing, as shown in FIG. 4, the object to be inspected 30 is scanned while being conveyed, and an AC signal of the PMT output thereof is obtained. However, the edge parts d1 and d2 and the position coordinates have regularity. An electrical mask is applied so as not to perform signal processing on a certain type A non-defective portion x1. Similar mask processing is performed on the DC signal output from the PMT.

【0028】幅手まるめ処理は、図5に示すように、交
流信号の故障信号の幅手欠陥処理ブロックの例えば、1
ブロックの中にs=2個、m=1個あるが、最大値の”
m”を採用して、欠陥信号とする。PMT出力の直流信
号についても同様な幅手まるめ処理が行なわれる。
In the width rounding process, as shown in FIG. 5, for example, in the width defect processing block of the fault signal of the AC signal,
There are s = 2 and m = 1 in the block, but the maximum value of "
m ″ is adopted as a defect signal. Similar width rounding processing is performed on the DC signal output from the PMT.

【0029】優先順位判定処理は、図6に示すように、
直流信号の故障信号の幅手欠陥処理ブロックの例えば、
1ブロックの中に、+es、+el、−es、−elが
あるが、+、−は独立に処理し、ここでは、+es、−
elを優先して取り込む。
In the priority order determination process, as shown in FIG.
For example, the width of the defect signal processing block of the failure signal of the DC signal,
There are + es, + el, -es, and -el in one block, but + and-are processed independently.
Take in el preferentially.

【0030】グレード処理はコンパレータ出力を用いて
行なわれ、このグレード処理に用いるコンパレータ出力
は、交流信号の故障信号、直流信号の故障信号である。
図7に示すように、交流信号の故障信号を、nスキャン
分まとめて幅手欠陥処理ブロックにしてユニットにする
例を示している。直流信号の故障信号については、図7
の交流信号が直流信号に置き換わるだけで同様な処理が
行なわれる。このようにユニット処理された値に、重み
定数を乗じて、グレード比較値と比較する。グレード比
較値は、予め設定してある値で、この値を超えたら、
s、m、l等と判定するためのしきい値である。
The grade process is performed using the output of the comparator, and the comparator output used for the grade process is a fault signal of an AC signal and a fault signal of a DC signal.
As shown in FIG. 7, an example is shown in which the failure signals of the AC signals are grouped into n width scan defect processing blocks to be a unit. For the failure signal of the DC signal, see FIG.
Similar processing is performed only by replacing the AC signal of the above with the DC signal. The value thus unit-processed is multiplied by a weight constant and compared with the grade comparison value. The grade comparison value is a preset value, and if this value is exceeded,
It is a threshold value for determining s, m, l, etc.

【0031】また、CPU41ではパターン処理が行な
われる。パターン処理は、図8に示すように、長手に連
続したユニットに渡って、コンパレータ出力が、発生し
た場合に、その連続性を判断し、A類欠陥または非欠陥
等を判定する。連続性が認められた場合、すべてのブロ
ックのコンパレータ出力を取り込む。
Further, the CPU 41 performs pattern processing. In the pattern processing, as shown in FIG. 8, when a comparator output is generated over a unit continuous in the longitudinal direction, the continuity of the comparator output is determined, and a type A defect or non-defect is determined. When continuity is recognized, the comparator outputs of all blocks are captured.

【0032】被検査物30は、例えば銅張積層板である
場合に、照明光をレーザーフライングスポット光とし、
被検査面の銅箔への入射角度を15〜55°の範囲と
し、正反射光成分を受光角度範囲15°以内で受光す
る。
When the inspection object 30 is, for example, a copper clad laminate, the illumination light is laser flying spot light,
The incident angle of the surface to be inspected to the copper foil is set in the range of 15 to 55 °, and the specular reflection light component is received within the light receiving angle range of 15 °.

【0033】また、被検査面が銅箔である場合に、照射
手段31は、照明光をレーザーフライングスポット光と
し、被検査面への入射角度を15〜55°の範囲とし、
検出手段32は、正反射光成分を受光角度範囲15°以
内で受光する正反射光受光部を具備し、照明光を被検査
面に照射し、この被検査面からの反射光を光電変換して
直流出力信号と交流出力信号を得る。このように、レー
ザーフライングスポット方式光学系において、被検査面
への入射角度を15〜55°の範囲とし、正反射光成分
を受光角度範囲15°以内で受光することで、例えば銅
張積層板の欠陥の内、打痕系とキズ光点系の直流出力信
号の方向を分離し、判別を目的とした信号処理の負荷を
削減することができる。
Further, when the surface to be inspected is a copper foil, the irradiation means 31 makes the illumination light a laser flying spot light, and makes the incident angle to the surface to be inspected 15 to 55 °.
The detection means 32 includes a specular reflection light receiving section that receives a specular reflection light component within a light receiving angle range of 15 °, illuminates the surface to be inspected with illumination light, and photoelectrically converts the light reflected from the surface to be inspected. To obtain a DC output signal and an AC output signal. As described above, in the laser flying spot type optical system, the incident angle to the surface to be inspected is set in the range of 15 to 55 °, and the specular reflection light component is received within the light receiving angle range of 15 °. Among the above defects, the directions of the DC output signals of the dent system and the flaw light spot system can be separated to reduce the load of signal processing for the purpose of discrimination.

【0034】欠陥判定処理手段33は、直流出力信号と
交流出力信号のうち、正反射光受光部の直流出力信号に
おいて、被検査面の正常部位からの反射光による直流出
力信号レベルに対して正側なのか、負側なのかにより、
打痕系欠陥とキズ系を判別する1次処理と、時間幅コン
パレータでキズ系のうち欠陥キズを抽出し、被検査面上
の座標の連続性を判断する2次処理とで、非欠陥光点、
非欠陥キズと欠陥スリキズとを判別する。
Of the DC output signal and the AC output signal, the defect judgment processing means 33 determines whether the DC output signal of the specular reflected light receiving portion is positive with respect to the DC output signal level of the reflected light from the normal portion of the surface to be inspected. Depending on whether it is the side or the negative side,
Non-defect light is detected by the primary process for discriminating between dent defect and defect system and the secondary process for extracting defect defect from the defect system by the time width comparator and judging the continuity of coordinates on the surface to be inspected. point,
A non-defective flaw and a defective scratch mark are discriminated.

【0035】また、照明光をレーザーフライングスポッ
ト光とし、被検査面への入射角度を15〜55°の範囲
とし、検出手段32は、正反射光成分を受光角度範囲1
5°以内で受光する場合にのみ、図9に示すように直流
出力信号が、被検査面正常部位からの反射光による直流
信号レベルを“0”として、正側と負側に分かれるた
め、打痕系欠陥とキズ系を判断可能である。この数値限
定をはずれると、打痕系欠陥は、直流出力信号が正負両
方を取り得るので、判別が困難になる。
Further, the illumination light is laser flying spot light, the incident angle on the surface to be inspected is in the range of 15 to 55 °, and the detecting means 32 detects the specular reflection light component in the light receiving angle range 1.
Only when the light is received within 5 °, the DC output signal is divided into the positive side and the negative side by setting the DC signal level due to the reflected light from the normal portion of the surface to be inspected to “0” as shown in FIG. It is possible to determine a scratch defect and a scratch defect. If the value is out of this limit, the dent defect will be difficult to distinguish because the DC output signal can be positive or negative.

【0036】図9は銅箔表面欠陥、非欠陥の正反射光受
光部の直流出力レベルを示す図である。正反射光受光部
の直流出力レベルに対してしきい値CMP1と、しきい
値CMP1を設定しており、B類(打痕系)の欠陥は、
正反射光受光部の直流出力信号が、正側(暗くなる方
向)のみに出ることがわかる。また、A類のキズ、光
点、測定治具跡系は、正反射光受光部の直流出力信号
が、負側(明るくなる方向)のみに出ることがわかる。
以上より打痕系と、キズ、光点、測定治具跡系とが判別
される。
FIG. 9 is a diagram showing the DC output level of the specularly reflected light receiving portion having a copper foil surface defect and no defect. The threshold CMP1 and the threshold CMP1 are set with respect to the DC output level of the specular reflection light receiving portion, and the defects of the class B (dent system) are
It can be seen that the DC output signal of the specular reflected light receiving section appears only on the positive side (dark direction). In addition, it can be seen that in the scratches, light spots, and measuring jig trace system of type A, the DC output signal of the specular reflection light receiving unit appears only on the negative side (brightening direction).
From the above, the dent system and the scratch, light spot, and measurement jig trace system are distinguished.

【0037】図10は正反射光受光部の直流出力レベル
と時間幅の関係を示した散布図である。所定の信号時間
幅TBよりも広いか、狭いかを判定することで、A類の
キズ、光点、測定治具跡系の中から欠陥キズを抽出でき
る。欠陥キズは、所定の信号時間幅よりも狭くなってお
り、非欠陥の光点やスリギズ等は所定の信号時間幅TB
よりも広い。
FIG. 10 is a scatter diagram showing the relationship between the DC output level of the specular reflection light receiving section and the time width. By determining whether it is wider or narrower than the predetermined signal time width T B , it is possible to extract the defect scratch from the scratches of type A, the light spot, and the measurement jig trace system. The defect flaw is narrower than a predetermined signal time width, and a non-defect light spot, a scratch, or the like has a predetermined signal time width T B.
Wider than.

【0038】図11は図9及び図10から導出される命
題を基に欠陥、非欠陥信号処理のシュミレーションロジ
ックA,B,Cを作成し、欠陥検査装置の処理ブロック
における各部の信号を示したものである。処理機の信号
s,mは、交流フィルタ後の信号の波形のs,m信号レ
ベルに応じた波形で出力される。
FIG. 11 shows simulation signals A, B and C for defect and non-defect signal processing based on the propositions derived from FIGS. 9 and 10 and shows signals of respective parts in the processing block of the defect inspection apparatus. It is a thing. The signals s and m of the processor are output as waveforms corresponding to the s and m signal levels of the waveform of the signal after the AC filter.

【0039】また、ロジックAでは、直流フィルタ後の
信号がしきい値CMP2以上(地合レベルよりプラス側
を大とする)はB類欠陥である。また、ロジックBで
は、直流フィルタ後の信号がしきい値CMP1以上(地
合レベルよりマイナス側を大とする)かつ所定時間幅T
B以下であり、ナロー信号Nが出力されてA類欠陥であ
る。さらに、ロジックCでは、直流フィルタ後の信号が
しきい値CMP1以上(地合レベルよりマイナス側を大
とする)かつ所定時間幅TB以上であり、ワイド信号W
が出力され、A類非欠陥、非欠陥とA類欠陥(幅広で長
いスリキズ)である。
In the logic A, when the signal after the DC filter is equal to or higher than the threshold value CMP2 (the positive side is larger than the formation level), it is a type B defect. Further, in the logic B, the signal after the DC filter is equal to or higher than the threshold value CMP1 (the negative side is larger than the formation level) and the predetermined time width T
It is B or less, and a narrow signal N is output, which is a type A defect. Further, the logic C, the signal after the DC filter (the minus side larger than the texture level) threshold CMP1 or more and is the predetermined time width T B above, a wide signal W
Are output, which are non-defects of type A, non-defects and defects of type A (wide and long scratches).

【0040】図12は欠陥、非欠陥信号処理のフローチ
ャートである。ステップaでマスク処理を行ない、ステ
ップbでロジックAの判断を行ない、ロジックAでしき
い値CMP2以上(地合レベルよりプラス側を大とす
る)場合はB類欠陥である。次に、ステップcでロジッ
クBの判断を行ない、ロジックBで直流フィルタ後の信
号がしきい値CMP1以上(地合レベルよりマイナス側
を大とする)かつ所定時間幅TB以下の場合にはナロー
信号Nが出力され、A類欠陥であり、このように1次処
理を行なう。
FIG. 12 is a flow chart of defective and non-defective signal processing. If the mask processing is performed in step a, the logic A is determined in step b, and the logic C is equal to or higher than the threshold value CMP2 (the positive side is larger than the formation level), it is a type B defect. Next, in step c, the logic B is determined, and if the signal after the DC filter is greater than or equal to the threshold value CMP1 (the negative side is larger than the formation level) and less than or equal to the predetermined time width T B in the logic B. The narrow signal N is output, and there is a type A defect, and thus the primary processing is performed.

【0041】また、ステップcでロジックCの判断が行
なわれると、直流フィルタ後の信号がしきい値CMP1
以上(地合レベルよりマイナス側を大とする)かつ所定
時間幅TB以上であり、ワイド信号Wが出力される。ス
テップdでさらに、ロジックCのA類非欠陥、非欠陥と
A類欠陥(幅広で長いスリキズ)について、ステップe
で2次処理を行ない、パターン処理でユニットの連続性
を判断し、ユニットの連続性がない場合にはA類非欠
陥、非欠陥と判断され、ユニットの連続性がある場合に
はA類欠陥(幅広で長いスリキズ)と判断される。
When the logic C is judged in step c, the signal after the direct current filter has a threshold value CMP1.
Above (the negative side is made larger than the formation level) and above the predetermined time width T B , the wide signal W is output. Further, in step d, regarding the class A non-defects of logic C, non-defects and class A defects (wide and long scratches), step e
The secondary processing is carried out with the pattern processing, and the continuity of the unit is judged by the pattern processing. If there is no continuity of the unit, it is judged as a non-defect and non-defect of type A, and if there is continuity of the unit, a defect of type A. (Wide and long scratches).

【0042】このようにして、被検査物の欠陥、非欠陥
の判別が可能であり、このロジックA,B,Cの適用結
果としてアンダーアクションをなくすようにチューニン
グした場合の例を表1に示す。
In this way, it is possible to discriminate between defects and non-defects of the object to be inspected, and Table 1 shows an example in the case where tuning is performed so as to eliminate underaction as a result of applying the logics A, B, and C. .

【0043】[0043]

【表1】 Equal:良品は良品と判定 Over:良品は不良品と判定 なお、サンプル16,17において、ロジックB判定に
おいて、しきい値CMP1以上、所定の信号時間幅TB
以下となる。
[Table 1] Equal: Good product is judged as good product Over: Good product is judged as defective product In Samples 16 and 17, in logic B judgment, threshold CMP1 or more and predetermined signal time width T B
It becomes the following.

【0044】サンプル24において、ロジックB判定に
おいて、しきい値CMP1のレベルまで信号が得られな
い。
In the sample 24, in the logic B judgment, no signal is obtained up to the level of the threshold value CMP1.

【0045】サンプル1,3,5,10,11,21,
22は、A類欠陥と非欠陥が存在するため〜につい
ては、2段に分けてある。
Samples 1, 3, 5, 10, 11, 21, 21
In No. 22, since there are type A defects and non-defects, items 2 to 3 are divided into two stages.

【0046】〜は、ロジックA〜Cそれぞれの判定
条件を満たすものは○で示す。
The symbols .about. Indicate those satisfying the judgment conditions of the logics A to C, respectively.

【0047】は、ロジックCの条件を満たすものの中
で、傷の長さが10mm以上あるものは○で示す。
Among those satisfying the condition of logic C, those having a scratch length of 10 mm or more are indicated by ◯.

【0048】は、非欠陥を非欠陥と判断するためのマ
スク処理であり、マスク処理されるものは○で示す。
The mask processing for judging non-defects as non-defects is shown by a circle.

【0049】は、〜による各信号の欠陥/非欠陥
判定結果である。
Is the defect / non-defect determination result of each signal according to.

【0050】は、サンプル1枚についての良品/不良
品ロジック判定結果である。
Is a non-defective / defective logic determination result for one sample.

【0051】この表1より不良品サンプルを全て不良と
判定し、良品を不良品と安全側に判断していることがわ
かる。
It can be seen from Table 1 that all defective samples are judged to be defective, and non-defective products are judged to be defective on the safe side.

【0052】従って、この実施例によれば、照明光を被
検査面に照射し、被測定面からの光を光電変換した直流
出力信号において、正常部地合レベルからの出力の方
向、信号時間幅を抽出する1次処理と、所定のしきい値
を超える信号が発生する検査面上の座標の連続性を判断
する2次処理とを組み合わせて、欠陥、非欠陥を判別で
きる。
Therefore, according to this embodiment, in the direct current output signal obtained by irradiating the surface to be inspected with illumination light and photoelectrically converting the light from the surface to be measured, the direction of the output from the normal part formation level and the signal time. Defects and non-defects can be discriminated by combining the primary processing for extracting the width and the secondary processing for determining the continuity of the coordinates on the inspection surface where a signal exceeding a predetermined threshold value is generated.

【0053】以上のように、銅張積層板の表面検査のよ
うな欠陥、非欠陥の判別はもちろんのこと、これらのみ
に捕らわれることなく、検査分別対象が同様な形状、光
学的特徴を持つものであれば、適用可能なことは、いう
までもない。
As described above, it is of course possible to discriminate between defects and non-defects such as the surface inspection of a copper clad laminate, and the inspection and classification target has the same shape and optical characteristics without being caught only by these. If so, it goes without saying that it is applicable.

【0054】[0054]

【発明の効果】前記したように、請求項1及び請求項2
記載、または請求項4及び請求項5記載の発明は、正常
部地合信号レベルに対して信号変化のある欠陥と非欠陥
を判別可能としたから、判別レベルを人為的な検査のレ
ベルに近づけ、信頼性を高めることができる。
As described above, the first and second aspects are provided.
The invention described in claim 4 or claim 5 makes it possible to discriminate between a defect having a signal change and a non-defect with respect to the normal part formation signal level, so that the discrimination level is brought close to the level of the artificial inspection. , Can increase reliability.

【0055】請求項3及び請求項6記載の発明は、正反
射光受光部の直流出力信号において、銅張積層基板表面
の表面検査の場合、最も多く発生する”打痕欠陥”(信
号レベルが、正常地合レベルに対して、暗い方向に出
る)と、表面の光沢度が正常部地合よりも増加するよう
なキズ、光点系(信号レベルが、正常地合レベルに対し
て、明るい方向に出る)を判別した後、表面光沢が正常
部地合よりも増加する部分において、出力レベル、時間
幅2つのコンパレートレベルで欠陥キズを抽出し、残り
のスリキズ、光点、測定治具跡は、搬送方向の連続性で
欠陥、非欠陥を判別することが可能となり、判別レベル
を人為的な検査のレベルに近づけ、信頼性を高めること
ができる。
According to the third and sixth aspects of the present invention, in the DC output signal of the specular reflection light receiving section, the most frequent "dent defect" (signal level is , The surface appears darker than the normal formation level), and the surface glossiness increases more than the normal part formation, the light spot system (the signal level is brighter than the normal formation level) Direction)), the defect flaws are extracted at the output level and the comparator level with two time widths in the area where the surface gloss increases from the normal area texture, and the remaining scratches, light spots, and measurement jigs are extracted. As for the mark, it is possible to discriminate between defects and non-defects based on the continuity in the transport direction, and the discrimination level can be brought closer to the level of artificial inspection and the reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】欠陥検出の原理を示す図である。FIG. 1 is a diagram showing the principle of defect detection.

【図2】レーザーフライングスポット方式の光学系の例
を示す図である。
FIG. 2 is a diagram showing an example of a laser flying spot type optical system.

【図3】欠陥検査方法及び欠陥検査装置の一実施例を示
す処理ブロック図と、各部の出力波形図である。
FIG. 3 is a processing block diagram showing an embodiment of a defect inspection method and a defect inspection apparatus, and an output waveform diagram of each part.

【図4】マスク処理の説明図である。FIG. 4 is an explanatory diagram of mask processing.

【図5】幅手まるめ処理の説明図である。FIG. 5 is an explanatory diagram of a width rounding process.

【図6】優先順位判定処理の説明図である。FIG. 6 is an explanatory diagram of priority order determination processing.

【図7】ユニット処理の説明図である。FIG. 7 is an explanatory diagram of unit processing.

【図8】グレード処理の説明図である。FIG. 8 is an explanatory diagram of grade processing.

【図9】銅箔表面欠陥、非欠陥の正反射光受光部の直流
出力レベルを示す図である。
FIG. 9 is a diagram showing a DC output level of a specular reflection light receiving part having a copper foil surface defect and a non-defect.

【図10】正反射光受光部の直流出力レベルと時間幅の
関係を示した散布図である。
FIG. 10 is a scatter diagram showing the relationship between the DC output level of the specular reflection light receiving section and the time width.

【図11】図9及び図10から導出される命題を基に欠
陥、非欠陥信号処理のシュミレーションロジックを作成
し、欠陥検査装置の処理ブロックにおける各部の信号を
示す図である。
11 is a diagram showing a signal of each part in a processing block of a defect inspection apparatus, in which a simulation logic for defect / non-defect signal processing is created based on the proposition derived from FIGS. 9 and 10. FIG.

【図12】欠陥、非欠陥信号処理のフローチャートであ
る。
FIG. 12 is a flowchart of defective / non-defective signal processing.

【符号の説明】[Explanation of symbols]

30 被検査物 31 照射手段 32 検出手段 33 欠陥判定処理手段 30 inspected object 31 irradiation means 32 detection means 33 defect determination processing means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】照明光を被検査面に照射し、この被検査面
からの反射光を受光し光電変換して直流出力信号と交流
出力信号を得て、前記被検査面の正常部位からの反射光
による前記直流出力信号レベルに対する信号出力方向と
信号時間幅を抽出する1次処理と、前記交流出力信号に
おいてしきい値を超える信号が発生する被検査面上の座
標の連続性を判断する2次処理を組み合わせて、欠陥と
非欠陥とを判別することを特徴とする欠陥検査方法。
1. A surface to be inspected is irradiated with illumination light, and light reflected from the surface to be inspected is received and photoelectrically converted to obtain a DC output signal and an AC output signal. Primary processing for extracting a signal output direction and a signal time width with respect to the DC output signal level by reflected light, and determining continuity of coordinates on a surface to be inspected in which a signal exceeding a threshold is generated in the AC output signal A defect inspection method, characterized in that a secondary process is combined to discriminate between a defect and a non-defect.
【請求項2】前記被検査面が銅箔である場合に、照明光
をレーザーフライングスポット光とし、被検査面への入
射角度を15〜55°の範囲とし、正反射光成分を受光
角度範囲15°以内で受光することを特徴とする請求項
1記載の欠陥検査方法。
2. When the surface to be inspected is a copper foil, the illumination light is a laser flying spot light, the incident angle to the surface to be inspected is in the range of 15 to 55 °, and the specular reflection light component is the light receiving angle range. The defect inspection method according to claim 1, wherein the light is received within 15 °.
【請求項3】照明光を被検査面に照射し、被検査面が銅
箔である場合に、照明光をレーザーフライングスポット
光とし、被検査面への入射角度を15〜55°の範囲と
し、正反射光成分を受光角度範囲15°以内で受光し、
この被検査面からの反射光を光電変換して直流出力信号
と交流出力信号を得て、前記直流出力信号と交流出力信
号のうち、前記被検査面の正常部位からの反射光による
直流出力信号レベルに対して正側なのか、負側なのかに
より、打痕系欠陥とキズ系を判別する1次処理と、時間
幅コンパレータでキズ系のうち欠陥キズを抽出し、検査
面上の座標の連続性を判断する2次処理とで、非欠陥光
点、非欠陥キズと欠陥スリキズとを判別することを特徴
とする欠陥検査方法。
3. When the surface to be inspected is irradiated with illumination light and the surface to be inspected is a copper foil, the illumination light is laser flying spot light, and the incident angle to the surface to be inspected is in the range of 15 to 55 °. , The specular reflection light component is received within the reception angle range of 15 °,
The reflected light from the surface to be inspected is photoelectrically converted to obtain a DC output signal and an AC output signal, and among the DC output signal and the AC output signal, a DC output signal by reflected light from a normal portion of the surface to be inspected. Depending on whether it is the positive side or the negative side with respect to the level, the primary processing to discriminate the dent defect and the defect system, and the defect comparator to extract the defect defect from the defect system by the time width comparator, A defect inspection method characterized in that a non-defect light spot, a non-defect scratch, and a defect scratch are discriminated by a secondary process for judging continuity.
【請求項4】照明光を被検査面に照射する照射手段と、
この被検査面からの反射光を受光し光電変換して直流出
力信号と交流出力信号を得る検出手段と、前記被検査面
の正常部位からの反射光による前記直流出力信号レベル
に対する信号出力方向と信号時間幅を抽出する1次処理
と、前記交流出力信号においてしきい値を超える信号が
発生する被検査面上の座標の連続性を判断する2次処理
を組み合わせて、欠陥と非欠陥とを判別する欠陥判定処
理手段とを備えることを特徴とする欠陥検査装置。
4. An irradiation means for irradiating the surface to be inspected with illumination light,
Detecting means for receiving the reflected light from the surface to be inspected and photoelectrically converting it to obtain a DC output signal and an AC output signal, and a signal output direction with respect to the DC output signal level by the reflected light from the normal portion of the surface to be inspected. Defects and non-defects are combined by combining the primary processing for extracting the signal time width and the secondary processing for determining the continuity of the coordinates on the surface to be inspected where a signal exceeding the threshold value is generated in the AC output signal. A defect inspection apparatus comprising: a defect determination processing unit for determining.
【請求項5】前記照明光をレーザーフライングスポット
光とし、被検査面への入射角度を15〜55°の範囲と
し、正反射光成分を受光角度範囲15°以内で受光する
ことを特徴とする請求項4記載の欠陥検査装置。
5. The illumination light is laser flying spot light, the incident angle on the surface to be inspected is in the range of 15 to 55 °, and the specularly reflected light component is received within the light receiving angle range of 15 °. The defect inspection apparatus according to claim 4.
【請求項6】前記照明光をレーザーフライングスポット
光とし、被検査面への入射角度を15〜55°の範囲と
する照射手段と、正反射光成分を受光角度範囲15°以
内で受光する正反射光受光部を具備し、前記照明光を被
検査面に照射し、この被検査面からの反射光を光電変換
して直流出力信号と交流出力信号を得る検出手段と、前
記直流出力信号と交流出力信号のうち、前記正反射光検
出手段の直流出力信号において、前記被検査面の正常部
位からの反射光による直流出力信号レベルに対して正側
なのか、負側なのかにより、打痕系欠陥とキズ系を判別
する1次処理と、時間幅コンパレータでキズ系のうち欠
陥キズを抽出し、検査面上の座標の連続性を判断する2
次処理とで、非欠陥光点、非欠陥キズと欠陥スリキズと
を判別する欠陥判定処理手段とを備えることを特徴とす
る欠陥検査装置。
6. Illuminating means for illuminating the laser light is a laser flying spot light, and an incident means for making an incident angle on the surface to be inspected within a range of 15 to 55 °; Detecting means for irradiating the surface to be inspected with the illumination light and photoelectrically converting the light reflected from the surface to be inspected to obtain a DC output signal and an AC output signal; and the DC output signal. Among the AC output signals, in the DC output signal of the specular reflection light detection means, depending on whether the DC output signal level due to the reflected light from the normal portion of the surface to be inspected is positive or negative, A primary process of discriminating between a system defect and a flaw system, and a defect flaw of the flaw system is extracted by a time width comparator to judge the continuity of coordinates on the inspection surface 2
A defect inspection apparatus comprising: a non-defect light spot, and a defect determination processing unit that determines a non-defect scratch and a defect scratch on the next process.
JP12173094A 1994-05-11 1994-05-11 Defect inspection method and defect inspection device Expired - Fee Related JP3396824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12173094A JP3396824B2 (en) 1994-05-11 1994-05-11 Defect inspection method and defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12173094A JP3396824B2 (en) 1994-05-11 1994-05-11 Defect inspection method and defect inspection device

Publications (2)

Publication Number Publication Date
JPH07306157A true JPH07306157A (en) 1995-11-21
JP3396824B2 JP3396824B2 (en) 2003-04-14

Family

ID=14818468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12173094A Expired - Fee Related JP3396824B2 (en) 1994-05-11 1994-05-11 Defect inspection method and defect inspection device

Country Status (1)

Country Link
JP (1) JP3396824B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054530A1 (en) * 2001-12-13 2003-07-03 Kokusai Gijutsu Kaihatsu Co., Ltd. Copper foil inspection device, copper foil inspection method, defect inspection device, defect inspection method
CN116342589A (en) * 2023-05-23 2023-06-27 之江实验室 Cross-field scratch defect continuity detection method and system
CN116754568A (en) * 2023-08-22 2023-09-15 合肥工业大学 Lamination defect separation method and device based on dark field imaging over-focus scanning

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054530A1 (en) * 2001-12-13 2003-07-03 Kokusai Gijutsu Kaihatsu Co., Ltd. Copper foil inspection device, copper foil inspection method, defect inspection device, defect inspection method
US7286234B2 (en) 2001-12-13 2007-10-23 Kokusai Gijutsu Kaihatsu Co. Ltd. Copper foil inspection device copper foil inspection method defect inspection device and defeat inspection method
KR100862339B1 (en) * 2001-12-13 2008-10-13 고꾸사이 기쥬쯔 가이하쯔 가부시키가이샤 Copper foil inspection device, copper foil inspection method
CN116342589A (en) * 2023-05-23 2023-06-27 之江实验室 Cross-field scratch defect continuity detection method and system
CN116342589B (en) * 2023-05-23 2023-08-22 之江实验室 Cross-field scratch defect continuity detection method and system
CN116754568A (en) * 2023-08-22 2023-09-15 合肥工业大学 Lamination defect separation method and device based on dark field imaging over-focus scanning
CN116754568B (en) * 2023-08-22 2024-01-23 合肥工业大学 Lamination defect separation method and device based on dark field imaging over-focus scanning

Also Published As

Publication number Publication date
JP3396824B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
US10041888B2 (en) Surface defect inspecting device and method for hot-dip coated steel sheets
US20030020905A1 (en) Electrical circuit conductor inspection
JP4158227B2 (en) Inspection method and inspection apparatus for minute unevenness
JPH06294749A (en) Flaw inspection method for plat glass
JPH10148619A (en) Method and device for inspecting face defect of substrate under inspection
JP3396824B2 (en) Defect inspection method and defect inspection device
JP2005189113A (en) Surface inspecting device and surface inspection method
JP3495212B2 (en) Seam detection device for ERW pipe
JP2861649B2 (en) Steel plate weld inspection method
JP3224083B2 (en) Method and apparatus for detecting defects in sheet glass
JPH09113465A (en) Detection apparatus for surface fault for galvanized steel plate
JPH05215694A (en) Method and apparatus for inspecting defect of circuit pattern
JP2010038723A (en) Flaw inspecting method
JP2002005845A (en) Defect inspecting apparatus
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
JPS6069539A (en) Inspecting device for surface defect
JPH0587781B2 (en)
JPS63218847A (en) Inspection of surface flaw
JPS61260147A (en) Device for inspecting surface defect
JP3197047B2 (en) Defect inspection equipment
JPH04323544A (en) Method for inspecting plastic film roll
JP4016362B2 (en) Surface inspection device
JPH07270336A (en) Device for inspection of defect
JP3607163B2 (en) Bottle inspection apparatus and bottle inspection method
JPH0749314A (en) Surface defect inspection instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees