JPH07300623A - Production of sheet steel for working excellent in baking hardenability and aging resistance - Google Patents

Production of sheet steel for working excellent in baking hardenability and aging resistance

Info

Publication number
JPH07300623A
JPH07300623A JP6093455A JP9345594A JPH07300623A JP H07300623 A JPH07300623 A JP H07300623A JP 6093455 A JP6093455 A JP 6093455A JP 9345594 A JP9345594 A JP 9345594A JP H07300623 A JPH07300623 A JP H07300623A
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
sec
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6093455A
Other languages
Japanese (ja)
Other versions
JP3569949B2 (en
Inventor
Yoshio Yamazaki
義男 山崎
Makoto Imanaka
誠 今中
Masahiko Morita
正彦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP09345594A priority Critical patent/JP3569949B2/en
Publication of JPH07300623A publication Critical patent/JPH07300623A/en
Application granted granted Critical
Publication of JP3569949B2 publication Critical patent/JP3569949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a sheet steel for working, excellent in baking hardenability, aging resistance, and workability, by applying specific annealing and cooling to a cold rolled steel sheet of specific composition consisting of C, Si, Mn, P, S, N, Al, Nb, and Fe. CONSTITUTION:A hot rolled steel plate, consisting of, by mass, 0.0010-0.0025% C, <=1.0% Si, 0.05-1.5% Mn, <=0.10% P, <=0.02% S, <=0.004% N, 15N to 0.10% Al, 3C to (8C+0.02%) Nb, and the balance Fe with inevitable impurities and further containing, if necessary, prescribed amounts of Ti, B, Cr, Ni, Mo, and Cu, is cold-rolled at 60-90% draft. The resulting cold rolled steel sheet is annealed under the conditions of 820 to (Ac3 point +20 deg.C) maximum heating temp. and >=10sec holding time at 780 to (Ac3 point +20 deg.C). Subsequently, this steel sheet is subjected to cooling consisting of primary cooling in which average cooling rate between 780 and 600 deg.C is regulated to >=25 deg.C/sec and secondary cooling in which average cooling rate between 400 and 200 deg.C is regulated to <=15 deg.C/sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に自動車の車体用と
して、曲げ加工、プレス成形加工、絞り成形加工などの
用途に用いて良好な特性を有するほか、とくに塗装焼付
処理において高い焼付硬化性を示しつつ、耐時効性にも
優れる薄鋼板、すなわちこれらの特性を兼備した冷延鋼
板、表面処理鋼板などの薄鋼板の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION The present invention has good properties for use in bending, press molding, drawing, etc., mainly for automobile bodies, and has a high bake hardening especially in paint baking. The present invention relates to a method for producing a thin steel sheet that exhibits excellent aging resistance while exhibiting properties, that is, a cold rolled steel sheet and a surface-treated steel sheet that have these characteristics.

【0002】[0002]

【従来の技術】最近、自動車の排気ガス規制にともなう
燃費の向上を目的とした車体軽量化や安全性向上の観点
から、加工性に優れた高張力鋼板が要求されるようにな
ってきた。高張力化の手法としては、これまでに、加工
性を劣化させずに鋼板そのものの強度を上げる方法が検
討されている一方、加工後の塑性ひずみ量の違いによる
プレス成形品の各部での降伏強度の違いを緩和し、張り
剛性を向上させる焼付硬化性を付与する方法が検討され
ている。焼付硬化とは、プレス成形後に施される塗装焼
付処理による加熱で、ひずみ時効によって鋼板の降伏点
が上昇し、変形強度が上昇する現象である。この方怯に
よれば、プレス機などの加工機械の負荷が小さいまま高
強度化が達成できるので、加工・焼付塗装後の鋼板の強
度が同じ鋼板で比較すると高強度化による加工性の劣化
も小さいなどの利点がある。
2. Description of the Related Art Recently, a high-strength steel sheet having excellent workability has been demanded from the viewpoint of weight reduction and safety improvement of a vehicle body for the purpose of improving fuel efficiency in accordance with exhaust gas regulations of automobiles. As a method of increasing the tensile strength, a method of increasing the strength of the steel sheet itself without degrading the workability has been studied so far, while the yielding in each part of the press-formed product due to the difference in the amount of plastic strain after working Methods have been studied for alleviating differences in strength and imparting bake hardenability that improves tensile rigidity. Bake-hardening is a phenomenon in which the yield point of a steel sheet rises due to strain aging and the deformation strength rises, as a result of heating by paint baking treatment performed after press forming. According to this method, high strength can be achieved while the load of the processing machine such as a press is small, so that the deterioration of the workability due to the higher strength is small when compared with steel sheets with the same strength after processing and baking coating. There are advantages such as.

【0003】これらの観点から、従来より、鋼板の加工
性と焼付硬化性を兼備させるためには各種の方法が提案
されている。例えば、特公昭60-17004号公報、特公昭61
-9365 号公報および特公昭61-54089号公報などには、焼
鈍前には固溶C、Nがほとんど存在しない程度としたN
b添加極低炭素鋼を、連続焼鈍にて高温焼鈍して熱延時
に形成した炭化物を再固溶させ、その後の急速冷却によ
り再析出を抑制することで、焼付硬化性と加工性を兼備
する冷延鋼板あるいは表面処理鋼板の製造方法が開示さ
れている。
From these viewpoints, various methods have heretofore been proposed to combine the workability and bake hardenability of a steel sheet. For example, Japanese Examined Patent Publication No. 60-17004 and Japanese Examined Patent Publication No. 61
-9365 gazette and Japanese Patent Publication No. 61-54089 gazette show that solid solution C and N hardly exist before annealing.
b) Addition of bake hardenability and workability is achieved by re-solidifying the carbide formed during hot rolling by high temperature annealing in ultra-low carbon steel by continuous annealing and subsequent re-precipitation by rapid cooling. A method of manufacturing a cold rolled steel sheet or a surface treated steel sheet is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記既
知技術のような方法で製造した冷延鋼板では、C含有量
が少ない場合には、必ずしも十分な焼付硬化性が得られ
ず、一方、十分な焼付硬化性が得られた場合には耐時効
性が劣るといったように、高い焼付硬化性と優れた耐時
効性とを同時に満足するものが得られないという問題が
あった。
However, in the cold-rolled steel sheet manufactured by the above-mentioned known method, when the C content is small, sufficient bake hardenability cannot be obtained, and on the other hand, sufficient bake hardenability is not obtained. When bake hardenability is obtained, there is a problem that it is not possible to obtain a product that satisfies both high bake hardenability and excellent aging resistance, such as poor aging resistance.

【0005】そこで、本発明の主たる目的は、焼付硬化
性を有するともに、高い焼付硬化性を付与しても優れた
耐時効性を備え、なおかつ優れた加工性をも兼備した加
工用薄鋼板の製造方法を提案することにある。そして、
本発明の他の目的は、焼付硬化指数(BH)が45 MPa
以上、時効指数(AI)が30MPa 以下で、r値が1.6 以
上、TS×Elが 14000(MPa・%)以上の特性を満たす加工
用薄鋼板の製造方法を提案することにある。
Therefore, a main object of the present invention is to provide a thin steel plate for working which has bake hardenability, excellent aging resistance even when high bake hardenability is imparted, and excellent workability as well. Proposing a manufacturing method. And
Another object of the present invention is to have a bake hardening index (BH) of 45 MPa.
As mentioned above, it is to propose a method of manufacturing a thin steel sheet for working satisfying the characteristics that the aging index (AI) is 30 MPa or less, the r value is 1.6 or more, and TS × El is 14000 (MPa ·%) or more.

【0006】[0006]

【課題を解決するための手段】このような課題認識の下
で、発明者らは、その解決に向け鋭意研究した結果、鋼
の成分組成の含有範囲、各成分間における相互の関係、
冷間圧延条件、冷延板の焼鈍条件および焼鈍後の冷却条
件を制御すれば、上記の課題が解決できることを見出
し、本発明を完成するに至った。すなわち、本発明の要
旨構成は以下の通りである。
Under the recognition of such problems, the inventors of the present invention have conducted diligent research to solve the problems, and as a result, the content range of the composition of the steel, the mutual relation between the respective components,
The inventors have found that the problems described above can be solved by controlling the cold rolling conditions, the annealing conditions for cold rolled sheets, and the cooling conditions after annealing, and have completed the present invention. That is, the gist of the present invention is as follows.

【0007】(1) C:0.0010〜0.0025mass%、 Si:1.
0 mass%以下、Mn:0.05〜1.5 mass%、 P:0.10
mass %以下、S:0.02 mass%以下、 N:0.00
4 mass%以下、Al:N(mass %) ×15〜0.10mass%、N
b:C(mass %) ×3〜C(mass %) ×8+0.02 mass
%を含有し、残部はFeおよび不可避的不純物からなる組
成の熱延鋼板に、圧下率60〜90%の冷間圧延を施した
後、最高加熱温度が820 〜(Ac3変態点+20℃) ℃、かつ
780 〜(Ac3変態点+20℃) の温度範囲における保持時間
が10sec 以上である焼鈍を施し、次いで780 〜600 ℃の
間の平均冷却速度が25℃/sec以上である1次冷却と、40
0 〜200 ℃の間の平均冷却速度が15℃/sec以下である2
次冷却からなる冷却を施すことを特徴とする焼付硬化性
および耐時効性に優れる加工用薄鋼板の製造方法。
(1) C: 0.0010 to 0.0025 mass%, Si: 1.
0 mass% or less, Mn: 0.05 to 1.5 mass%, P: 0.10.
mass% or less, S: 0.02 mass% or less, N: 0.00
4 mass% or less, Al: N (mass%) × 15 to 0.10 mass%, N
b: C (mass%) × 3 to C (mass%) × 8 + 0.02 mass
% Containing the balance in the hot-rolled steel sheet having a composition consisting of Fe and unavoidable impurities, was subjected to rolling reduction 60% to 90% cold rolling, the maximum heating temperature is 820 ~ (Ac 3 transformation point + 20 ° C.) ℃, and
780 to the retention time in the temperature range of (Ac 3 transformation point + 20 ° C.) is annealed at least 10 sec, 1 primary cooling and is then 780-600 average cooling rate between ° C. is 25 ° C. / sec or higher, 40
The average cooling rate between 0 and 200 ℃ is 15 ℃ / sec or less 2
A method for producing a thin steel sheet for working, which is excellent in bake hardenability and aging resistance, characterized by performing cooling including the following cooling.

【0008】(2) C:0.0010〜0.0025mass%、 Si:1.
0 mass%以下、Mn:0.05〜1.5 mass%、 P:0.10
mass %以下、S:0.02 mass%以下、 Al:0.01
〜0.06mass%、N:0.004 mass%以下、Nb:C(mass
%) ×3〜C(mass %) ×8+0.02 mass % Ti:N(mass %) ×3.43〜N(mass %) ×3.43+S(mas
s %) ×1.5 +0.01 mass %を含有し、残部はFeおよび
不可避的不純物からなる組成の熱延鋼板に、圧下率60〜
90%の冷間圧延を施した後、最高加熱温度が820 〜(Ac3
変態点+20℃)℃、かつ780 〜(Ac3変態点+20℃) の温
度範囲における保持時間が10sec 以上である焼鈍を施
し、次いで780 〜600 ℃の間の平均冷却速度が25℃/sec
以上である1次冷却と、400 〜200 ℃の間の平均冷却速
度が15℃/sec以下である2次冷却からなる冷却を施すこ
とを特徴とする焼付硬化性および耐時効性に優れる加工
用薄鋼板の製造方法。
(2) C: 0.0010 to 0.0025 mass%, Si: 1.
0 mass% or less, Mn: 0.05 to 1.5 mass%, P: 0.10.
mass% or less, S: 0.02 mass% or less, Al: 0.01
~ 0.06 mass%, N: 0.004 mass% or less, Nb: C (mass
%) × 3 to C (mass%) × 8 + 0.02 mass% Ti: N (mass%) × 3.43 to N (mass%) × 3.43 + S (mas
s%) x 1.5 + 0.01 mass%, the balance of which is Fe and unavoidable impurities in a hot-rolled steel sheet with a rolling reduction of 60 to
After 90% cold rolling, the maximum heating temperature is 820 ~ (Ac 3
Transformation point + 20 ℃) ℃, and 780 ~ (Ac 3 holding time in the temperature range of transformation point + 20 ° C.) is annealed at least 10 sec, then 780 to 600 average cooling rate is 25 ° C. / sec between ° C.
For processing with excellent bake hardenability and aging resistance, which is characterized by performing primary cooling as described above and secondary cooling having an average cooling rate between 400 and 200 ° C of 15 ° C / sec or less. Manufacturing method of thin steel sheet.

【0009】(3) (1) または(2) に記載の熱延鋼板が、
上記の成分組成に加えてさらに、B:0.0002〜0.0030ma
ss%を含有してなり、この熱延鋼板に対して、圧下率60
〜90%の冷間圧延を施した後、最高加熱温度が820 〜(A
c3変態点+20℃) ℃、かつ780〜(Ac3変態点+20℃) の
温度範囲における保持時間が10sec 以上である焼鈍を施
し、次いで780 〜600 ℃の間の平均冷却速度が25℃/sec
以上である1次冷却と、400 〜200 ℃の間の平均冷却速
度が15℃/sec以下である2次冷却からなる冷却を施すこ
とを特徴とする焼付硬化性および耐時効性に優れる加工
用薄鋼板の製造方法。
(3) The hot rolled steel sheet according to (1) or (2),
In addition to the above component composition, B: 0.0002 to 0.0030ma
It contains ss% and the rolling reduction is 60
After 90% cold rolling, the maximum heating temperature is 820 ~ (A
c 3 transformation point + 20 ° C) and 780 to (Ac 3 transformation point + 20 ° C) holding time is 10 seconds or more, then annealing is performed, then the average cooling rate between 780 and 600 ° C is 25 ° C / sec
For processing with excellent bake hardenability and aging resistance, which is characterized by performing primary cooling as described above and secondary cooling having an average cooling rate between 400 and 200 ° C of 15 ° C / sec or less. Manufacturing method of thin steel sheet.

【0010】(4) (1) 〜(3) のいずれか1つに記載の熱
延鋼板が、上記の成分組成に加えてさらに、Cr:0.03〜
2.0 mass%、Ni:0.03〜2.0 mass%、Mo:0.03〜1.0 ma
ss%およびCu:0.03〜2.0 mass%から選ばれるいずれか
1種または2種以上を含有してなり、この熱延鋼板に対
して、圧下率60〜90%の冷間圧延を施した後、最高加熱
温度が820 〜(Ac3変態点+20℃) ℃、かつ780 〜(Ac3
態点+20℃) の温度範囲における保持時間が10sec 以上
である焼鈍を施し、次いで780 〜600 ℃の間の平均冷却
速度が25℃/sec以上である1次冷却と、400 〜200 ℃の
間の平均冷却速度が15℃/sec以下である2次冷却からな
る冷却を施すことを特徴とする焼付硬化性および耐時効
性に優れる加工用薄鋼板の製造方法。ただし、選択的に
添加されるCr、Ni、MoおよびCuについては次の組み合わ
せで添加するすることが推奨される。 0.03〜2.0 mass%Cr−(Ni、MoおよびCuから選ばれる
いずれか1種以上 0.03〜2.0 mass%Ni−(MoおよびCuから選ばれるいず
れか1種または2種 0.03〜1.0 mass%Mo−(Cu) 0.03〜2.0 mass%Cu
(4) The hot-rolled steel sheet according to any one of (1) to (3) further comprises Cr: 0.03 to
2.0 mass%, Ni: 0.03 to 2.0 mass%, Mo: 0.03 to 1.0 ma
ss% and Cu: 0.03 to 2.0 mass% of any one kind or two or more kinds are contained, and after cold rolling with a rolling reduction of 60 to 90%, Annealing with a maximum heating temperature of 820 to (Ac 3 transformation point + 20 ° C) ℃ and a holding time of 10 seconds or more in the temperature range of 780 to (Ac 3 transformation point + 20 ° C), and then between 780 to 600 ℃ Bake hardenability, characterized by performing primary cooling with an average cooling rate of 25 ° C / sec or more and secondary cooling with an average cooling rate of 400 ° C to 200 ° C of 15 ° C / sec or less And a method for manufacturing a thin steel sheet for processing having excellent aging resistance. However, regarding Cr, Ni, Mo and Cu that are selectively added, it is recommended to add the following combinations. 0.03 to 2.0 mass% Cr- (any one or more selected from Ni, Mo and Cu 0.03 to 2.0 mass% Ni- (any one or two selected from Mo and Cu 0.03 to 1.0 mass% Mo- ( Cu) 0.03 to 2.0 mass% Cu

【0011】(5) 焼鈍後の1次冷却と2次冷却との間で
溶融亜鉛めっき処理を施すことを特徴とする(1) 〜(4)
のいずれか1つに記載の加工用薄鋼板の製造方法。
(5) The hot dip galvanizing treatment is performed between the primary cooling and the secondary cooling after annealing (1) to (4)
A method for manufacturing a thin steel plate for processing according to any one of 1.

【0012】[0012]

【作用】まず、この発明の基礎となった実験結果につい
て述べる。 C: 0.001〜 0.0020 mass%、Nb:0.008 〜 0.016mass
%であって、Nb(mass%) /C(mass%):5〜8、S
i:0.01mass%、Mn:0.15mass%、P:0.01mass%、
S:0.004 mass%、Al:0.05mass%およびN:0.002mas
s %の成分組成からなり、連続焼鈍ヒートパターン(焼
鈍後の冷却条件)が異なる板厚 0.7 mm の冷延鋼板につ
いて時効指数(AI)と焼付硬化指数(BH)の関係に
ついて調査を行なった。これらの鋼板は、まず上記組成
のシートバーを1200℃に加熱・均熱後、880 ℃の仕上温
度で熱間圧延を行ない630 ℃にて巻取り、続いて酸洗
し、冷延圧下率75〜80%の冷間圧延を行った後、780 ℃
〜900 ℃の温度で連続焼鈍を施して製造したものであ
る。この時の連続焼鈍ヒートパターンを図2に示す。ヒ
ートパターン(a) は連続焼鈍時の冷却過程で780 〜100
℃間の冷却速度が30℃/sec以上であり、ヒートパターン
(b) は780 〜600 ℃間はヒートパターン(a) と同じ冷却
速度30℃/sec以上で冷却し、600 〜400 ℃間が 10 〜50
℃/sec、400 〜100 ℃間が10℃/sec以下である。また、
上記特性値のうち、AIは、JIS5号引張試験片を使
用し、引張試験機にて7.5 %予ひずみ付加後、100 ℃で
30分の熱処理を施したときの変形応力の上昇量であり、
この値が30 MPaを超える鋼板は耐時効性に問題があると
されている。BHは、JIS5号引張試験片を使用し、
引張試験機にて 2.0%予ひずみ付加後、焼付塗装工程を
模擬した 170℃で20分の熱処理を施したときの変形応力
の上昇量であり、この値が大きいほど焼付硬化性に優れ
ている。また、これらの特性値を求めるにあたって用い
た引張試験片の引張方向は、圧延方向とした。
First, the experimental results which are the basis of the present invention will be described. C: 0.001 to 0.0020 mass%, Nb: 0.008 to 0.016 mass
%, Nb (mass%) / C (mass%): 5 to 8, S
i: 0.01 mass%, Mn: 0.15 mass%, P: 0.01 mass%,
S: 0.004 mass%, Al: 0.05 mass% and N: 0.002 mass%
The relationship between the aging index (AI) and the bake hardening index (BH) was investigated for cold-rolled steel sheets having a thickness of 0.7 mm and having different s% component compositions and different continuous annealing heat patterns (cooling conditions after annealing). These steel sheets were first heated and soaked to a sheet bar of the above composition at 1200 ° C, then hot-rolled at a finishing temperature of 880 ° C and wound at 630 ° C, followed by pickling and cold rolling reduction of 75 ~ 80% after cold rolling to ~ 80%
It is manufactured by continuous annealing at a temperature of ~ 900 ° C. The continuous annealing heat pattern at this time is shown in FIG. The heat pattern (a) is 780 to 100 during the cooling process during continuous annealing.
Cooling rate between ℃ is 30 ℃ / sec or more, heat pattern
(b) Cools between 780 and 600 ° C at the same cooling rate of 30 ° C / sec as in heat pattern (a) and between 10 and 50 at 600 to 400 ° C.
℃ / sec, 10 ℃ / sec or less between 400 and 100 ℃. Also,
Among the above characteristic values, AI is JIS No. 5 tensile test piece, and after applying 7.5% pre-strain by tensile tester, at 100 ℃
It is the amount of increase in deformation stress when subjected to heat treatment for 30 minutes,
Steel sheets with this value exceeding 30 MPa are said to have problems with aging resistance. BH uses JIS No. 5 tensile test piece,
This is the amount of increase in deformation stress when heat treatment is performed for 20 minutes at 170 ° C simulating the baking coating process after applying 2.0% prestrain with a tensile tester. The larger this value, the better the bake hardenability. . Further, the tensile direction of the tensile test piece used for obtaining these characteristic values was the rolling direction.

【0013】図1にその結果を示す。図1より明らかな
ように、AIとBHの関係はヒートパターンに大きく依
存して、焼鈍温度から室温近くまで急冷する場合に比較
して、高温では急冷するが、300 ℃近傍の温度域では冷
却速度を遅くする場合の方が、同じAIであっても、B
Hが顕著に向上することがわかった。さらに詳細な実験
をおこなった結果、少なくとも 780〜 600℃間の平均冷
却速度を25℃/sec以上とするとともに、 400〜 200℃間
の平均冷却速度を15℃/sec以下とすれば、図1のヒート
パターン(b) と同様のAIとBHの関係が得られ、600
〜 400℃間の冷却条件にはあまり依存しないことがわか
った。この冷却条件は、ヒートパターンが連続焼鈍ライ
ンとは異なる溶融亜鉛めっきラインでも実現可能である
ため、検討したところ、連続焼鈍ヒートパターンで得ら
れるAIとBHの関係が溶融亜鉛めっきヒートパターン
でも同様に得られることがわかった。
The results are shown in FIG. As is clear from Fig. 1, the relationship between AI and BH largely depends on the heat pattern, and as compared with the case of quenching from the annealing temperature to near room temperature, it cools rapidly at high temperatures, but cools in the temperature range near 300 ° C. If the speed is slowed, even if the AI is the same, B
It was found that H was remarkably improved. As a result of a more detailed experiment, if the average cooling rate between at least 780 and 600 ° C is set to 25 ° C / sec or more and the average cooling rate between 400 and 200 ° C is set to 15 ° C / sec or less, The same relationship between AI and BH as the heat pattern (b) of
It was found that the cooling condition between 〜400 ℃ was not so dependent. Since this cooling condition can be realized in a hot dip galvanizing line whose heat pattern is different from that of the continuous annealing line, it was examined that the relationship between AI and BH obtained in the continuous annealing heat pattern was the same in the hot dip galvanizing heat pattern. It turned out to be obtained.

【0014】さらに実験を重ねることにより、大きなB
H量を得るためには、鋼組成はNb(mass%) /C(mass
%) が3〜8であること、焼鈍は最高加熱温度が820 〜
(Ac3変態点+20℃) 、かつ780 〜(Ac3変態点+20℃) の
温度範囲における保持時間が10sec 以上であることが必
要であることもわかった。
By further experimenting, a large B
To obtain the H content, the steel composition should be Nb (mass%) / C (mass
%) Is 3 to 8, and the maximum heating temperature for annealing is 820 to
It was also found that the holding time in the temperature range of (Ac 3 transformation point + 20 ° C) and 780 to (Ac 3 transformation point + 20 ° C) is required to be 10 seconds or more.

【0015】さらにまた、上記成分のほか、Tiを適正範
囲量添加した鋼板は、加工性がさらに向上し、Bを適正
範囲量添加した鋼板は耐二次加工脆性がさらに向上し、
Cr、Ni、MoおよびCuのうちから選んだ1種または2種以
上を適正範囲量添加した鋼板は、強度の増加に対して加
工性の劣化が少ないことも見いだした。
Further, in addition to the above components, the steel sheet to which Ti is added in the proper range amount has further improved workability, and the steel sheet to which B has been added in the proper range amount has further improved secondary work embrittlement resistance,
It has also been found that the steel sheet to which one or more selected from Cr, Ni, Mo and Cu is added in an appropriate range amount has little deterioration in workability with an increase in strength.

【0016】上述したように、成分組成、冷延板焼鈍後
の冷却条件などを制御することにより耐時効性とともに
高い焼付硬化性が得られる理由の詳細は必ずしも明らか
ではないが、以下のごとくであると考えられる。すなわ
ち、鋼板中のNb量がC量に対して原子比にて等量程度添
加した冷延鋼板を前記条件範囲で焼鈍することにより、
熱延時にNb炭化物として析出固定されたCが、Nb炭化物
の分解により固溶Cを生成する。この状態の鋼板を中間
温度(600℃) まで急冷した際の固溶Cの粒界・粒内の平
衡が、400 〜200 ℃間で徐冷を行うことにより有利に変
化し、焼付硬化性に有効な粒界の固溶Cは増加し、耐時
効性に悪影響を与える粒内の固溶Cが減少したものと考
えられる。
As described above, the details of the reason why high bake hardenability as well as aging resistance can be obtained by controlling the component composition, cooling conditions after cold rolled sheet annealing, etc. are not necessarily clear, but are as follows. It is believed that there is. That is, by annealing the cold-rolled steel sheet in which the amount of Nb in the steel sheet is approximately equal to the amount of C in the atomic ratio, by annealing in the above condition range,
C precipitated and fixed as Nb carbide during hot rolling produces solid solution C by decomposition of Nb carbide. Intermediate steel plate in this state
The grain boundary / intragranular equilibrium of the solid solution C when rapidly cooled to the temperature (600 ° C) is advantageously changed by gradually cooling between 400 and 200 ° C, and the grain boundary solids effective for bake hardenability are changed. It is considered that the amount of solute C increased and the amount of solute C in the grains, which adversely affects the aging resistance, decreased.

【0017】つぎに、本発明において、鋼の成分組成お
よび製造条件を上記要旨構成のとおりに限定した理由に
ついて説明する。 C:0.0010〜0.0025mass%;Cは、加工性、とくにr値
および伸びを劣化させる。その影響は0.0025mass%を超
えると顕著になるのでCの上限は0.0025mass%、好まし
くは0.0020mass%とする。しかしながら、0.0010mass%
未満では十分な焼付硬化量が得られないため0.0010mass
%以上添加する必要がある。
Next, in the present invention, the reason why the composition of the steel and the manufacturing conditions are limited to the above-mentioned constitution will be explained. C: 0.0010 to 0.0025 mass%; C deteriorates workability, especially r value and elongation. The effect becomes remarkable when it exceeds 0.0025 mass%, so the upper limit of C is made 0.0025 mass%, preferably 0.0020 mass%. However, 0.0010mass%
If less than 0.0010mass, a sufficient bake hardening amount cannot be obtained.
% Or more must be added.

【0018】Si:1.0 mass%以下;Siは、鋼を強化する
作用があり、所望の強度に応じて必要量添加されるが、
その添加量が1.0 mass%を超えると深絞り性および耐食
性を劣化させるので、1.0mass%以下の範囲で添加す
る。なお、好ましい添加範囲はめっき性や化成処理性を
考慮すると0.30mass%以下である。
Si: 1.0 mass% or less; Si has the effect of strengthening steel, and is added in a required amount according to the desired strength.
If the addition amount exceeds 1.0 mass%, deep drawability and corrosion resistance are deteriorated, so the addition amount is set to 1.0 mass% or less. The preferable addition range is 0.30 mass% or less in consideration of the plating property and the chemical conversion treatment property.

【0019】Mn:0.05〜1.5 mass%;Mnは、Sに起因す
る熱間脆性の防止および鋼の強化の作用がある。この熱
間脆性の防止の効果は0.05 mass %以上であらわれる
が、1.5 mass%を超えて添加すると深絞り性が劣化する
ので、その添加量は0.05〜1.5 mass%、好ましくはめっ
き性の観点から1.0 mass%以下とする必要がある。ま
た、熱間脆性の防止の点からはMn(mass%)/S(mass
%)≧ 10 が好ましい。
Mn: 0.05 to 1.5 mass%; Mn has an action of preventing hot brittleness caused by S and strengthening of steel. The effect of preventing hot brittleness appears at 0.05 mass% or more, but if added in excess of 1.5 mass%, deep drawability deteriorates, so the addition amount is 0.05 to 1.5 mass%, preferably from the viewpoint of plating property. It should be 1.0 mass% or less. From the viewpoint of preventing hot brittleness, Mn (mass%) / S (mass
%) ≧ 10 is preferable.

【0020】P:0.10 mass %以下;Pは、鋼を強化す
る作用があり、所望の強度に応じて必要量添加される。
しかし、その添加量が0.10mass%を超えると深絞り性を
劣化させ、また粒界面に多く偏析して脆化を引き起こす
ので0.10 mass %以下、好ましくはめっき性の観点から
0.08mass%以下の範囲で添加する。
P: 0.10 mass% or less; P has a function of strengthening steel, and is added in a required amount according to desired strength.
However, if the added amount exceeds 0.10 mass%, the deep drawability is deteriorated, and a large amount is segregated at the grain boundaries to cause embrittlement, so 0.10 mass% or less, preferably from the viewpoint of plating property.
Add within the range of 0.08 mass% or less.

【0021】S:0.02 mass%以下;Sは、熱間脆性の
原因となるほか、深絞り性に悪影響を及ぼすので、少な
いほどよい。これらの影響は0.02mass%を超えると顕著
になるので0.02 mass %以下とする。とくに、プレス成
形性の観点からすれば、0.005 mass%以下にすることが
好ましい。
S: 0.02 mass% or less; S is a cause of hot brittleness and adversely affects deep drawability. These effects become remarkable when the content exceeds 0.02 mass%, so the content should be 0.02 mass% or less. Particularly, from the viewpoint of press moldability, it is preferably 0.005 mass% or less.

【0022】Al:N(mass %) ×15〜0.10mass%、0.01
〜0.06mass%;Alは、Ti無添加鋼では脱酸および鋼中N
の析出固定のために添加される。Alの添加量がN(mass
%) ×15mass%未満では加工性が不十分であり、一方、
0.10mass%を超えての添加は加工性を劣化させるばかり
でなく、表面性状をも劣化させる。したがって、Alの添
加量は、N(mass %) ×15〜0.10mass%、好ましくはN
(mass %) ×20〜0.08mass%とする。また、Ti添加鋼で
はTiにより鋼中のNは析出固定されるため、Alの添加
は、脱酸のためだけに必要となり、その量は0.01〜0.06
mass%である。
Al: N (mass%) × 15 to 0.10 mass%, 0.01
~ 0.06mass%; Al is deoxidized in Ti-free steel and N in steel
It is added for precipitation fixing of. The amount of Al added is N (mass
%) × less than 15 mass%, the workability is insufficient, while
Addition of more than 0.10 mass% not only deteriorates workability but also deteriorates surface properties. Therefore, the addition amount of Al is N (mass%) × 15 to 0.10 mass%, preferably N
(mass%) x 20 to 0.08 mass%. Further, in Ti-added steel, N in the steel is precipitated and fixed by Ti, so addition of Al is necessary only for deoxidation, and the amount is 0.01 to 0.06.
mass%.

【0023】N:0.004 mass%以下;Nは、深絞り性に
悪影響を及ぼすほか、多量のNはAl量を多量必要とし表
面性状を劣化させるので、その含有量は少ない程よい。
Nの含有量が0.004 mass%を超えるとその影響が顕著に
なるので、0.004 mass%以下、好ましくは0.002mass%
以下とする必要がある。
N: 0.004 mass% or less; N adversely affects the deep drawability, and a large amount of N requires a large amount of Al and deteriorates the surface properties. Therefore, the smaller the content, the better.
When the N content exceeds 0.004 mass%, the effect becomes remarkable, so 0.004 mass% or less, preferably 0.002 mass%
Must be:

【0024】Nb:C(mass %) ×3〜C(mass %) ×8
+0.02 mass %;Nbは、焼鈍前の固溶Cを減少させるこ
とにより、加工性を向上させるため、少なくともC原子
等量程度、すなわちC(mass %) ×3を添加する必要が
ある。一方、焼付硬化性を得るためには必要量の固溶C
を鋼板中に存在させなければならず、これを主に高温焼
鈍中のNb炭化物の分解より得る。そのためには、Nbの添
加量は、CとNbの溶解度積を考慮して、C(mass %) ×
8+0.02 mass %以下に制限する必要がある。
Nb: C (mass%) × 3 to C (mass%) × 8
+0.02 mass%; Nb reduces the solid solution C before annealing to improve the workability, so that it is necessary to add at least about C atom equivalent, that is, C (mass%) × 3. On the other hand, in order to obtain bake hardenability, the required amount of solid solution C
Must be present in the steel sheet, which is obtained mainly from the decomposition of Nb carbide during high temperature annealing. To do so, the amount of Nb added should be C (mass%) × considering the solubility product of C and Nb.
It is necessary to limit it to 8 + 0.02 mass% or less.

【0025】Ti:N(mass %) ×3.43〜N(mass %) ×
3.43+S(mass %) ×1.5 +0.01 mass %; Tiは、
NまたはNとSの析出固定のために添加するが、特に、
Nの析出固定力がAlよりも強いために、加工性をより一
層向上させる。この効果を得るためには、Tiの添加量は
NまたはN+Sの原子等量程度添加する必要があるが、
過剰な添加は加工性、とくに延性を劣化させる。したが
って、TiはN(mass %) ×3.43〜N(mass %) ×3.43+
S(mass %) ×1.5 +0.01 mass %の範囲で添加するも
のとする。
Ti: N (mass%) × 3.43 to N (mass%) ×
3.43 + S (mass%) x 1.5 + 0.01 mass%; Ti is
N or N and S are added for precipitation fixing, but in particular,
Since the precipitation fixing force of N is stronger than that of Al, the workability is further improved. In order to obtain this effect, it is necessary to add Ti in an atomic equivalent amount of N or N + S.
Excessive addition deteriorates workability, especially ductility. Therefore, Ti is N (mass%) × 3.43 to N (mass%) × 3.43 +
S (mass%) × 1.5 + 0.01 mass% is added.

【0026】B:0.0002〜0.0030mass%;Bは、耐二次
加工脆性をより一層改善するために添加するが、0.0002
mass%未満ではその効果が得られず、一方、0.0030mass
%を超えて添加すると加工性とくにr値を劣化させるの
で、添加量は0.0002〜0.0030mass%、好ましくは0.0003
〜0.0020mass%の範囲にする必要がある。
B: 0.0002 to 0.0030 mass%; B is added to further improve the secondary work embrittlement resistance, but 0.0002
If less than mass%, the effect cannot be obtained, while 0.0030mass
%, The workability, especially the r-value, is deteriorated, so the addition amount is 0.0002 to 0.0030 mass%, preferably 0.0003.
It should be in the range of ~ 0.0020mass%.

【0027】Cr:0.03〜2.0 mass%、Ni:0.03〜2.0 ma
ss%、Mo:0.03〜1.0 mass%およびCu:0.03〜2.0 mass
%から選ばれるいずれか1種または2種以上を総量にて
2.0 mass%以下;これらの元素は、いずれも、鋼板の強
化に有効であり、強度に応じて必要量を添加するが、過
剰に添加すると、加工性を低下させるので、それぞれC
r:0.03〜2.0 mass%、Ni:0.03〜2.0 mass%、Mo:0.0
3〜1.0 mass%およびCu:0.03〜2.0 mass%から選ばれ
るいずれか1種または2種以上を総量にて2.0 mass%以
下、好ましくはCr:0.03〜1.0 mass%、Ni:0.03〜1.0
mass%、Mo:0.03〜0.50mass%、Cu:0.03〜1.0 mass
%、総量で 1.5mass%以下の範囲で添加する。
Cr: 0.03 to 2.0 mass%, Ni: 0.03 to 2.0 ma
ss%, Mo: 0.03 to 1.0 mass% and Cu: 0.03 to 2.0 mass
Any one or two or more selected from the total amount
2.0 mass% or less; all of these elements are effective in strengthening the steel sheet, and the necessary amount is added according to the strength, but if added in excess, the workability is reduced, so C
r: 0.03 to 2.0 mass%, Ni: 0.03 to 2.0 mass%, Mo: 0.0
The total amount of any one or more selected from 3 to 1.0 mass% and Cu: 0.03 to 2.0 mass% is 2.0 mass% or less, preferably Cr: 0.03 to 1.0 mass%, Ni: 0.03 to 1.0.
mass%, Mo: 0.03 to 0.50 mass%, Cu: 0.03 to 1.0 mass
%, And the total amount is 1.5 mass% or less.

【0028】次に、本発明の製造方法について、その主
要要件の限定理由とともに説明する。まず、熱間圧延に
ついては、とくに限定をする必要がないが、加工性の向
上を目的として以下の製造方法が好ましい。スラブ加熱
温度は1050〜1300℃の温度範囲でよく、析出物の粗大化
による延性向上のためには1050〜1200℃の範囲が好まし
い。熱延仕上温度は、(Ar3-10)〜(Ar3 +50℃)がよ
く、加工性の上からはAr3変態点直上すなわちAr3
(Ar3 +30℃)が好ましい。また、仕上圧延直後に急冷
処理を施しても加工性向上にはよい。さらに、コイル巻
取り温度は600 ℃以上が好ましい。なお、省エネルギー
の観点より、連続鋳造スラブを再加熱または連続鋳造後
Ar3変態点以下の温度に降温することなく、直ちにもし
くは保温処理を施した後、粗圧延を行なっても本発明の
特徴になんら影響しないので、直送圧延を行ってもよ
い。
Next, the manufacturing method of the present invention will be described together with the reasons for limiting the main requirements thereof. First, the hot rolling is not particularly limited, but the following manufacturing method is preferable for the purpose of improving workability. The slab heating temperature may be in the temperature range of 1050 to 1300 ° C, and is preferably in the range of 1050 to 1200 ° C in order to improve the ductility by coarsening the precipitates. The hot rolling finishing temperature is preferably (Ar 3 -10) to (Ar 3 + 50 ° C), and from the standpoint of workability, it is just above the Ar 3 transformation point, that is, Ar 3 〜.
(Ar 3 + 30 ° C) is preferred. Further, it is also good to improve the workability by subjecting it to a quenching treatment immediately after finish rolling. Further, the coil winding temperature is preferably 600 ° C. or higher. From the viewpoint of energy saving, even if the continuous casting slab is not reheated or cooled down to a temperature below the Ar 3 transformation point after continuous casting, or immediately after heat retention treatment and rough rolling is performed, the feature of the present invention is obtained. Since it has no effect, direct rolling may be performed.

【0029】冷間圧延圧下率:60〜90%の冷間圧延;
冷間圧延の圧下率は、60%に満たないと十分な加工性が
得らず、90%を超えても加工性が劣化するので、圧下率
は60〜90%の範囲、好ましくは 75 〜85%の範囲とする
ことが必要である。
Cold rolling reduction: Cold rolling of 60 to 90%;
If the rolling reduction of cold rolling is less than 60%, sufficient workability cannot be obtained, and if it exceeds 90%, the workability deteriorates. Therefore, the rolling reduction is in the range of 60 to 90%, preferably 75 to It is necessary to set the range to 85%.

【0030】焼鈍温度・時間:最高加熱温度が820 〜
(Ac3変態点+20℃) 、780 〜(Ac3変態点+20℃) の温度
範囲における保持時間が10sec 以上;焼鈍工程は本発明
において特に重要な工程であり、{111}再結晶集合
組織を発達させr値を高めるとともに、焼付硬化性の付
与に大きな役割を果たす。すなわち、この焼鈍の最高加
熱温度が820 ℃未満、あるいは780 〜(Ac3変態点+20
℃) の温度範囲における保持時間が10sec 未満のいずれ
であっても、熱延時に析出したNb炭化物の分解が不十分
となり、焼付硬化性が得られない。一方、最高加熱温度
が(Ac3変態点+20℃) を超えると、加熱時に多量のオー
ステナイトを形成し、冷却過程においてオーステナイト
からフェライトヘの変態が生じ、再結晶集合組織はラン
ダム化し、低いr値しか得られない。したがって、焼鈍
は最高加熱温度が820 〜(Ac3変態点+20℃) 、780 〜(A
c3変態点+20℃) の温度範囲における保持時間が10sec
以上で行う必要がある。ここで、780 〜(Ac3変態点+20
℃) の温度範囲における保持時間の上限は特に定めない
が、結晶粒粗大化による延性劣化の点から、90sec 以下
にするのが好ましい。
Annealing temperature / time: Maximum heating temperature is 820-
Holding time in the temperature range of (Ac 3 transformation point + 20 ° C), 780 to (Ac 3 transformation point + 20 ° C) is 10 seconds or more; the annealing step is a particularly important step in the present invention, and the {111} recrystallization texture is formed. It develops and increases the r value, and plays a major role in imparting bake hardenability. That is, the maximum heating temperature of this annealing is less than 820 ℃, or 780〜 (Ac 3 transformation point +20
Even if the holding time in the temperature range of (° C.) Is less than 10 seconds, the Nb carbide precipitated during hot rolling is insufficiently decomposed and bake hardenability cannot be obtained. On the other hand, when the maximum heating temperature exceeds (Ac 3 transformation point + 20 ° C), a large amount of austenite is formed during heating, transformation occurs from austenite to ferrite during the cooling process, the recrystallization texture is randomized, and a low r value is obtained. I can only get it. Thus, annealing the maximum heating temperature is 820 ~ (Ac 3 transformation point + 20 ℃), 780 ~ ( A
Hold time in the temperature range of c 3 transformation point + 20 ° C) is 10 seconds
You need to do this. Where 780 ~ (Ac 3 transformation point +20
The upper limit of the holding time in the temperature range of (° C.) is not particularly specified, but it is preferably 90 seconds or less from the viewpoint of ductility deterioration due to crystal grain coarsening.

【0031】焼鈍後の冷却:780 〜600 ℃の間の平均
冷却速度が25℃/sec以上、400 〜200℃の間の平均冷却
速度が15℃/sec以下;焼鈍後の冷却工程も、本発明にお
いて特に重要な工程であり、上記の焼鈍により分解した
Nb炭化物を再析出させないためには、少なくとも780 〜
600 ℃間の平均冷却速度を25℃/sec以上、好ましくは30
℃/sec以上とする必要があり、さらに耐時効性を確保す
るために、400 〜200 ℃間の平均冷却速度を15℃/sec以
下とする必要がある。なお、上記焼鈍に用いる設備につ
いては特に定める必要がないが、生産性、コストなどの
観点からは連続焼鈍ラインあるいは溶融亜鉛めっきライ
ンの設備が望ましい。
Cooling after annealing: Average cooling rate between 780 and 600 ° C. is 25 ° C./sec or more, average cooling rate between 400 and 200 ° C. is 15 ° C./sec or less; It is a particularly important step in the invention, and was decomposed by the above-mentioned annealing.
To prevent re-precipitation of Nb carbide, at least 780 ~
Average cooling rate between 600 ℃ is 25 ℃ / sec or more, preferably 30
℃ / sec or more, and in order to secure aging resistance, the average cooling rate between 400 and 200 ℃ must be 15 ℃ / sec or less. The equipment used for the above-mentioned annealing need not be specified in particular, but from the viewpoint of productivity, cost, etc., equipment of a continuous annealing line or a hot dip galvanizing line is desirable.

【0032】上述した方法で製造した焼鈍後の冷延鋼板
に、降伏伸び防止や板形状矯正、表面調整などを目的と
して、必要に応じて(板厚(mm)+0.5)%以下の圧下率で
調質圧延を施してもよい。またこの冷延鋼板は、電気め
っきラインに通板しても、その材料特性は変化しないの
で、焼鈍後に各種の電気めっきを施してもよい。さら
に、この発明によって得られる冷延鋼板は、焼鈍または
めっき後、板温を200 ℃以上に上げて、その後直ちに急
冷するような熱サイクルが加わらない限り発明の効果は
損なわれないので、化成処理性、溶接性、プレス成形性
および耐食性などの改善のために、特殊な処理を施して
も構わない。
The annealed cold-rolled steel sheet produced by the above-mentioned method may be subjected to a reduction of (sheet thickness (mm) +0.5)% or less as necessary for the purpose of preventing yield elongation, sheet shape correction, surface adjustment, and the like. The temper rolling may be performed at a rate. Further, this cold-rolled steel sheet may be subjected to various electroplating after annealing because its material properties do not change even if it is passed through an electroplating line. Further, the cold-rolled steel sheet obtained by the present invention, after annealing or plating, the effect of the invention will not be impaired unless a heat cycle in which the sheet temperature is raised to 200 ° C. or more and then rapidly cooled, chemical conversion treatment A special treatment may be performed to improve the workability, weldability, press formability, corrosion resistance and the like.

【0033】また、本発明を溶融亜鉛メッキ鋼板の製造
に適用する場合には、前述した溶融亜鉛めっきラインの
設備を利用するのが最も効率的である。この場合には、
焼鈍の冷却工程における1次冷却の後、めっき処理を行
い、次いで前記工程における2次冷却を行えばよい。
When the present invention is applied to the production of hot dip galvanized steel sheet, it is most efficient to use the equipment of the hot dip galvanizing line described above. In this case,
After the primary cooling in the cooling step of annealing, the plating treatment may be performed, and then the secondary cooling in the above step may be performed.

【0034】[0034]

【実施例】表1に示す成分組成からなる鋼スラブ( 本発
明の範囲を外れる値には下線を表示してある) を、1200
℃に加熱・均熱するか、連続鋳造後再加熱することなし
に、粗圧延、次いで仕上圧延を行った。コイル巻取り温
度は 630℃とした。この熱延板を酸洗後、表2に示す冷
延圧下率にて冷間圧延を行って、各板厚とした後、連続
焼鈍ラインまたは溶融亜鉛めっきラインにて表2に示す
条件で再結晶焼鈍を行った。その後、さらに板厚(mm)%
の調質圧延を施した。また、冷延鋼板のうちの一部のも
のについては電気メッキを施した。このようにして得ら
れた薄鋼板についてそれぞれの引張特性を求めた。ここ
に、引張特性はJIS 5号引張試験片を使用して測定し、
ランクフォード値(r値)は15%の引張予歪を与えた
後、3点法にて測定した。各特性値は、L方向(圧延方
向)、D方向(圧延方向に対し45度の方向)およびT方
向(圧延方向に対し90度の方向)の平均値で表した。す
なわち、この平均特性値をXとし、各方向の特性値をそ
れぞれXL 、XD およびXT とした場合に、 X=(XL +2XD +XT )/4 により求めた。また、時効指数(AI)と焼付硬化指数
(BH)は、前述した実験と同じ方法に従って行った。
EXAMPLE A steel slab having the composition shown in Table 1 (values outside the range of the present invention are underlined) was
Rough rolling and then finish rolling were performed without heating and soaking at ℃ or reheating after continuous casting. The coil winding temperature was 630 ° C. This hot-rolled sheet was pickled, cold-rolled at a cold rolling reduction rate shown in Table 2 to obtain each sheet thickness, and then re-rolled in a continuous annealing line or a hot dip galvanizing line under the conditions shown in Table 2. Crystal annealing was performed. After that, further plate thickness (mm)%
Was temper-rolled. Further, some of the cold rolled steel sheets were electroplated. The tensile properties of the thus obtained thin steel sheets were determined. Here, the tensile properties were measured using a JIS No. 5 tensile test piece,
The Rankford value (r value) was measured by a three-point method after applying a tensile prestrain of 15%. Each characteristic value was expressed as an average value in the L direction (rolling direction), the D direction (45 ° direction with respect to the rolling direction) and the T direction (90 ° direction with respect to the rolling direction). That is, the average property value and X, X each direction characteristic values respectively L, when the X D and X T, was determined by X = (X L + 2X D + X T) / 4. Further, the aging index (AI) and the bake hardening index (BH) were measured according to the same method as the experiment described above.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】得られた評価結果を表2に示す。表2から
示されるように、この発明方法に従って製造した薄鋼板
は、焼付硬化性指数が45MPa 以上、時効指数が30MPa 以
下を兼備し、さらにTS×Elで示される強度−延性バラン
スやr値で代表される加工性にも優れていることがわか
る。これに対して、本発明法の条件を逸脱する比較例
は、焼付硬化指数、時効指数または加工性のうちの少な
くとも一つが劣っていることがわかる。
The obtained evaluation results are shown in Table 2. As shown in Table 2, the thin steel sheet manufactured according to the method of the present invention has a bake hardenability index of 45 MPa or more and an aging index of 30 MPa or less, and further, in the strength-ductility balance and r value shown by TS × El. It can be seen that the typical workability is also excellent. On the other hand, it is understood that the comparative examples that deviate from the conditions of the method of the present invention are inferior in at least one of the bake hardening index, the aging index and the workability.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
優れた焼付硬化性と耐時効指数を有するほか、良好な加
工性と強度−延性バランスを兼備した加工用薄鋼板が製
造可能となる。また、本発明によれば、焼付硬化指数が
45MPa 以上、時効指数が30MPa 以下、r値が 1.6以上、
TS×Elが 14000(MPa・%)以上の優れた特性を有する加
工用薄鋼板が製造可能となる。従って、本発明によれば
高強度と高加工性とを兼備した冷延鋼板を提供でき、自
動車の軽量化と安全性の向上に大きく寄与する。
As described above, according to the present invention,
In addition to having excellent bake hardenability and aging resistance index, it becomes possible to manufacture a thin steel sheet for working having good workability and a good balance of strength and ductility. Further, according to the present invention, the bake hardening index is
45MPa or more, aging index 30MPa or less, r value 1.6 or more,
It is possible to manufacture thin steel sheets for processing that have excellent characteristics with TS x El of 14000 (MPa ·%) or more. Therefore, according to the present invention, it is possible to provide a cold-rolled steel sheet having both high strength and high workability, which greatly contributes to weight reduction and safety improvement of an automobile.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼付硬化指数と時効指数との関係を示すグラフ
である。
FIG. 1 is a graph showing a relationship between a bake hardening index and an aging index.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/50 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C22C 38/50

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】C:0.0010〜0.0025mass%、 Si:1.0 ma
ss%以下、 Mn:0.05〜1.5 mass%、 P:0.10 mass %以下、 S:0.02 mass%以下、 N:0.004 mass%以下、 Al:N(mass %) ×15〜0.10mass%、 Nb:C(mass %) ×3〜C(mass %) ×8+0.02 mass
%を含有し、残部はFeおよび不可避的不純物からなる成
分組成の熱延鋼板に、圧下率60〜90%の冷間圧延を施し
た後、最高加熱温度が820 〜(Ac3変態点+20℃) 、かつ
780 〜(Ac3変態点+20℃) の温度範囲における保持時間
が10sec 以上である焼鈍を施し、次いで780 〜600 ℃の
間の平均冷却速度が25℃/sec以上である1次冷却と、40
0 〜200 ℃の間の平均冷却速度が15℃/sec以下である2
次冷却からなる冷却を施すことを特徴とする焼付硬化性
および耐時効性に優れる加工用薄鋼板の製造方法。
1. C: 0.0010 to 0.0025 mass%, Si: 1.0 ma
ss% or less, Mn: 0.05 to 1.5 mass%, P: 0.10 mass% or less, S: 0.02 mass% or less, N: 0.004 mass% or less, Al: N (mass%) x 15 to 0.10 mass%, Nb: C (mass%) x 3 to C (mass%) x 8 + 0.02 mass
% Containing the balance in the hot-rolled steel sheet component composition consisting of Fe and unavoidable impurities, was subjected to rolling reduction 60% to 90% cold rolling, the maximum heating temperature is 820 ~ (Ac 3 transformation point + 20 ° C. ) ,And
780 to the retention time in the temperature range of (Ac 3 transformation point + 20 ° C.) is annealed at least 10 sec, 1 primary cooling and is then 780-600 average cooling rate between ° C. is 25 ° C. / sec or higher, 40
The average cooling rate between 0 and 200 ℃ is 15 ℃ / sec or less 2
A method for producing a thin steel sheet for working, which is excellent in bake hardenability and aging resistance, characterized by performing cooling including the following cooling.
【請求項2】C:0.0010〜0.0025mass%、 Si:1.0 ma
ss%以下、 Mn:0.05〜1.5 mass%、 P:0.10 mass %以下、 S:0.02 mass%以下、 Al:0.01〜0.06mass%、 N:0.004 mass%以下、 Nb:C(mass %) ×3〜C(mass %) ×8+0.02 mass
% Ti:N(mass %) ×3.43〜N(mass %) ×3.43+S(mas
s %) ×1.5 +0.01 mass %を含有し、残部はFeおよび
不可避的不純物からなる成分組成の熱延鋼板に、圧下率
60〜90%の冷間圧延を施した後、最高加熱温度が820 〜
(Ac3変態点+20℃) 、かつ780 〜(Ac3変態点+20℃) の
温度範囲における保持時間が10sec 以上である焼鈍を施
し、次いで780 〜600 ℃の間の平均冷却速度が25℃/sec
以上である1次冷却と、400 〜200 ℃の間の平均冷却速
度が15℃/sec以下である2次冷却からなる冷却を施すこ
とを特徴とする焼付硬化性および耐時効性に優れる加工
用薄鋼板の製造方法。
2. C: 0.0010 to 0.0025 mass%, Si: 1.0 ma
ss% or less, Mn: 0.05 to 1.5 mass%, P: 0.10 mass% or less, S: 0.02 mass% or less, Al: 0.01 to 0.06 mass%, N: 0.004 mass% or less, Nb: C (mass%) x 3 ~ C (mass%) x 8 + 0.02 mass
% Ti: N (mass%) × 3.43 to N (mass%) × 3.43 + S (mas
s%) x 1.5 + 0.01 mass%, the balance being a hot-rolled steel sheet with a composition that consists of Fe and unavoidable impurities.
After cold rolling 60 ~ 90%, the maximum heating temperature is 820 ~
Annealing is performed for 10 seconds or more in the temperature range of (Ac 3 transformation point + 20 ° C) and 780 to (Ac 3 transformation point + 20 ° C), and then the average cooling rate between 780 and 600 ° C is 25 ° C / sec
For processing with excellent bake hardenability and aging resistance, which is characterized by performing primary cooling as described above and secondary cooling having an average cooling rate between 400 and 200 ° C of 15 ° C / sec or less. Manufacturing method of thin steel sheet.
【請求項3】請求項1または2に記載の熱延鋼板が、上
記の成分組成に加えてさらに、B:0.0002〜0.0030mass
%を含有してなり、この熱延鋼板に対して、圧下率60〜
90%の冷間圧延を施した後、最高加熱温度が820 〜(Ac3
変態点+20℃) 、かつ780 〜(Ac3変態点+20℃) の温度
範囲における保持時間が10sec 以上である焼鈍を施し、
次いで780 〜600 ℃の間の平均冷却速度が25℃/sec以上
である1次冷却と、400 〜200 ℃の間の平均冷却速度が
15℃/sec以下である2次冷却からなる冷却を施すことを
特徴とする焼付硬化性および耐時効性に優れる加工用薄
鋼板の製造方法。
3. The hot rolled steel sheet according to claim 1 or 2, in addition to the above component composition, B: 0.0002 to 0.0030 mass
%, The rolling reduction is 60 to
After 90% cold rolling, the maximum heating temperature is 820 ~ (Ac 3
Annealing with a holding time of 10 seconds or more in the temperature range of 780 to (Ac 3 transformation point + 20 ° C)
Then, the average cooling rate between 780 and 600 ℃ is 25 ℃ / sec or more, and the average cooling rate between 400 and 200 ℃ is
A method for producing a thin steel sheet for working, which is excellent in bake hardenability and aging resistance, characterized by performing a secondary cooling at 15 ° C / sec or less.
【請求項4】請求項1〜3のいずれか1つに記載の熱延
鋼板が、上記の成分組成に加えてさらに、Cr:0.03〜2.
0 mass%、Ni:0.03〜2.0 mass%、Mo:0.03〜1.0 mass
%およびCu:0.03〜2.0 mass%から選ばれるいずれか1
種または2種以上を含有してなり、この熱延鋼板に対し
て、圧下率60〜90%の冷間圧延を施した後、最高加熱温
度が820 〜(Ac3変態点+20℃) 、かつ780 〜(Ac3変態点
+20℃) の温度範囲における保持時間が10sec 以上であ
る焼鈍を施し、次いで780 〜600 ℃の間の平均冷却速度
が25℃/sec以上である1次冷却と、400 〜200 ℃の間の
平均冷却速度が15℃/sec以下である2次冷却からなる冷
却を施すことを特徴とする焼付硬化性および耐時効性に
優れる加工用薄鋼板の製造方法。
4. The hot-rolled steel sheet according to claim 1, further comprising Cr: 0.03 to 2.
0 mass%, Ni: 0.03 to 2.0 mass%, Mo: 0.03 to 1.0 mass
% And Cu: any one selected from 0.03 to 2.0 mass% 1
Will contain more species or two or, with respect to the hot-rolled steel sheet, after being subjected to rolling reduction 60% to 90% cold rolling, - the maximum heating temperature is 820 (Ac 3 transformation point + 20 ° C.), and Annealing with a holding time of 10 seconds or more in the temperature range of 780 to (Ac 3 transformation point + 20 ° C) is performed, and then primary cooling with an average cooling rate of 25 ° C / sec or more between 780 and 600 ° C is performed. A method for producing a thin steel sheet for working, which is excellent in bake hardenability and aging resistance, characterized by performing cooling comprising secondary cooling having an average cooling rate of from 15 to 200 ° C of 15 ° C / sec or less.
【請求項5】1次冷却と2次冷却との間で溶融亜鉛めっ
き処理を施すことを特徴とする請求項1〜4のいずれか
1つに記載の加工用薄鋼板の製造方法。
5. The method for manufacturing a thin steel sheet for working according to claim 1, wherein hot dip galvanizing is performed between the primary cooling and the secondary cooling.
JP09345594A 1994-05-02 1994-05-02 Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance Expired - Fee Related JP3569949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09345594A JP3569949B2 (en) 1994-05-02 1994-05-02 Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09345594A JP3569949B2 (en) 1994-05-02 1994-05-02 Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance

Publications (2)

Publication Number Publication Date
JPH07300623A true JPH07300623A (en) 1995-11-14
JP3569949B2 JP3569949B2 (en) 2004-09-29

Family

ID=14082808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09345594A Expired - Fee Related JP3569949B2 (en) 1994-05-02 1994-05-02 Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance

Country Status (1)

Country Link
JP (1) JP3569949B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706419B2 (en) 2000-08-04 2004-03-16 Nippon Steel Corporation Cold-rolled steel sheet or hot-rolled steel sheet excellent in painting bake hardenability and anti aging property at room temperature, and method of producing the same
KR100530071B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility
JP2007270181A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk METHOD FOR ADJUSTING BAKE HARDENABILITY OF EXTRA-LOW CARBON STEEL CONTAINING Nb
KR100957976B1 (en) * 2007-12-26 2010-05-17 주식회사 포스코 Cr-Nb Added Bake Hardenable Steel Sheet with Excellent Strain Aging Resistance and Manufacturing Method Thereof
US8398786B2 (en) 2005-10-06 2013-03-19 Posco Precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same
US8828153B2 (en) 2005-07-04 2014-09-09 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet and high-strength plated steel sheet
US9290835B2 (en) 2005-10-05 2016-03-22 Nippon Steel & Summitomo Metal Corporation Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same
WO2020003986A1 (en) * 2018-06-27 2020-01-02 Jfeスチール株式会社 Methods for producing cold-rolled steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet
CN111705263A (en) * 2020-06-22 2020-09-25 武汉钢铁有限公司 Strip steel with excellent low-temperature secondary processing performance and tensile strength of 440MPa and production method thereof
WO2021125644A1 (en) * 2019-12-20 2021-06-24 주식회사 포스코 Cold rolled steel sheet and plated steel sheet which have excellent bake-hardenability and room-temperature antiaging property, and manufacturing methods therefor
RU2764618C1 (en) * 2021-02-25 2022-01-18 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Method for production of high-strength ultra low carbon cold-rolled steel with high ductility

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867336B2 (en) * 2005-12-27 2012-02-01 住友金属工業株式会社 High-tensile cold-rolled steel, high-tensile electroplated steel, and high-tensile hot-dip galvanized steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276928A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing having baking hardenability
JPS61276931A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having extra-deep drawing having baking hardenability
JPS6267120A (en) * 1985-09-19 1987-03-26 Kobe Steel Ltd Manufacture of cold rolled steel sheet having superior baking hardenability and vertical cracking resistance further high r value
JPS63241122A (en) * 1987-03-28 1988-10-06 Sumitomo Metal Ind Ltd Production of hot dip zinc coated steel sheet for ultra-deep drawing
JPH021212B2 (en) * 1981-05-20 1990-01-10 Kawasaki Steel Co

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021212B2 (en) * 1981-05-20 1990-01-10 Kawasaki Steel Co
JPS61276928A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing having baking hardenability
JPS61276931A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having extra-deep drawing having baking hardenability
JPS6267120A (en) * 1985-09-19 1987-03-26 Kobe Steel Ltd Manufacture of cold rolled steel sheet having superior baking hardenability and vertical cracking resistance further high r value
JPS63241122A (en) * 1987-03-28 1988-10-06 Sumitomo Metal Ind Ltd Production of hot dip zinc coated steel sheet for ultra-deep drawing

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706419B2 (en) 2000-08-04 2004-03-16 Nippon Steel Corporation Cold-rolled steel sheet or hot-rolled steel sheet excellent in painting bake hardenability and anti aging property at room temperature, and method of producing the same
KR100530071B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 Manufacturing method of retained austenite contained cold rolled steel sheets with good ductility
US8828153B2 (en) 2005-07-04 2014-09-09 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet and high-strength plated steel sheet
US9290835B2 (en) 2005-10-05 2016-03-22 Nippon Steel & Summitomo Metal Corporation Cold-rolled steel sheet excellent in paint bake hardenability and ordinary-temperature non-aging property and method of producing the same
US8398786B2 (en) 2005-10-06 2013-03-19 Posco Precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same
US8864922B2 (en) 2005-10-06 2014-10-21 Posco Method for manufacturing a precipitation-hardening cold-rolled steel sheet having excellent yield ratios
JP2007270181A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk METHOD FOR ADJUSTING BAKE HARDENABILITY OF EXTRA-LOW CARBON STEEL CONTAINING Nb
KR100957976B1 (en) * 2007-12-26 2010-05-17 주식회사 포스코 Cr-Nb Added Bake Hardenable Steel Sheet with Excellent Strain Aging Resistance and Manufacturing Method Thereof
WO2020003986A1 (en) * 2018-06-27 2020-01-02 Jfeスチール株式会社 Methods for producing cold-rolled steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet
JPWO2020003986A1 (en) * 2018-06-27 2020-07-02 Jfeスチール株式会社 Cold rolled steel sheet, hot dip galvanized steel sheet, and method for manufacturing alloyed hot dip galvanized steel sheet
WO2021125644A1 (en) * 2019-12-20 2021-06-24 주식회사 포스코 Cold rolled steel sheet and plated steel sheet which have excellent bake-hardenability and room-temperature antiaging property, and manufacturing methods therefor
CN111705263A (en) * 2020-06-22 2020-09-25 武汉钢铁有限公司 Strip steel with excellent low-temperature secondary processing performance and tensile strength of 440MPa and production method thereof
CN111705263B (en) * 2020-06-22 2022-01-04 武汉钢铁有限公司 Strip steel with excellent low-temperature secondary processing performance and tensile strength of 440MPa and production method thereof
RU2764618C1 (en) * 2021-02-25 2022-01-18 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Method for production of high-strength ultra low carbon cold-rolled steel with high ductility

Also Published As

Publication number Publication date
JP3569949B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
KR101402365B1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
CN104593674A (en) Hot-dip galvanized ultra-low carbon bake-hardening steel and production method thereof
KR101164471B1 (en) Process for producing high-strength cold rolled steel sheet with low yield strength and with less material quality fluctuation
JP3569949B2 (en) Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP7463408B2 (en) Cold rolled and coated steel sheet and its manufacturing method
US20060207692A1 (en) Ultrahigh strength hot-rolled steel and method of producing bands
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JP4434198B2 (en) Manufacturing method of thin steel sheet for processing excellent in low-temperature bake hardenability and aging resistance
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP3525812B2 (en) High strength steel plate excellent in impact energy absorption and manufacturing method thereof
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JP4176403B2 (en) Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP2003268490A (en) Thin steel sheet for working excellent in bake hardenability and aging resistance and its production method
JP3812248B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and press formability and method for producing the same
JPH05195060A (en) Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JP3049104B2 (en) Manufacturing method of high tensile cold rolled steel sheet for deep drawing
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JP3740875B2 (en) Cold-rolled thin steel sheet for deep drawing with excellent impact resistance
JP3390084B2 (en) Bake hardenable thin steel sheet excellent in formability and method for producing the same
JPH06108155A (en) Production of cold-rolled steel sheet for ultradeep drawing
JP2808014B2 (en) Manufacturing method of good workability cold rolled steel sheet with excellent bake hardenability

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees