JPWO2020003986A1 - Cold rolled steel sheet, hot dip galvanized steel sheet, and method for manufacturing alloyed hot dip galvanized steel sheet - Google Patents

Cold rolled steel sheet, hot dip galvanized steel sheet, and method for manufacturing alloyed hot dip galvanized steel sheet Download PDF

Info

Publication number
JPWO2020003986A1
JPWO2020003986A1 JP2019554947A JP2019554947A JPWO2020003986A1 JP WO2020003986 A1 JPWO2020003986 A1 JP WO2020003986A1 JP 2019554947 A JP2019554947 A JP 2019554947A JP 2019554947 A JP2019554947 A JP 2019554947A JP WO2020003986 A1 JPWO2020003986 A1 JP WO2020003986A1
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
rolled steel
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019554947A
Other languages
Japanese (ja)
Inventor
直哉 清兼
直哉 清兼
陽平 金子
陽平 金子
香菜 佐々木
香菜 佐々木
孝子 山下
孝子 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2020003986A1 publication Critical patent/JPWO2020003986A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明は、成形性及び焼付硬化性に優れる冷延鋼板の製造方法を提供することを目的とする。本発明は、鋼素材から熱延鋼板を得る熱間圧延工程と、冷延鋼板を得る冷間圧延工程と、焼鈍処理を施した冷延鋼板を得る焼鈍工程とを備える冷延鋼板の製造方法であって、鋼素材が、質量%で、C:0.0010%以上0.0030%以下、Nb:0.010%以上0.025%以下、Al:0.01%以上0.10%以下、Si:0.05%以下、Mn:1.0%以下、P:0.10%以下、S:0.010%以下、B:0.0030%以下、N:0.010%以下を含み、残部Fe及び不可避的不純物からなる組成を有し、焼鈍処理中の炉内雰囲気の露点が−35℃以下であり、焼鈍処理が、850℃以上910℃未満の温度で保持し、その後、5℃/s以上の平均冷却速度で750℃以下の温度まで冷却する処理である、冷延鋼板の製造方法である。An object of the present invention is to provide a method for manufacturing a cold rolled steel sheet which is excellent in formability and bake hardenability. The present invention is a method for producing a cold rolled steel sheet, comprising a hot rolling step of obtaining a hot rolled steel sheet from a steel material, a cold rolling step of obtaining a cold rolled steel sheet, and an annealing step of obtaining a cold rolled steel sheet that has been annealed. The steel material is, by mass%, C: 0.0010% or more and 0.0030% or less, Nb: 0.010% or more and 0.025% or less, Al: 0.01% or more and 0.10% or less. , Si: 0.05% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.010% or less, B: 0.0030% or less, N: 0.010% or less , The balance Fe and unavoidable impurities, the dew point of the furnace atmosphere during the annealing is −35° C. or lower, and the annealing is held at a temperature of 850° C. or higher and lower than 910° C., and then 5 It is a method for producing a cold-rolled steel sheet, which is a process of cooling to a temperature of 750° C. or lower at an average cooling rate of C/s or higher.

Description

本発明は、冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の製造方法に関する。 The present invention relates to a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and a method for manufacturing an alloyed hot-dip galvanized steel sheet.

近年、地球環境の保全という観点から排出される汚染物質の低減のために排気ガス規制が実施され、自動車に対しては車体の軽量化による燃費向上が強く要求されている。車体を軽量化するための有力な手法の一つに使用する薄鋼板の高強度化があり、年々高強度鋼板の使用量が増加している。
薄鋼板の高強度化の方法としては、固溶強化元素を添加して固溶強化を利用する方法、析出強化元素を添加し析出物を利用する析出強化方法、硬質相であるマルテンサイトを利用した強化方法が一般的である。しかし、いずれの方法も高強度化に伴い、延性やr値等の低下による成形性の低下やスポット溶接性の劣化、さらには耐二次加工脆性の低下等が生じるという問題を含んでいる。このため、成形性の優れた高強度鋼板を製造する場合には、上記した強化元素を添加する方法あるいは硬質相であるマルテンサイトを利用する方法は必ずしも好ましい方法とは言えない。
また、車体を軽量化するための他の手段として、薄鋼板の成形性を高める方法がある。薄鋼板の成形性を高めることにより、従来の多くの部品を溶接して組み立てる溶接組み立て方式から、一体成形方式に変更することができ、溶接のための重ね代の低減により、自動車車体の軽量化が可能となる。また、一体成形では軽量化以外に製造コストの削減もできるメリットがある。
高い成形性と高強度化を両立させる打ち手として、成形時には軟質であり、成形時に導入される加工歪とその後の塗装焼付処理により、組み立て塗装後の最終部品(製品)において高強度化を達成する方法がある。この方法を利用した鋼板は焼付硬化型鋼板と称されている。この方法を使用することにより、成形時には軟質で成形性がよく、その一方で、鋼板に導入された加工歪と成形後の塗装焼付処理により生じる鋼の歪時効現象、いわゆる焼付硬化を利用して変形強度を高めることができ、最終部品(製品)の高強度化が図れる。この方法では強度の増加量に制限があるものの、最終部品(製品)の形状となるように成形する際には軟質で、焼き付け塗装後最終部品(製品)の高強度化が可能になるという利点がある。しかも、この方法は強化元素を添加しないためスポット溶接性が良好であり、粒界強度を上昇させる固溶Cが存在することから、耐二次加工脆性の低下も生じ難いという利点がある。また、添加元素を使用しないため、製造コストを抑えることができるという利点もある。
このような利点を有する焼付硬化型鋼板の製造方法について、例えば、特許文献1及び特許文献2など、これまでにいくつかの提案がなされている。
In recent years, exhaust gas regulations have been implemented in order to reduce pollutants emitted from the viewpoint of conservation of the global environment, and automobiles are strongly required to improve fuel consumption by reducing the weight of the vehicle body. The strength of thin steel sheets used as one of the promising methods for reducing the weight of vehicle bodies is increasing, and the amount of high-strength steel sheets used is increasing year by year.
As a method for increasing the strength of a thin steel sheet, a method of using solid solution strengthening by adding a solid solution strengthening element, a precipitation strengthening method of using precipitation by adding a precipitation strengthening element, and martensite which is a hard phase are used. The strengthened method is common. However, each of the methods has a problem in that as the strength is increased, the formability is decreased due to the decrease in ductility and r-value, the spot weldability is deteriorated, and the secondary work brittleness resistance is decreased. Therefore, when manufacturing a high-strength steel sheet having excellent formability, the method of adding the above-mentioned strengthening element or the method of utilizing martensite which is a hard phase is not necessarily a preferable method.
Further, as another means for reducing the weight of the vehicle body, there is a method of improving the formability of the thin steel sheet. By improving the formability of thin steel sheets, it is possible to change from the conventional welding assembly method in which many parts are welded and assembled to the integrated molding method, and the overlap margin for welding is reduced, and the weight of the automobile body is reduced. Is possible. In addition, the integral molding has an advantage that the manufacturing cost can be reduced in addition to the reduction in weight.
As a punch that achieves both high moldability and high strength, it achieves high strength in the final part (product) after assembly and painting due to the softness during molding, the processing strain introduced during molding and the subsequent paint baking treatment. There is a way to do it. A steel plate using this method is called a bake hardening type steel plate. By using this method, soft and good formability at the time of forming, on the other hand, the strain aging phenomenon of steel caused by the work strain introduced into the steel sheet and the paint baking treatment after forming, so-called bake hardening is utilized. The deformation strength can be increased, and the final component (product) can have higher strength. Although this method limits the amount of increase in strength, it has the advantage that it is soft when it is molded into the shape of the final part (product) and that the final part (product) can be made stronger after baking coating. There is. Moreover, this method has an advantage that the spot weldability is good because no strengthening element is added, and the presence of solid solution C that increases the grain boundary strength makes it difficult to reduce the secondary work embrittlement resistance. Further, since no additional element is used, there is an advantage that the manufacturing cost can be suppressed.
Several proposals have been made so far regarding a method for producing a bake hardenable steel sheet having such advantages, for example, Patent Document 1 and Patent Document 2.

特許文献1には、C:0.0005〜0.0035質量%、Nb:5C〜9C質量%(ここでCはC量(質量%))を特定の関係を満足するように含有し、さらにSi、Mn、B、Al、Nを特定の量で含有する鋼素材に熱間圧延、冷間圧延を施したのち、連続焼鈍を730℃からNb量及びC量から決まる特定温度Tまでの昇温時間を30秒以上、特定温度T以上での滞在時間を40秒以上とすることを特徴とする高い焼付硬化性及び耐肌荒れ性を有する薄鋼板の製造方法が開示されている。特許文献1では、上記方法により、再結晶の進行とNb炭化物の溶解のタイミングを適度に調整することができ、高いBH量(焼付硬化量)を確保でき、かつ耐肌荒れ性の向上や深絞り成形性の向上が可能になるものとしている。 Patent Document 1 contains C: 0.0005 to 0.0035 mass% and Nb: 5C to 9C mass% (where C is a C content (mass %)) so as to satisfy a specific relationship. After hot-rolling and cold-rolling a steel material containing Si, Mn, B, Al, and N in specific amounts, continuous annealing is performed from 730° C. to a specific temperature T determined by the amounts of Nb and C. Disclosed is a method for producing a thin steel sheet having high bake hardenability and surface roughening resistance, characterized in that the warm time is 30 seconds or longer and the residence time at the specific temperature T or higher is 40 seconds or longer. In Patent Document 1, by the above method, the progress of recrystallization and the timing of dissolution of Nb carbide can be appropriately adjusted, a high BH amount (bake hardening amount) can be secured, and the rough skin resistance and deep drawing can be improved. It is supposed that the moldability can be improved.

また、特許文献2には、C:0.0008〜0.0025質量%、Nb:0.008〜0.020質量%をExcess C量=C−(12/93)Nb>−0.0005%となるように含有し、さらにSi、Mn、P、S、Al、Bを特定の量で含有する鋼素材に、熱間圧延、酸洗、冷間圧延を施したのち、溶融亜鉛めっき亜鉛ラインでの焼鈍温度をExcess C量が0%を越えの場合には800℃以上850℃未満、Excess C量が−0.0005%以上0%以下の場合には850℃以上Ac3変態点未満とし、さらに該焼鈍温度で焼鈍した後5℃/s以上の平均冷却速度で750℃以下の温度まで冷却することを特徴とする、焼付硬化性に優れた溶融亜鉛めっき鋼板の製造方法が開示されている。特許文献2では、上記方法により、Nb炭化物の溶解温度を適度に調整することができ、高いBH量(焼付硬化量)を確保が可能になるものとしている。 Further, in Patent Document 2, C: 0.0008 to 0.0025 mass% and Nb: 0.008 to 0.020 mass% are defined as the amount of excess C = C-(12/93)Nb>-0.0005%. Hot-dip galvanized zinc line after hot-rolling, pickling and cold-rolling a steel material containing a specific amount of Si, Mn, P, S, Al and B The annealing temperature at 800° C. or more and less than 850° C. when the Excess C amount exceeds 0%, and 850° C. or more and less than the Ac3 transformation point when the Excess C amount is −0.0005% or more and 0% or less, Further disclosed is a method for producing a hot-dip galvanized steel sheet having excellent bake hardenability, characterized by cooling to a temperature of 750° C. or lower at an average cooling rate of 5° C./s or more after annealing at the annealing temperature. .. In Patent Document 2, the melting temperature of Nb carbide can be appropriately adjusted by the above method, and a high BH amount (bake hardening amount) can be secured.

特開平8−100221号公報Japanese Patent Laid-Open No. 8-100221 特開2007−270167号公報JP, 2007-270167, A

しかしながら、本発明者らが特許文献1及び特許文献2に記載された技術について検討したところ、例えば、出鋼時のC量、Nb量のバラツキにより、BH量(焼付硬化量)が大きく変動するため、延性には優れるが、BH量が目標値より低くユーザーの要求特性を満足できないか、あるいは逆にBH量は高いが延性が低下し、プレス割れを起こしやすい等の問題が生じる場合があることが明らかになった。また、出鋼時のC量、Nb量のバラツキ等により、プレス加工時にストレッチャー・ストレインが発生しやすく、表面外観を著しく損ない易いなどの問題が生じる場合があることも明らかになった。
なお、特許文献1に記載された技術では、CとNbの特定関係として、次式、
730≧−9100/{log(Nb・C)−3.7}−273
を満足するように製鋼段階でC量、Nb量を調整したうえ、さらに連続焼鈍に際して、次式、
T=−9100/{log(Nb・C)−3.7}―273
で規定される温度T(℃)までの昇温時間およびその温度以上の時間を規定しているところ、実操業において、このような複雑な条件を満足させながら操業することは容易ではない。
また、特許文献2においてもC:0.0008〜0.0025質量%、Nb:0.008〜0.020質量%以外に、Excess C量=C−(12/93)Nb>−0.0005%と、C量及びNb量の厳しい制限があり、このような制限の下では操業が困難である。
However, when the present inventors examined the techniques described in Patent Document 1 and Patent Document 2, for example, the BH amount (bake hardening amount) greatly fluctuates due to variations in the C amount and Nb amount during tapping. Therefore, although the ductility is excellent, the BH amount is lower than the target value and the characteristics required by the user cannot be satisfied, or conversely, the BH amount is high, but the ductility is lowered, which may cause problems such as press cracking. It became clear. It was also clarified that due to variations in the C content and Nb content during tapping, stretcher strain is likely to occur during press working, and the surface appearance may be significantly impaired.
In addition, in the technique described in Patent Document 1, as a specific relationship between C and Nb,
730≧−9100/{log(Nb·C)−3.7}−273
In the steelmaking stage, the C content and Nb content are adjusted so as to satisfy
T=-9100/{log(Nb·C)-3.7}-273
In the actual operation, it is not easy to operate while satisfying such a complicated condition.
Moreover, also in patent document 2, in addition to C: 0.0008-0.0025 mass% and Nb: 0.008-0.020 mass %, the amount of Excess C=C-(12/93)Nb>-0.0005. %, and the C amount and the Nb amount are severely limited, and it is difficult to operate under such a limitation.

本発明はこのような実情を鑑みたものであり、成形性及び焼付硬化性に優れる冷延鋼板の製造方法を提供することを目的とするものである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a cold-rolled steel sheet having excellent formability and bake hardenability.

本発明者らは、上記した目的を達成するべく、BH量に及ぼす、鋼の組成および製造条件の影響について詳細に検討した。その結果、C量が0.0010%以上0.0030%以下、Nb量が0.010%以上0.025%以下の範囲となるように制御し、冷間圧延後の焼鈍処理の炉内雰囲気の露点及び焼鈍温度を調整し、特定温度範囲の冷却速度を適正範囲に調整することにより、Cを析出物として析出させることなく、固溶C量を一定にすることにより、30MPa以上の安定したBH量を確保できることを見出し、本発明に至った。
すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
In order to achieve the above-mentioned object, the present inventors have studied in detail the influence of the composition of steel and the manufacturing conditions on the BH content. As a result, the C content is controlled to be 0.0010% or more and 0.0030% or less, and the Nb content is controlled to be in the range of 0.010% or more and 0.025% or less, and the atmosphere in the furnace for the annealing treatment after cold rolling is controlled. By adjusting the dew point and the annealing temperature and adjusting the cooling rate in the specific temperature range to an appropriate range, the solid solution C amount was kept constant without depositing C as a precipitate, and thus stable at 30 MPa or more. The inventors have found that the amount of BH can be secured, and completed the present invention.
That is, the inventors have found that the above problems can be solved by the following configurations.

(1) 鋼素材に熱間圧延を施して熱延鋼板を得る、熱間圧延工程と、
上記熱延鋼板に冷間圧延を施して冷延鋼板を得る、冷間圧延工程と、
上記冷延鋼板に焼鈍処理を施して焼鈍処理を施した冷延鋼板を得る、焼鈍工程と、
を備える冷延鋼板の製造方法であって、
上記鋼素材が、質量%で、
C:0.0010%以上0.0030%以下
Nb:0.010%以上0.025%以下
Al:0.01%以上0.10%以下
Si:0.05%以下
Mn:1.0%以下
P:0.10%以下
S:0.010%以下
B:0.0030%以下
N:0.010%以下
を含み、残部Fe及び不可避的不純物からなる組成を有する鋼素材であり、
上記焼鈍処理中の炉内雰囲気の露点が−35℃以下であり、
上記焼鈍処理が、850℃以上910℃未満の温度で保持し、その後、5℃/s以上の平均冷却速度で750℃以下の温度まで冷却する処理である、冷延鋼板の製造方法。
(2) 上記(1)に記載の製造方法によって得られた焼鈍処理後の冷延鋼板に溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法。
(3) 上記(2)に記載の製造方法によって得られた溶融亜鉛めっき鋼板に合金化処理を施して、合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法。
(1) a hot rolling step of hot rolling a steel material to obtain a hot rolled steel sheet;
A cold rolling step of performing cold rolling on the hot rolled steel sheet to obtain a cold rolled steel sheet, and
An annealing process of obtaining a cold rolled steel sheet that has been subjected to an annealing treatment by subjecting the cold rolled steel sheet to an annealing treatment, and
A method for manufacturing a cold rolled steel sheet, comprising:
The above steel material is mass%,
C: 0.0010% or more and 0.0030% or less Nb: 0.010% or more and 0.025% or less Al: 0.01% or more and 0.10% or less Si: 0.05% or less Mn: 1.0% or less P: 0.10% or less S: 0.010% or less B: 0.0030% or less N: 0.010% or less, a steel material having a composition of balance Fe and inevitable impurities,
The dew point of the furnace atmosphere during the annealing treatment is −35° C. or lower,
A method for manufacturing a cold-rolled steel sheet, wherein the annealing treatment is a treatment of holding at a temperature of 850° C. or higher and lower than 910° C. and then cooling it to a temperature of 750° C. or lower at an average cooling rate of 5° C./s or higher.
(2) A method for producing a hot-dip galvanized steel sheet, wherein the cold-rolled steel sheet after the annealing treatment obtained by the production method according to (1) above is subjected to hot-dip galvanizing treatment to obtain a hot-dip galvanized steel sheet.
(3) A method for producing an alloyed hot-dip galvanized steel sheet, which comprises subjecting the hot-dip galvanized steel sheet obtained by the production method according to (2) above to an alloying treatment to obtain an alloyed hot-dip galvanized steel sheet.

以下に示すように、本発明によれば、成形性及び焼付硬化性に優れる冷延鋼板の製造方法を提供することができる。 As shown below, according to the present invention, it is possible to provide a method for manufacturing a cold-rolled steel sheet having excellent formability and bake hardenability.

以下に、本発明の冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の製造方法について説明する。
なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Below, the manufacturing method of the cold-rolled steel sheet, the hot-dip galvanized steel sheet, and the alloyed hot-dip galvanized steel sheet of this invention is demonstrated.
In addition, in this specification, the numerical range represented using "-" means the range which includes the numerical value described before and after "-" as a lower limit and an upper limit.

[冷延鋼板の製造方法]
本発明の冷延鋼板の製造方法(以下、「本発明の方法」とも言う)は、
鋼素材に熱間圧延を施して熱延鋼板を得る、熱間圧延工程と、
上記熱延鋼板に冷間圧延を施して冷延鋼板を得る、冷間圧延工程と、
上記冷延鋼板に焼鈍処理を施して焼鈍処理を施した冷延鋼板を得る、焼鈍工程と、
を備える冷延鋼板の製造方法であって、
上記鋼素材が、質量%で、
C:0.0010%以上0.0030%以下
Nb:0.010%以上0.025%以下
Al:0.01%以上0.10%以下
Si:0.05%以下
Mn:1.0%以下
P:0.10%以下
S:0.010%以下
B:0.0030%以下
N:0.010%以下
を含み、残部Fe及び不可避的不純物からなる組成を有する鋼素材であり、
上記焼鈍処理中の炉内雰囲気の露点が−35℃以下であり、
上記焼鈍処理が、850℃以上910℃未満の温度で保持し、その後、5℃/s以上の平均冷却速度で750℃以下の温度まで冷却する処理である、冷延鋼板の製造方法である。
[Cold Rolled Steel Sheet Manufacturing Method]
The method for producing a cold-rolled steel sheet of the present invention (hereinafter, also referred to as “method of the present invention”) is
A hot rolling step of subjecting a steel material to hot rolling to obtain a hot rolled steel sheet;
A cold rolling step of performing cold rolling on the hot rolled steel sheet to obtain a cold rolled steel sheet, and
An annealing process of obtaining a cold rolled steel sheet that has been subjected to an annealing treatment by subjecting the cold rolled steel sheet to an annealing treatment, and
A method for manufacturing a cold rolled steel sheet, comprising:
The above steel material is mass%,
C: 0.0010% or more and 0.0030% or less Nb: 0.010% or more and 0.025% or less Al: 0.01% or more and 0.10% or less Si: 0.05% or less Mn: 1.0% or less P: 0.10% or less S: 0.010% or less B: 0.0030% or less N: 0.010% or less, a steel material having a composition of balance Fe and inevitable impurities,
The dew point of the furnace atmosphere during the annealing treatment is −35° C. or lower,
A method for manufacturing a cold-rolled steel sheet, wherein the annealing treatment is a treatment of holding at a temperature of 850°C or higher and lower than 910°C, and then cooling it to a temperature of 750°C or lower at an average cooling rate of 5°C/s or higher.

以下、各工程について説明する。 Hereinafter, each step will be described.

〔熱間圧延工程〕
熱間圧延工程は、特定の組成を有する鋼素材に熱間圧延を施して熱延鋼板を得る工程である。
[Hot rolling process]
The hot rolling step is a step of performing hot rolling on a steel material having a specific composition to obtain a hot rolled steel sheet.

<鋼素材>
以下、熱間圧延工程で用いられる鋼素材の組成について説明する。なお、組成における「%」表示は、特に断らない限り「質量%」を意味する。
<Steel material>
The composition of the steel material used in the hot rolling process will be described below. In addition, "%" in the composition means "mass %" unless otherwise specified.

(C:0.0010%以上0.0030%以下)
Cは強度を増加させるとともに、焼付硬化性を発現する元素であり、多く添加することが望ましいが、添加量が多くなると延性、成形性を低下させる元素である。本発明では、所定以上の固溶C量を確保し30MPa以上の焼付硬化量を得るために、0.0010%以上の含有を必要とする。一方で、添加量が多くなると、延性の低下が大きくなる。このため、Cは0.0030%以下に限定した。本発明の効果がより優れる理由から、Cは、好ましくは、0.0015%以上である。Cは、好ましくは、0.0025%以下、より好ましくは0.0020%以下の範囲である。
(C: 0.0010% or more and 0.0030% or less)
C is an element that increases the strength and develops the bake hardenability, and it is desirable to add a large amount, but if the addition amount is large, the ductility and the formability are deteriorated. In the present invention, the content of 0.0010% or more is required in order to secure a solid solution C amount of a predetermined amount or more and obtain a bake hardening amount of 30 MPa or more. On the other hand, if the amount of addition is large, the ductility is greatly reduced. Therefore, C is limited to 0.0030% or less. From the reason that the effect of the present invention is more excellent, C is preferably 0.0015% or more. C is preferably 0.0025% or less, more preferably 0.0020% or less.

(Nb:0.010%以上0.025%以下)
Nbは鋼板の成形性を改善する元素であると共に、焼鈍前にCを析出物(炭化物)として固定するための元素である。このような効果を得るためには0.010%以上の含有を必要とする。一方で、過剰に含有させると、鋼板の成形性が悪化するとともに、Cを過剰に炭化物として固定し、焼鈍過程において炭化物が溶解せずに固溶C量を確保できず、その結果として焼付硬化量が低下する。このため、Nbは0.025%以下に限定した。Nbは、好ましくは0.020%以下、より好ましくは0.015%以下の範囲である。
(Nb: 0.010% or more and 0.025% or less)
Nb is an element that improves the formability of the steel sheet, and is an element that fixes C as a precipitate (carbide) before annealing. In order to obtain such effects, the content of 0.010% or more is required. On the other hand, if it is contained excessively, the formability of the steel sheet is deteriorated, C is excessively fixed as carbide, and the amount of solid solution C cannot be secured without melting of carbide in the annealing process, resulting in bake hardening. The amount decreases. Therefore, Nb is limited to 0.025% or less. Nb is preferably 0.020% or less, more preferably 0.015% or less.

(Al:0.01%以上0.10%以下)
Alは製鋼過程おける脱酸剤として作用するとともにNとの親和力が強く、AlNを形成する傾向が強く、窒化物形成傾向の強い元素の歩留り向上に寄与する。このような効果を得るために0.01%以上の含有を必要とする。Al量は、得られる冷延鋼板の成形性及び焼付硬化性がより優れる(以下、「本発明の効果がより優れる」とも言う)理由から、望ましくは、0.02%以上である。その一方、Alは、0.10%以上含有しても、その効果は飽和し、含有量に見合う効果が期待できず経済的に不利となる。また、AlNが粗大となり、鋼板の延性を低下させる要因にもなるため、0.10%以下に限定した。本発明の効果がより優れる理由から、Alは、より好ましくは、0.03%以上である。Alは、好ましくは、0.08%以下、より好ましくは、0.06%以下の範囲である。
(Al: 0.01% or more and 0.10% or less)
Al acts as a deoxidizer in the steelmaking process, has a strong affinity with N, has a strong tendency to form AlN, and contributes to improving the yield of elements having a strong tendency to form nitrides. To obtain such an effect, the content of 0.01% or more is required. The amount of Al is preferably 0.02% or more because the formability and the bake hardenability of the obtained cold rolled steel sheet are more excellent (hereinafter, also referred to as “the effect of the present invention is more excellent”). On the other hand, even if Al is contained in an amount of 0.10% or more, the effect is saturated and the effect commensurate with the content cannot be expected, which is economically disadvantageous. In addition, AlN becomes coarse and becomes a factor that reduces the ductility of the steel sheet, so the content is limited to 0.10% or less. From the reason that the effect of the present invention is more excellent, Al is more preferably 0.03% or more. Al is preferably 0.08% or less, more preferably 0.06% or less.

(Si:0.05%以下)
Siは製鋼過程における脱酸剤として作用するとともに鋼を強化する有効な元素である。このような効果を得るためには、0.005%以上含有することが望ましいが、0.05%を超える含有は成形性とめっき性を低下させる。このため、Siは0.05%以下に限定した。Siは好ましくは0.02%以下、より好ましくは0.01%以下である。
(Si: 0.05% or less)
Si is an effective element that acts as a deoxidizer in the steelmaking process and strengthens the steel. In order to obtain such an effect, it is desirable to contain 0.005% or more, but if it exceeds 0.05%, the formability and the plating property are deteriorated. Therefore, Si is limited to 0.05% or less. Si is preferably 0.02% or less, more preferably 0.01% or less.

(Mn:1.0%以下)
Mnは製鋼過程おける脱酸剤として作用するとともに鋼を強化する有効な元素である。このような効果を得るためには、0.10%以上含有することが望ましい。また、本発明の効果がより優れる理由から、Mnは、0.5%超であることが好ましく、0.6%超であることがより好ましい。一方、1.0%を超える過剰のMnの含有は鋼板の強度を必要以上に高めるとともに、脆化させる。このため、Mnは1.0%以下に限定したMnは好ましくは0.9%以下、より好ましくは0.8%以下である。
(Mn: 1.0% or less)
Mn is an effective element that acts as a deoxidizer in the steelmaking process and strengthens the steel. In order to obtain such effects, it is desirable to contain 0.10% or more. Further, for the reason that the effect of the present invention is more excellent, Mn is preferably more than 0.5%, more preferably more than 0.6%. On the other hand, the excessive Mn content exceeding 1.0% increases the strength of the steel sheet more than necessary and makes it brittle. Therefore, Mn is limited to 1.0% or less, and Mn is preferably 0.9% or less, more preferably 0.8% or less.

(P:0.10%以下)
Pは鋼を強化する作用があり、強度を増加させるためには、少なくとも0.02%以上含有させることが望ましいが、0.10%を超える含有は、耐二次加工脆性が低下する。このため、Pは0.10%以下に限定した。本発明の効果がより優れる理由から、好ましくは0.05%以下である。
(P: 0.10% or less)
P has the effect of strengthening the steel, and it is desirable to contain at least 0.02% or more in order to increase the strength, but if it exceeds 0.10%, the secondary work embrittlement resistance decreases. Therefore, P is limited to 0.10% or less. From the reason that the effect of the present invention is more excellent, it is preferably 0.05% or less.

(S:0.010%以下)
Sは鋼中では介在物として存在し、成形性を低下させる。このため、Sは極力低減することが望ましいが、Sを低減させるほど、鋼素材の製造コストが大きくなる。そのため、S含有量は0.010%以下とした。なお、Sは好ましくは0.009%以下、より好ましくは0.008%である。
(S: 0.010% or less)
S exists as an inclusion in steel and reduces formability. Therefore, it is desirable to reduce S as much as possible, but as S is reduced, the manufacturing cost of the steel material increases. Therefore, the S content is set to 0.010% or less. In addition, S is preferably 0.009% or less, and more preferably 0.008%.

(B:0.0030%以下)
Bは、Nと結合しBNを形成するため、Nを固定するのに有効な元素であるとともに、耐二次加工脆性を改善するのに有効な元素である。このような効果を得るためには、0.0003%以上の含有が望ましい。一方、0.0030%を超える含有は成形性を低下させる。このため、Bは0.0030%以下の範囲に限定した。なお、本発明の効果がより優れる理由から、Bは、好ましくは0.0003%以上、より好ましくは0.0005%以上である。Bは、好ましくは0.0020%以下、より好ましくは0.0015%以下である。
(B: 0.0030% or less)
B is an element effective for fixing N because it combines with N to form BN, and is also an element effective for improving the secondary work embrittlement resistance. In order to obtain such effects, the content of 0.0003% or more is desirable. On the other hand, if the content exceeds 0.0030%, the formability is lowered. Therefore, B is limited to the range of 0.0030% or less. Note that B is preferably 0.0003% or more, more preferably 0.0005% or more, because the effect of the present invention is more excellent. B is preferably 0.0020% or less, more preferably 0.0015% or less.

(N:0.010%以下)
鋼板中にNが含有していると、炭窒化物を形成し、焼付硬化量が低下するため、Nは極力低減することが望ましい。そのため、N含有量は0.010%以下とした。Nの含有量が0.010%以下であるならば、NはAl及びBと結合し、窒化物を形成するため、焼付硬化量を確保することができる。なお、本発明の効果がより優れる理由から、好ましくは、0.0030%以下である。
(N: 0.010% or less)
If N is contained in the steel sheet, carbonitrides are formed and the bake hardening amount is reduced, so it is desirable to reduce N as much as possible. Therefore, the N content is set to 0.010% or less. When the content of N is 0.010% or less, N is combined with Al and B to form a nitride, so that the bake hardening amount can be secured. From the reason that the effect of the present invention is more excellent, it is preferably 0.0030% or less.

(残部)
上記した成分以外の残部は、Fe及び不可避的不純物である。
なお、不可避的不純物としてのOは、本発明の効果がより優れる理由から、0.0050%以下であることが好ましい。
(The rest)
The balance other than the above components is Fe and inevitable impurities.
In addition, O as an unavoidable impurity is preferably 0.0050% or less because the effect of the present invention is more excellent.

<好適な態様>
熱間圧延工程の好適な態様としては、例えば、上述した鋼素材を加熱した後、熱間圧延を施し、巻取る工程が挙げられる。
<Preferable embodiment>
A preferred embodiment of the hot rolling step is, for example, a step of heating the above-mentioned steel material, then hot rolling it and winding it.

(加熱温度)
鋼素材の加熱温度は特に制限されないが、本発明の効果がより優れる理由から、1100〜1250℃であることが好ましい。
(Heating temperature)
The heating temperature of the steel material is not particularly limited, but is preferably 1100 to 1250° C. because the effect of the present invention is more excellent.

(圧延終了温度)
熱間圧延の圧延終了温度(FDT)は、成形性の観点から900℃以上とすることが好ましい。熱延鋼板の結晶粒粗大化が抑えられ、結果として、得られる冷延鋼板のプレス加工性(深絞り性)がより優れる理由から、圧延終了温度は900〜980℃であることが好ましい。さらに好ましくは、圧延終了温度は950℃以下である。
(Rolling end temperature)
The rolling end temperature (FDT) of hot rolling is preferably 900° C. or higher from the viewpoint of formability. The rolling end temperature is preferably 900 to 980° C. because the crystal grain coarsening of the hot rolled steel sheet is suppressed and, as a result, the press workability (deep drawability) of the obtained cold rolled steel sheet is more excellent. More preferably, the rolling end temperature is 950°C or lower.

(巻取り温度)
巻取り温度は、700℃以下とすることが好ましい。巻取り温度が700℃を超えて高温となると材質向上効果が飽和するとともに酸洗性が低下する。なお、AlN及びNbCの析出の促進および上記析出物の粗大化による成形性の改善の観点から巻取り温度は、500〜700℃であるのが好ましい。さらに好ましくは、巻取り温度は600℃〜650℃である。
(Winding temperature)
The winding temperature is preferably 700° C. or lower. When the winding temperature exceeds 700° C. and becomes high, the effect of improving the material is saturated and the pickling property is deteriorated. The winding temperature is preferably 500 to 700° C. from the viewpoint of promoting the precipitation of AlN and NbC and improving the formability by coarsening the precipitate. More preferably, the winding temperature is 600°C to 650°C.

〔冷間圧延工程〕
冷間圧延工程は、熱間圧延工程で得られた熱延鋼板、又は、後述する酸洗処理後の熱延鋼板に冷間圧延を施して冷延鋼板を得る工程である。
[Cold rolling process]
The cold rolling step is a step of performing cold rolling on the hot-rolled steel sheet obtained in the hot-rolling step or the hot-rolled steel sheet after the pickling treatment described below to obtain a cold-rolled steel sheet.

<圧下率>
冷間圧延の圧下率は特に制限されないが、本発明の効果がより優れる理由から、50%以上であることが好ましい。
<Reduction rate>
The reduction ratio of cold rolling is not particularly limited, but is preferably 50% or more because the effect of the present invention is more excellent.

〔焼鈍工程〕
焼鈍工程は、冷間圧延工程で得られた冷延鋼板に焼鈍処理を施して焼鈍処理を施した冷延鋼板を得る工程である。
ここで、焼鈍処理は、850℃以上910℃未満の温度で保持し、その後、5℃/s(秒)以上の平均冷却速度で750℃以下の温度まで冷却する処理である。
また、焼鈍処理中の炉内雰囲気の露点は−35℃以下である。
なお、焼鈍処理は、例えば連続焼鈍ラインにおいて行われる。また、本発明の方法が後述するめっき工程をさらに備える場合には、焼鈍処理は、例えば連続溶融亜鉛めっきラインにおいて行われる。
[Annealing process]
The annealing step is a step of performing annealing treatment on the cold rolled steel sheet obtained in the cold rolling step to obtain a cold rolled steel sheet subjected to the annealing treatment.
Here, the annealing treatment is a treatment of holding at a temperature of 850° C. or higher and lower than 910° C. and then cooling it to a temperature of 750° C. or lower at an average cooling rate of 5° C./s (seconds) or higher.
Further, the dew point of the atmosphere in the furnace during the annealing treatment is −35° C. or lower.
The annealing treatment is performed, for example, in a continuous annealing line. When the method of the present invention further includes a plating step described below, the annealing treatment is performed in, for example, a continuous hot dip galvanizing line.

<焼鈍温度>
上述のとおり、焼鈍処理の保持温度(焼鈍温度)は、850℃以上910℃未満である。
焼鈍処理においては、析出したNbCを溶解させ、固溶Cとし、30MPa以上の焼付硬化量を確保するために、850℃以上で焼鈍を行う。一方で、焼鈍温度が高温になると、深絞り性(r値)、伸び(El)が低下するとともに結晶粒が粗大化してプレス成形時に肌荒れ欠陥が生じ、表面品質が低下する。また、後述する溶融亜鉛めっき鋼板の場合には、溶融亜鉛めっき処理後の表面性状が悪化する。そのため、高くとも910℃未満の温度で焼鈍を行う。焼鈍温度は、好ましくは870℃以上である。焼鈍温度は、より好ましくは890℃以下である。
なお、焼鈍処理では、本発明の効果がより優れる理由から、上記した焼鈍温度での保持を50〜300s程度とすることが好ましい。
<annealing temperature>
As described above, the holding temperature (annealing temperature) of the annealing treatment is 850° C. or higher and lower than 910° C.
In the annealing treatment, the precipitated NbC is dissolved into solid solution C, and annealing is performed at 850° C. or higher in order to secure a bake hardening amount of 30 MPa or higher. On the other hand, when the annealing temperature is high, the deep drawability (r value) and the elongation (El) are reduced, and the crystal grains are coarsened to cause rough surface defects during press forming, which deteriorates the surface quality. Further, in the case of the hot-dip galvanized steel sheet described below, the surface properties after the hot-dip galvanizing treatment deteriorate. Therefore, annealing is performed at a temperature lower than 910° C. at the highest. The annealing temperature is preferably 870° C. or higher. The annealing temperature is more preferably 890°C or lower.
In the annealing treatment, it is preferable to maintain the annealing temperature for about 50 to 300 s for the reason that the effect of the present invention is more excellent.

<平均冷却速度及び冷却停止温度>
上述のとおり、850℃以上910℃未満の温度で保持し、その後、5℃/s以上の平均冷却速度で750℃以下の温度まで鋼板を冷却する。なお、ここでいう平均冷却速度とは、焼鈍温度から冷却停止温度までの平均をいうものとする。平均冷却速度が5℃/s未満では、焼鈍処理中に固溶させたCがNbCとして再析出し、焼付硬化性が低下するため、5℃/s以上の冷却速度が必要である。冷却速度が大きすぎると、鋼板の延性の低下につながるため、10℃/s以下の冷却速度が好ましい。また、冷却停止温度が750℃を超えて高温となると、その後の徐冷で固溶CがNbCとして再析出し、焼付硬化性が低下するため、750℃以下まで冷却する必要がある。冷却停止温度は、好ましくは700℃以下である。
<Average cooling rate and cooling stop temperature>
As described above, the temperature is maintained at 850° C. or higher and lower than 910° C., and then the steel sheet is cooled to a temperature of 750° C. or lower at an average cooling rate of 5° C./s or higher. In addition, the average cooling rate here means the average from the annealing temperature to the cooling stop temperature. When the average cooling rate is less than 5° C./s, C dissolved in the annealing treatment is re-precipitated as NbC and the bake hardenability is deteriorated. Therefore, a cooling rate of 5° C./s or more is required. If the cooling rate is too high, the ductility of the steel sheet is reduced, so a cooling rate of 10° C./s or less is preferable. Further, when the cooling stop temperature exceeds 750° C. and reaches a high temperature, the solid solution C is re-precipitated as NbC by the subsequent slow cooling, and the bake hardenability is deteriorated. Therefore, it is necessary to cool to 750° C. or less. The cooling stop temperature is preferably 700° C. or lower.

<露点>
上述のとおり、焼鈍処理中の炉内雰囲気の露点は−35℃以下である。
焼鈍工程において、炉内雰囲気の露点が高いと固溶Cが下記の反応により脱炭し、焼付硬化量の低下の原因となる。
C(鋼中)+HO → CO+H
また、Bが酸化して消費され、BNの形成が少なくなるため、同じく焼付硬化量が低下する。脱炭及びBN形成量の減少による固溶C量の減少、固溶C減少に伴う焼付硬化量低下を防止するため、焼鈍処理中の炉内雰囲気の露点は−35℃以下である。露点の下限は特に規定しないが、−80℃未満ではコスト面で不利となるため、−80℃以上が好ましい。
露点は、本発明の効果がより優れる理由から、−40℃未満であることが好ましい。
<Dew point>
As described above, the dew point of the furnace atmosphere during the annealing treatment is −35° C. or lower.
In the annealing step, if the dew point of the atmosphere in the furnace is high, the solid solution C is decarburized by the following reaction, which causes a decrease in the bake hardening amount.
C (in steel) + H 2 O → CO + H 2
Further, B is oxidized and consumed, and the formation of BN is reduced, so that the bake hardening amount is similarly reduced. The dew point of the atmosphere in the furnace during the annealing treatment is −35° C. or lower in order to prevent a decrease in the amount of solid solution C due to decarburization and a decrease in the amount of BN formed, and a decrease in the amount of bake hardening due to the decrease in the amount of solid solution C. The lower limit of the dew point is not particularly specified, but if it is less than -80°C, it is disadvantageous in terms of cost, and therefore, -80°C or higher is preferable.
The dew point is preferably less than -40°C because the effect of the present invention is more excellent.

〔その他の工程〕
本発明の方法は上述した工程以外の工程を備えていてもよい。
[Other processes]
The method of the present invention may include steps other than the steps described above.

<酸洗処理工程>
本発明の方法は、さらに酸洗処理工程を備えるのが好ましく、熱間圧延工程後、冷間圧延工程前に、さらに酸洗処理工程を備えるのがより好ましい。熱間圧延後の熱延鋼板に酸洗処理を施すと、表面のスケール(酸化皮膜)が除去され、冷間圧延で疵が付き難くなり、外観が向上する。
<Pickling process>
The method of the present invention preferably further comprises a pickling treatment step, and more preferably further comprises a pickling treatment step after the hot rolling step and before the cold rolling step. When the hot-rolled steel sheet after hot rolling is subjected to pickling treatment, the scale (oxide film) on the surface is removed, scratches are less likely to occur in cold rolling, and the appearance is improved.

[溶融亜鉛めっき鋼板の製造方法]
本発明の溶融亜鉛めっき鋼板の製造方法は、上述した本発明の方法によって得られた焼鈍処理を施した冷延鋼板に溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法である。
溶融亜鉛めっき処理の条件はとくに限定されない。常用の溶融亜鉛めっき処理条件がいずれも適用できる。
[Method for producing hot dip galvanized steel sheet]
The method for producing a hot-dip galvanized steel sheet of the present invention is a hot-dip galvanized steel sheet obtained by subjecting the cold-rolled steel sheet subjected to the annealing treatment obtained by the method of the present invention to a hot-dip galvanizing treatment to obtain a hot-dip galvanized steel sheet. Is a manufacturing method.
The conditions of the hot dip galvanizing treatment are not particularly limited. Any conventional hot dip galvanizing treatment conditions can be applied.

[合金化溶融亜鉛めっき鋼板の製造方法]
本発明の合金化溶融亜鉛めっき鋼板の製造方法は、上述した溶融亜鉛めっき鋼板の製造方法によって得られた溶融亜鉛めっき鋼板に合金化処理を施して、合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法である。
[Method for producing galvannealed steel sheet]
The method for producing an alloyed hot-dip galvanized steel sheet according to the present invention is an alloying treatment for the hot-dip galvanized steel sheet obtained by the method for producing a hot-dip galvanized steel sheet described above to obtain an alloyed hot-dip galvanized steel sheet, alloying It is a manufacturing method of a hot-dip galvanized steel sheet.

以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

〔冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の製造〕
下記のとおり、冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を製造した。
[Production of cold-rolled steel sheet, hot-dip galvanized steel sheet and galvannealed steel sheet]
Cold-rolled steel sheets, hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets were manufactured as described below.

<熱間圧延工程>
表1に示す組成(質量%)のスラブ(鋼素材)を加熱温度:1200℃で加熱した後、熱間圧延を施し、板厚3.2mmの熱延鋼板を得た。なお、熱間圧延の圧延終了温度及び巻取温度は表2に記載のとおりとし、巻取り後、室温まで冷却した。
<Hot rolling process>
A slab (steel material) having the composition (% by mass) shown in Table 1 was heated at a heating temperature of 1200° C. and then hot-rolled to obtain a hot-rolled steel sheet having a sheet thickness of 3.2 mm. The rolling end temperature and the coiling temperature of the hot rolling were as shown in Table 2, and after coiling, they were cooled to room temperature.

<酸洗処理工程>
次いで、得られた熱延鋼板に酸洗処理を施した。
<Pickling process>
Then, the obtained hot rolled steel sheet was subjected to pickling treatment.

<冷間圧延工程>
次いで、酸洗処理後の熱延鋼板に圧下率75%の冷間圧延を施し、板厚0.8mmの冷延鋼板を得た。
<Cold rolling process>
Then, the hot-rolled steel sheet after the pickling treatment was cold-rolled at a rolling reduction of 75% to obtain a cold-rolled steel sheet having a thickness of 0.8 mm.

<焼鈍工程>
次いで、得られた冷延鋼板に連続焼鈍ラインにおいて表2に示す条件で焼鈍処理を施した。このようにして焼鈍処理を施した冷延鋼板を得た。なお、表2中の「露点」は焼鈍処理中の炉内雰囲気の露点を表す。
<annealing process>
Next, the obtained cold rolled steel sheet was annealed under the conditions shown in Table 2 in a continuous annealing line. Thus, a cold rolled steel sheet which was annealed was obtained. The "dew point" in Table 2 represents the dew point of the atmosphere in the furnace during the annealing treatment.

<めっき工程>
次いで、表2の「めっき処理」の欄に「有り」と記載している鋼板については、連続溶融亜鉛めっきラインを用いて溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板を得た。
<Plating process>
Next, with respect to the steel plates described as "Yes" in the column of "Plating treatment" in Table 2, hot dip galvanizing treatment was performed using a continuous hot dip galvanizing line to obtain hot dip galvanizing steel sheets.

<合金化工程>
さらに、表2の「合金化処理」の欄に「有り」と記載している鋼板については、溶融亜鉛めっき層に合金化処理を行い、合金化溶融亜鉛めっき鋼板を得た。
<Alloying process>
Further, for the steel sheets described as "Yes" in the "Alloying treatment" column of Table 2, the hot dip galvanized layer was subjected to an alloying treatment to obtain an alloyed hot dip galvanized steel sheet.

〔評価〕
得られた冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板について、以下の評価を行った。
[Evaluation]
The following evaluation was performed about the obtained cold rolled steel plate, hot dip galvanized steel plate, and alloyed hot dip galvanized steel plate.

<引張特性>
得られた冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板から、長軸を圧延方向に直交する方向としたJIS 5号引張試験片を採取し、JIS Z2241の規定に準拠して引張試験を行い、引張特性(降伏強さ、引張強さ、伸び)を評価した。
結果を表3に示す。実用上、伸びは40%以上であることが好ましい。
<Tensile properties>
From the obtained cold-rolled steel sheet, hot-dip galvanized steel sheet and hot-dip galvanized steel sheet, JIS No. 5 tensile test pieces with the major axis perpendicular to the rolling direction were sampled and stretched in accordance with JIS Z2241. A test was conducted to evaluate the tensile properties (yield strength, tensile strength, elongation).
The results are shown in Table 3. Practically, the elongation is preferably 40% or more.

<成形性>
得られた冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板からJIS 5号引張試験片を採取し、r値を測定した。具体的には、試験片に引張試験で15%予歪を与えた後、3点法によりr値を測定し、圧延方向、圧延方向に対して45°の方向、圧延方向に対して90°の方向のr値を、それぞれをrL、rD及びrCとした。そして、平均値(=(rL+2rD+rC)/4)を求めた。
結果を表3に示す。r値が大きいほど成形性に優れることを意味する。実用上、1.40以上であることが好ましい。
<Moldability>
JIS No. 5 tensile test pieces were taken from the obtained cold-rolled steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, and the r value was measured. Specifically, after applying a 15% pre-strain to the test piece by a tensile test, the r value was measured by a three-point method, and the rolling direction, the direction of 45° with respect to the rolling direction, and the angle of 90° with respect to the rolling direction. The r values in the direction of were taken as rL, rD, and rC, respectively. Then, the average value (=(rL+2rD+rC)/4) was obtained.
The results are shown in Table 3. The larger the r value, the better the moldability. Practically, it is preferably 1.40 or more.

<焼付硬化性>
得られた冷延鋼板、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板から、引張特性の評価と同様にJIS 5号引張試験片を採取し、JIS G3135の規定に準拠して、2%の引張予歪(塑性歪)を与える予変形処理を施し、次いで、170℃×20分の熱処理を施し、熱処理前後の変形応力の増加量(BH量)(焼付硬化量)(=(熱処理後の上降伏点(MPa))−(熱処理前の予変形応力(MPa)))を求めた。
結果を表3に示す。BH量が30MPa以上であれば焼付硬化性に優れると言える。
<Bake hardenability>
From the obtained cold rolled steel sheet, hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet, JIS No. 5 tensile test pieces were sampled in the same manner as in the evaluation of tensile properties, and 2% tensile strength was applied in accordance with JIS G3135. A pre-deformation process that gives a pre-strain (plastic strain) is performed, and then a heat treatment at 170° C. for 20 minutes is performed to increase the amount of deformation stress before and after the heat treatment (BH amount) (bake hardening amount) (= ( The yield point (MPa))-(pre-deformation stress before heat treatment (MPa)) was determined.
The results are shown in Table 3. If the BH amount is 30 MPa or more, it can be said that the bake hardenability is excellent.

表1〜3中、下線部は、本発明の範囲外を示す。 In Tables 1 to 3, the underlined portions indicate those outside the scope of the present invention.

表1〜3から分かるように、特定の組成を有する鋼素材に熱間圧延及び冷間圧延を施し、さらに特定の条件の焼鈍処理を施すことで得られたA〜F及びMの鋼板は、優れた成形性及び焼付硬化性を示した。なかでも、鋼素材のB量が0.0003%以上であるA〜Fの鋼板は、より優れた焼付硬化性を示した。そのなかでも、焼鈍処理中の炉内雰囲気の露点が−40℃以下であるB〜Fの鋼板は、さらに優れた成形性を示した。そのなかでも、焼鈍処理中の炉内雰囲気の露点が−40℃未満であるB〜C及びE〜Fの鋼板は、さらに優れた焼付硬化性を示した。そのなかでも、焼鈍処理中の炉内雰囲気の露点が−46℃未満であるC及びFの鋼板は特に優れた焼付硬化性を示した。 As can be seen from Tables 1 to 3, the steel sheets A to F and M obtained by subjecting a steel material having a specific composition to hot rolling and cold rolling, and further performing an annealing treatment under specific conditions, It showed excellent moldability and bake hardenability. Among them, the steel plates A to F in which the B content of the steel material was 0.0003% or more showed more excellent bake hardenability. Among them, the steel plates of B to F, in which the dew point of the atmosphere in the furnace during the annealing treatment was −40° C. or lower, showed further excellent formability. Among them, the steel sheets B to C and E to F in which the dew point of the atmosphere in the furnace during the annealing treatment was less than −40° C. showed further excellent bake hardenability. Among them, the steel sheets of C and F in which the dew point of the atmosphere in the furnace during the annealing treatment was less than -46°C showed particularly excellent bake hardenability.

一方、鋼素材が特定の組成を有さないH、K及びNの鋼板、並びに、特定の組成を有する鋼素材を用いるが焼鈍条件が特定の条件ではないG、I〜J及びLの鋼板は、成形性及び焼付硬化性の少なくとも一方が不十分であった。 On the other hand, steel sheets of H, K and N in which the steel material does not have a specific composition, and steel sheets of G, I to J and L in which the steel material having a specific composition is used but the annealing condition is not a specific condition are However, at least one of moldability and bake hardenability was insufficient.

Claims (3)

鋼素材に熱間圧延を施して熱延鋼板を得る、熱間圧延工程と、
前記熱延鋼板に冷間圧延を施して冷延鋼板を得る、冷間圧延工程と、
前記冷延鋼板に焼鈍処理を施して焼鈍処理を施した冷延鋼板を得る、焼鈍工程と、
を備える冷延鋼板の製造方法であって、
前記鋼素材が、質量%で、
C:0.0010%以上0.0030%以下
Nb:0.010%以上0.025%以下
Al:0.01%以上0.10%以下
Si:0.05%以下
Mn:1.0%以下
P:0.10%以下
S:0.010%以下
B:0.0030%以下
N:0.010%以下
を含み、残部Fe及び不可避的不純物からなる組成を有する鋼素材であり、
前記焼鈍処理中の炉内雰囲気の露点が−35℃以下であり、
前記焼鈍処理が、850℃以上910℃未満の温度で保持し、その後、5℃/s以上の平均冷却速度で750℃以下の温度まで冷却する処理である、冷延鋼板の製造方法。
A hot rolling step of subjecting a steel material to hot rolling to obtain a hot rolled steel sheet;
A cold rolling step of performing cold rolling on the hot rolled steel sheet to obtain a cold rolled steel sheet,
An annealing process, in which the cold rolled steel sheet is subjected to an annealing treatment to obtain an annealed cold rolled steel sheet,
A method for manufacturing a cold rolled steel sheet, comprising:
The steel material, in mass%,
C: 0.0010% or more and 0.0030% or less Nb: 0.010% or more and 0.025% or less Al: 0.01% or more and 0.10% or less Si: 0.05% or less Mn: 1.0% or less P: 0.10% or less S: 0.010% or less B: 0.0030% or less N: 0.010% or less, a steel material having a composition of balance Fe and inevitable impurities,
The dew point of the furnace atmosphere during the annealing treatment is −35° C. or lower,
The method for producing a cold rolled steel sheet, wherein the annealing treatment is a treatment of holding at a temperature of 850° C. or higher and lower than 910° C. and then cooling it to a temperature of 750° C. or lower at an average cooling rate of 5° C./s or higher.
請求項1に記載の製造方法によって得られた焼鈍処理後の冷延鋼板に溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法。 A method for producing a hot-dip galvanized steel sheet, wherein the cold-rolled steel sheet after the annealing treatment obtained by the production method according to claim 1 is subjected to hot-dip galvanizing treatment to obtain a hot-dip galvanized steel sheet. 請求項2に記載の製造方法によって得られた溶融亜鉛めっき鋼板に合金化処理を施して、合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法。 A method for producing an alloyed hot-dip galvanized steel sheet, which comprises subjecting the hot-dip galvanized steel sheet obtained by the method according to claim 2 to an alloying treatment to obtain an alloyed hot-dip galvanized steel sheet.
JP2019554947A 2018-06-27 2019-06-10 Cold rolled steel sheet, hot dip galvanized steel sheet, and method for manufacturing alloyed hot dip galvanized steel sheet Pending JPWO2020003986A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018121543 2018-06-27
JP2018121543 2018-06-27
PCT/JP2019/022877 WO2020003986A1 (en) 2018-06-27 2019-06-10 Methods for producing cold-rolled steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet

Publications (1)

Publication Number Publication Date
JPWO2020003986A1 true JPWO2020003986A1 (en) 2020-07-02

Family

ID=68984846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019554947A Pending JPWO2020003986A1 (en) 2018-06-27 2019-06-10 Cold rolled steel sheet, hot dip galvanized steel sheet, and method for manufacturing alloyed hot dip galvanized steel sheet

Country Status (2)

Country Link
JP (1) JPWO2020003986A1 (en)
WO (1) WO2020003986A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277741A (en) * 1990-03-28 1991-12-09 Kawasaki Steel Corp Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JPH07300623A (en) * 1994-05-02 1995-11-14 Kawasaki Steel Corp Production of sheet steel for working excellent in baking hardenability and aging resistance
JPH08104926A (en) * 1994-10-07 1996-04-23 Nippon Steel Corp Production of high strength cold rolled steel sheet for deep drawing excellent in dent resistance and free from generation of stretcher strain
JP2007270167A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing galvanized steel sheet excellent in baking hardenability
JP2017145471A (en) * 2016-02-18 2017-08-24 新日鐵住金株式会社 Steel sheet and manufacturing method therefor
WO2017168991A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel sheet, plated steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277741A (en) * 1990-03-28 1991-12-09 Kawasaki Steel Corp Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JPH07300623A (en) * 1994-05-02 1995-11-14 Kawasaki Steel Corp Production of sheet steel for working excellent in baking hardenability and aging resistance
JPH08104926A (en) * 1994-10-07 1996-04-23 Nippon Steel Corp Production of high strength cold rolled steel sheet for deep drawing excellent in dent resistance and free from generation of stretcher strain
JP2007270167A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing galvanized steel sheet excellent in baking hardenability
JP2017145471A (en) * 2016-02-18 2017-08-24 新日鐵住金株式会社 Steel sheet and manufacturing method therefor
WO2017168991A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel sheet, plated steel sheet, hot-rolled steel sheet manufacturing method, cold-rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method

Also Published As

Publication number Publication date
WO2020003986A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
CN108474096B (en) Aluminum-plated iron alloy steel sheet for hot press forming, hot press formed member using same, and method for producing same
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
KR100711358B1 (en) High strength cold rolled steel sheet and hot dip galvanized steel sheet having excellent formability, bake hardenability and plating property, and the method for manufacturing thereof
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
KR100711468B1 (en) High strength cold rolled steel sheet and hot dip galvanized steel sheet having excellent formability and coating property, and the method for manufacturing thereof
JP4860784B2 (en) High strength steel plate with excellent formability and method for producing the same
JP6503584B2 (en) Method of manufacturing hot rolled steel sheet, method of manufacturing cold rolled full hard steel sheet, and method of manufacturing heat treated sheet
WO2013118679A1 (en) High-strength cold-rolled steel sheet and process for manufacturing same
JP2009035814A (en) High-strength hot-dip galvanized steel sheet and process for producing the same
JP2011052317A (en) Dual phase steel sheet and method for manufacturing the same
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP5953695B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
WO2016147550A1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP2003313636A (en) Hot-dipped steel sheet with high ductility and high strength, and manufacturing method therefor
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
EP3305932B1 (en) High strength steel sheet and method for producing same
JP2007270167A (en) Method for producing galvanized steel sheet excellent in baking hardenability
JP5012636B2 (en) Galvanized steel sheet
JP4622187B2 (en) Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them
CN116507753A (en) Ultra-high strength steel sheet having excellent ductility and method for manufacturing same
JP2013139625A (en) High-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
KR101505252B1 (en) Cold-rolled steel sheet for outcase of car having low yield ratio with excellent formability and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210224