JP2007270181A - METHOD FOR ADJUSTING BAKE HARDENABILITY OF EXTRA-LOW CARBON STEEL CONTAINING Nb - Google Patents

METHOD FOR ADJUSTING BAKE HARDENABILITY OF EXTRA-LOW CARBON STEEL CONTAINING Nb Download PDF

Info

Publication number
JP2007270181A
JP2007270181A JP2006094382A JP2006094382A JP2007270181A JP 2007270181 A JP2007270181 A JP 2007270181A JP 2006094382 A JP2006094382 A JP 2006094382A JP 2006094382 A JP2006094382 A JP 2006094382A JP 2007270181 A JP2007270181 A JP 2007270181A
Authority
JP
Japan
Prior art keywords
low carbon
steel strip
carbon steel
cooling zone
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006094382A
Other languages
Japanese (ja)
Other versions
JP4904887B2 (en
Inventor
Takashi Yamauchi
崇 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006094382A priority Critical patent/JP4904887B2/en
Publication of JP2007270181A publication Critical patent/JP2007270181A/en
Application granted granted Critical
Publication of JP4904887B2 publication Critical patent/JP4904887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for adjusting a bake hardenability of an ultra-low carbon steel containing Nb, which can increase a degree of BH compared to a conventional method, regardless of a Nb/C atom ratio. <P>SOLUTION: This adjusting method is an improved technology of hot-dip galvanizing an extra-low carbon steel strip containing Nb by passing the steel strip in a line for producing a continuously hot-dip galvanized steel sheet, which has a vertical annealing furnace including a heating zone and a cooling zone, and has a plating tank. The adjusting method specifically includes controlling the temperature of the steel strip in an outlet side of the cooling zone to 550°C or lower, and simultaneously controlling a cooling rate to over 40°C/second while the ultra-low carbon steel strip containing Nb is in a range of 700 to 550°C in the cooling zone. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、Nbを含有する極低炭素鋼の焼付け硬化性調整方法に係わり、詳しくは、Nbを含有する極低炭素鋼を素材に合金化溶融亜鉛めっきを施すに際し、該素材の焼付け硬化性を従来より向上させた合金化溶融亜鉛めっき鋼板とする技術に関する。   The present invention relates to a method for adjusting the bake hardenability of an ultra-low carbon steel containing Nb, and more specifically, when the ultra-low carbon steel containing Nb is subjected to alloying hot dip galvanizing, the bake hardenability of the raw material The present invention relates to a technology for making an alloyed hot-dip galvanized steel sheet that has been improved compared to conventional steel.

近年、自動車の車体には、成形時には低強度で加工性に優れ、塗装焼付け処理後に大きな強度上昇を示す特性(以下、焼付け硬化性という)を有する合金化溶融亜鉛めっき鋼板が多用されている。この焼付け硬化性は、JIS規格:G 3135にあるように、BH量(Bake Hardenabilityの略)で評価され、その値が大きいほど「焼付け硬化性」が大きい。また、BH量は、試験片を後述の塗料焼付け相当処理後に引張試験をして得た降伏応力から予歪み付与時の応力を差し引いた値である。そして、従来は、鋼板の化学成分である炭素(記号:C)濃度及び炭素と結合して炭化物を生成するNb濃度を変化させることで、BH量を調整していた。つまり、より大きいBH量を得るために、鋼中の炭素濃度に対するNb濃度の比率を小さく保ち(例えばNb/Cの原子比を1未満とする)、鋼中で炭化物を生成しない炭素(所謂「フリー炭素」)を鋼中に多く残存させるといった技術である(例えば、非特許文献1参照)。
鉄と鋼、vol.89(2002)No.11,page 109〜111
2. Description of the Related Art In recent years, alloyed hot-dip galvanized steel sheets having characteristics (hereinafter referred to as bake hardenability) that are low in strength and excellent in workability and have a large increase in strength after paint baking are frequently used in automobile bodies. This bake hardenability is evaluated by the amount of BH (abbreviation of Bake Hardability) as in JIS standard: G 3135. The BH amount is a value obtained by subtracting the stress at the time of applying the pre-strain from the yield stress obtained by subjecting the test piece to a tensile test after the paint baking equivalent processing described later. And conventionally, the amount of BH was adjusted by changing the carbon (symbol: C) concentration, which is a chemical component of the steel sheet, and the Nb concentration that combines with carbon to produce carbide. That is, in order to obtain a larger amount of BH, the ratio of the Nb concentration to the carbon concentration in the steel is kept small (for example, the atomic ratio of Nb / C is set to less than 1), and carbon that does not generate carbide in the steel (so-called “ This is a technique in which a large amount of “free carbon” is left in the steel (for example, see Non-Patent Document 1).
Iron and steel, vol. 89 (2002) No. 11, page 109-111

上記した従来のBH量を調整する方法は、工業的にも簡単に実施できるが、極低炭素鋼(C<100ppm)を対象とすると、炭素濃度のばらつきが大きいので、Nb量を一定量添加しても前記Nb/C原子比のばらつきが大きく、必然的にBH量も大きくばらつくという問題があった。また、当該方法で、より大きいBH量を得るには、鋼中の炭素濃度に対するNb濃度の比率を小さく保ち(例えば、Nb/Cの原子比:0.7〜0.8)、鋼中のフリー炭素の濃農を高く保つ必要がある。そのため、溶鋼の精錬段階では、該溶鋼中の炭素濃度、Nb濃度をできるだけ狭い範囲に収まるように調整するが、その溶鋼の鋳造段階で、モールドパウダー等からの炭素供給による炭素ピックアップ、又はその後の熱間圧延段階の直前にスラブを再加熱時した際の浸炭等の影響によって、圧延後の鋼板中炭素濃度が変動し、その結果として、該鋼板のNb/C原子比が0.6〜1.0と大きくばらつき、BH量の変動幅も大きくなってしまう。   The conventional method for adjusting the amount of BH can be easily carried out industrially. However, when extremely low carbon steel (C <100 ppm) is targeted, the variation in carbon concentration is large, so a certain amount of Nb is added. Even so, there is a problem that the variation in the Nb / C atomic ratio is large, and the amount of BH inevitably varies greatly. In order to obtain a larger amount of BH by this method, the ratio of the Nb concentration to the carbon concentration in the steel is kept small (for example, the atomic ratio of Nb / C: 0.7 to 0.8). There is a need to keep free carbon rich farms high. Therefore, in the refining stage of the molten steel, the carbon concentration and Nb concentration in the molten steel are adjusted so as to be as narrow as possible. However, in the casting stage of the molten steel, the carbon pickup by the carbon supply from the mold powder or the like, The carbon concentration in the steel sheet after rolling varies due to the influence of carburization and the like when the slab is reheated immediately before the hot rolling stage, and as a result, the Nb / C atomic ratio of the steel sheet is 0.6 to 1. .0 greatly varies, and the fluctuation range of the BH amount also increases.

なお、鋼板のNb/C原子比は、その値が小さければ小さいほど、鋼板中でNbCとして存在しないフリーな炭素濃度が高いことから、より大きいBH量が得られるのである。   In addition, since the free carbon concentration which does not exist as NbC in a steel plate is so high that the Nb / C atomic ratio of a steel plate is small, the larger amount of BH is obtained.

しかしながら、鋼板のNb/C原子比が0.7未満となると、該鋼板をプレス加工した際にフリーの炭素が著しく多い部位が局部的に延びて、「ストレッチャー・ストレイン」と称される「しわ状の表面欠陥」の発生頻度が高くなるという別の問題が生じる。その為、対策として、上記従来の技術では、溶鋼の鋳造段階及び鋳片の熱間圧延段階での炭素濃度ピックアップを配慮し、溶鋼の取鍋精錬時に、Nb/C原子比の下限値を0.9程度に制限しなければならず、その結果、鋼板のBH量をあまり増大できないという問題もあった。   However, when the Nb / C atomic ratio of the steel sheet is less than 0.7, when the steel sheet is pressed, a portion where the amount of free carbon is remarkably increased locally extends, and is referred to as “stretcher strain”. Another problem arises that the frequency of occurrence of “wrinkled surface defects” increases. Therefore, as a countermeasure, in the above-described conventional technology, the carbon concentration pickup in the molten steel casting stage and the slab hot rolling stage is taken into consideration, and the lower limit of the Nb / C atomic ratio is set to 0 at the time of molten steel ladle refining. As a result, there is a problem that the amount of BH of the steel sheet cannot be increased so much.

本発明は、かかる事情に鑑み、Nb/C原子比の如何にかかわらず、従来よりBH量を大きくできるNbを含有する極低炭素鋼の焼付け硬化性調整方法を提供することを目的としている。   In view of such circumstances, an object of the present invention is to provide a bake hardenability adjusting method for ultra-low carbon steel containing Nb that can increase the amount of BH compared to the conventional Nb / C atomic ratio.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.

すなわち、本発明は、加熱帯及び冷却帯からなる竪型焼鈍炉、並びにめっき槽を備えた連続溶融亜鉛めっき鋼板の製造ラインに、Nbを含有する極低炭素鋼帯を通板し、溶融亜鉛めっきを施すに際し、前記Nbを含有する極低炭素鋼帯の冷却帯出側での温度を550℃以下にして、前記冷却帯内で該鋼帯が700〜550℃の範囲にある時の冷却速度を40℃/秒超えにすることを特徴とするNbを含有する極低炭素鋼の焼付け硬化性調整方法である。この場合、前記鋼帯のNb/C原子比を0.7〜1.0とするのが好ましい。また、前記鋼帯のNb/C原子比を1.0超えにすると共に、前記鋼帯の加熱帯出側での温度を855〜880℃に保持するのが良い。   That is, the present invention passes a very low carbon steel strip containing Nb through a vertical annealing furnace comprising a heating zone and a cooling zone, and a continuous hot dip galvanized steel plate provided with a plating tank, When performing the plating, the cooling rate when the temperature on the cooling zone exit side of the ultra-low carbon steel strip containing Nb is 550 ° C. or less and the steel strip is in the range of 700 to 550 ° C. in the cooling zone. Is a bake hardenability adjusting method for ultra-low carbon steel containing Nb, characterized in that it is over 40 ° C./second. In this case, the Nb / C atomic ratio of the steel strip is preferably 0.7 to 1.0. Moreover, it is good to make Nb / C atomic ratio of the said steel strip more than 1.0, and to hold | maintain the temperature by the side of the heating strip of the said steel strip at 855-880 degreeC.

また、本発明は、加熱帯及び冷却帯からなる竪型焼鈍炉、並びにめっき槽を備えた連続溶融亜鉛めっき鋼板の製造ラインに、Nbを含有する極低炭素鋼帯を通板し、溶融亜鉛めっきを施すに際し、前記鋼帯のNb/C原子比を0.7未満にすると共に、該鋼帯の冷却帯出側の温度を650〜680℃とすることを特徴とするNbを含有する極低炭素鋼の焼付け硬化性調整方法である。   In addition, the present invention passes a very low carbon steel strip containing Nb through a vertical annealing furnace composed of a heating zone and a cooling zone, and a continuous hot dip galvanized steel plate equipped with a plating tank. When plating, the Nb / C atomic ratio of the steel strip is less than 0.7, and the temperature on the cooling zone exit side of the steel strip is 650 to 680 ° C. This is a method for adjusting the bake hardenability of carbon steel.

さらに、上記の本発明では、前記鋼帯のめっき槽への浸入時温度を450〜480℃に保持するように、前記冷却帯の通過後に該鋼板を保温するのが好ましく、また、前記溶融亜鉛めっき鋼板をさらに加熱して合金化するのが一層良い。   Furthermore, in the present invention described above, it is preferable to keep the temperature of the steel sheet after passing through the cooling zone so that the temperature when the steel strip enters the plating tank is maintained at 450 to 480 ° C. It is better to further heat and alloy the plated steel sheet.

本発明によれば、極低炭素鋼板を素材に340MPa級の合金化溶融亜鉛めっき鋼板のBH量を従来の平均24MPaから35MPaまで増大することが可能となる。また、BH量のばらつき(1σで評価)を従来の6MPaから3MPaまで減少させることが可能となる。さらに、鋼板中のNb濃度に対して炭素濃度が高く、Nb/C原子比が0.7未満となった場合に散発していたストレッチャー・ストレイン欠陥の発生を抑止することもできた。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to increase the BH amount of a 340 MPa class alloyed hot-dip galvanized steel plate from a conventional average of 24 MPa to 35 MPa using a very low carbon steel plate as a raw material. In addition, it is possible to reduce the variation in the BH amount (evaluated by 1σ) from the conventional 6 MPa to 3 MPa. Furthermore, it was possible to suppress the occurrence of stretcher strain defects that were sporadic when the carbon concentration was higher than the Nb concentration in the steel sheet and the Nb / C atomic ratio was less than 0.7.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described based on the background of the invention.

まず、発明者は、Nb/C濃度及びフリー炭素濃度の他にも、鋼材中のNbC生成量に影響する因子があると考えた。そして、図3に示すような加熱帯5及び冷却帯6からなる竪型焼鈍炉、並びにめっき槽8を備えた連続溶融亜鉛めっき鋼板の製造ラインで溶融亜鉛めっき鋼板を連続的に製造する全工程を見直し、素材である鋼帯1(以下、単に鋼板1という)を溶融亜鉛浴のめっき槽8へ浸入させる前の焼鈍段階での加熱帯5出側の温度及び加熱帯5から冷却帯6出側までの該鋼帯1の冷却速度に着眼した。一般的に、NbCが析出する温度領域は550〜700℃とされているからである。   First, the inventor considered that in addition to the Nb / C concentration and free carbon concentration, there are factors that affect the amount of NbC produced in the steel. And all the processes which manufacture a hot-dip galvanized steel plate continuously in the manufacturing line of the continuous hot-dip galvanized steel plate provided with the vertical annealing furnace which consists of the heating zone 5 and the cooling zone 6 as shown in FIG. The steel strip 1 (hereinafter simply referred to as the “steel plate 1”) as a raw material is exposed to the heating zone 5 at the annealing stage before entering the plating bath 8 of the molten zinc bath, and the heating zone 5 exits the cooling zone 6. We focused on the cooling rate of the steel strip 1 to the side. This is because the temperature range in which NbC precipitates is generally 550 to 700 ° C.

そして、発明者は、この溶融亜鉛めっきする前の鋼板1の加熱帯5(例えば、ラジアント・チューブによる間接加熱方式で平均850℃に加熱する)から溶融亜鉛浴のめっき槽8に浸入させる前に冷却帯6(例えば、空冷方式で冷却する)で450〜480℃まで冷却する過程において、鋼板1が前記NbCの析出温度領域(550〜700℃で、以下、NbC析出温度領域という)を通過する時間を極力短くすることについて検討した。   And before making it infiltrate into the plating tank 8 of a hot dip galvanization from the heating zone 5 (for example, it heats to an average of 850 degreeC by the indirect heating system by a radiant tube) of the steel plate 1 before this hot dip galvanization. In the process of cooling to 450 to 480 ° C. in the cooling zone 6 (for example, cooling by air cooling), the steel plate 1 passes through the NbC precipitation temperature region (550 to 700 ° C., hereinafter referred to as the NbC precipitation temperature region). We studied how to shorten the time as much as possible.

その結果、具体的には、加熱帯から抜き出た鋼板を冷却帯にて冷却するに際し、図1のステップ2に示すように、該冷却帯出側での鋼帯の温度を従来の630℃から550℃にして、鋼板1の冷却速度を増大させたのである(なお、図1の破線は、従来法の結果であり、ステップ2は比較のために行った一例である)。これにより、鋼板がNbC析出温度領域を通過する際の冷却速度は、従来の35〜40℃/秒から40℃/秒超え、好ましくは50℃/秒以上に増大し、NbC析出温度領域の通過時間は、従来の11秒から5〜8秒にまで短縮することができ、且つ鋼板1の平均BH量は、平均値で従来の24MPaから35MPaへと増大することが可能となった。   As a result, specifically, when the steel sheet extracted from the heating zone is cooled in the cooling zone, the temperature of the steel strip on the cooling zone exit side is reduced from the conventional 630 ° C. as shown in Step 2 of FIG. The cooling rate of the steel sheet 1 was increased to 550 ° C. (Note that the broken line in FIG. 1 is the result of the conventional method, and step 2 is an example performed for comparison). Thereby, the cooling rate when the steel sheet passes through the NbC precipitation temperature region is increased from the conventional 35-40 ° C./second to 40 ° C./second, preferably 50 ° C./second or more, and passes through the NbC precipitation temperature region. The time can be shortened from the conventional 11 seconds to 5 to 8 seconds, and the average BH amount of the steel sheet 1 can be increased from the conventional 24 MPa to 35 MPa as an average value.

そこで、発明者は、引き続き詳細に検討を重ね、前記冷却帯出側での鋼板1の温度を550℃以下にすること、該鋼板1が700〜550℃の範囲にある時の前記鋼板1の冷却速度を50℃/秒以上にすることを満たせば、時効硬化で目的が達成できると確信し、これらを要件に本発明を完成させたのである。   Therefore, the inventor continues to study in detail, to set the temperature of the steel plate 1 on the cooling zone exit side to 550 ° C. or lower, and to cool the steel plate 1 when the steel plate 1 is in the range of 700 to 550 ° C. If it was satisfied that the speed was 50 ° C./second or more, the objective could be achieved by age hardening, and the present invention was completed based on these requirements.

なお、冷却帯の雰囲気温度を550℃以下とした理由は、550℃未満でNbCが析出しないことで、鋼板中にフリーのC(所謂「フリーC」)が多く残存するためである。また、鋼板1が700〜550℃の範囲にある時の前記鋼板の冷却速度を40℃/秒超えとしたのは、40℃/秒以下ではNbC析出温度域を通過する時間が長くなるので、NbCが多く析出することで、フリーCが減少し、BH量が低下するためである。   The reason why the ambient temperature in the cooling zone is set to 550 ° C. or lower is that NbC does not precipitate at less than 550 ° C., so that a large amount of free C (so-called “free C”) remains in the steel sheet. In addition, the steel plate 1 has a cooling rate exceeding 40 ° C./sec when the steel plate 1 is in the range of 700 to 550 ° C., because the time required to pass through the NbC precipitation temperature range becomes longer at 40 ° C./sec or less. This is because a large amount of NbC precipitates to reduce free C and decrease the amount of BH.

この場合、冷却帯出側での鋼板1の温度は、めっき槽8へ浸入前の鋼板温度の下限値によって制限されるが、十分なBH量を得る為には、冷却帯出側での鋼板温度を500℃以下にまで低下させ、その後の通過領域で鋼板の温度を一定に保ち、溶融めっき前の鋼板温度を目標とする450〜480℃に保つべく、保温機能を有るヒーターを設けても良い。   In this case, the temperature of the steel plate 1 on the cooling zone exit side is limited by the lower limit of the steel plate temperature before entering the plating tank 8, but in order to obtain a sufficient amount of BH, the steel plate temperature on the cooling zone exit side is A heater having a heat retaining function may be provided in order to lower the temperature to 500 ° C. or lower, keep the temperature of the steel plate constant in the subsequent passage region, and keep the steel plate temperature before hot dipping at 450 to 480 ° C. as a target.

次に、発明者は、上記したように、鋼板1の冷却速度を増加させて、該鋼板1が700〜550℃の範囲にある時間を5〜8秒に短縮すれば、鋼板のBH量を調整できるので、鋼板の化学組成に応じて冷却速度を増減するか、必要に応じて加熱炉の温度を増減れば、鋼板のBH量を調整できると考えた。そして、鋼板のNb/C原子比が0.7未満の範囲の場合には、冷却帯の雰囲気温度を600℃±30℃程度に保つと、フリー炭素の濃度の増大による「ストレッチャー・ストレイン」欠陥の発生が防止できることを見出し、このことも本発明に加えることにした。また、鋼板のNb/C原子比を0.7〜1.0とした場合には、前記した発明の効果が一層大きくなった。さらに、鋼板のNb/C原子比を1.0超えにした場合には、冷却帯出側の鋼板温度を低下するに加えて、加熱帯出側での鋼板温度を現状の850℃から855〜880℃まで増大させることも考えた。855〜880℃としたのは、855℃に昇温すると、鋼中のNbC溶解量が増加を開始するからであり、880℃超えではその効果が飽和し、それ以上の昇温が無駄になるからである。加えて、本発明では、めっき後の鋼板をさらに加熱して、めっき層の亜鉛を鉄と合金化するのが好ましい。   Next, as described above, the inventor increases the cooling rate of the steel plate 1 and shortens the time during which the steel plate 1 is in the range of 700 to 550 ° C. to 5 to 8 seconds. Since it can be adjusted, it was considered that the amount of BH of the steel sheet can be adjusted by increasing or decreasing the cooling rate according to the chemical composition of the steel sheet or by increasing or decreasing the temperature of the heating furnace as necessary. When the Nb / C atomic ratio of the steel sheet is less than 0.7, the “stretcher strain” can be achieved by increasing the concentration of free carbon if the ambient temperature in the cooling zone is kept at about 600 ° C. ± 30 ° C. It was found that the occurrence of defects could be prevented, and this was also added to the present invention. Moreover, when the Nb / C atomic ratio of the steel sheet was set to 0.7 to 1.0, the effect of the above-described invention was further increased. Furthermore, when the Nb / C atomic ratio of the steel sheet exceeds 1.0, in addition to lowering the steel plate temperature on the cooling zone side, the steel plate temperature on the heating zone side is changed from the current 850 ° C. to 855 to 880 ° C. It was also considered to increase it. The reason for setting the temperature to 855 to 880 ° C. is that when the temperature is raised to 855 ° C., the amount of NbC dissolved in the steel starts to increase. If the temperature exceeds 880 ° C., the effect is saturated, and further temperature rise is wasted. Because. In addition, in the present invention, it is preferable to further heat the plated steel sheet to alloy zinc of the plating layer with iron.

図3に示したような加熱帯5及び冷却帯6、並びにめっき槽8からなる竪型焼鈍炉を備えた連続溶融亜鉛めっき鋼板の製造ライン(合金化炉は図示せず)で、サイズが板厚:0.6〜1.0mmt、板幅:600〜2000mmの合金化溶融亜鉛めっき鋼板を製造した。素材は、熱間圧延を経た化学組成がC≦0.0050質量%、Si≦0.10質量%、Mn:0.05〜0.100質量%、P:0.020〜0.100質量%、S≦0.015質量%、Nb:0.005〜0.020質量%の極低炭素鋼板である。その際、操業は、本発明に係るNbを含有する極低炭素鋼の焼付け硬化性調整方法(4通り)と従来の調整方法を適用した場合の5通りで行った。なお、めっき及び合金化の条件は、通常の操業条件通りとした。操業結果を表1に示す。   3 is a continuous hot-dip galvanized steel plate production line (alloying furnace not shown) equipped with a vertical annealing furnace comprising a heating zone 5 and a cooling zone 6 and a plating tank 8 as shown in FIG. An alloyed hot-dip galvanized steel sheet having a thickness of 0.6 to 1.0 mmt and a sheet width of 600 to 2000 mm was produced. The material has a chemical composition after hot rolling C ≦ 0.0050 mass%, Si ≦ 0.10 mass%, Mn: 0.05 to 0.100 mass%, P: 0.020 to 0.100 mass% , S ≦ 0.015% by mass, Nb: 0.005 to 0.020% by mass. At that time, the operation was carried out in five ways in the case of applying the bake hardenability adjusting method (4 ways) of the ultra-low carbon steel containing Nb according to the present invention and the conventional adjusting method. The conditions for plating and alloying were the same as normal operating conditions. The operation results are shown in Table 1.

Figure 2007270181
Figure 2007270181

本発明の適用では、冷却帯の雰囲気温度をラジアント・チューブで間接冷却して、鋼板1の冷却帯6出側での温度を540〜550℃にし、従来法の適用では、640〜650℃とした。また、加熱帯5出側での鋼板1の温度は、本発明では、860〜870℃に、従来法では830〜850℃とした。   In the application of the present invention, the ambient temperature of the cooling zone is indirectly cooled with a radiant tube, and the temperature on the outlet side of the cooling zone 6 of the steel sheet 1 is set to 540 to 550 ° C., and in the application of the conventional method, it is 640 to 650 ° C. did. Moreover, the temperature of the steel plate 1 on the exit side of the heating zone 5 is set to 860 to 870 ° C. in the present invention, and is set to 830 to 850 ° C. in the conventional method.

その結果、本発明の適用では、表1の実施例1に示したように、鋼板1の冷却速度が37〜38℃/秒から56〜58℃/秒に増加した。これら操業の成績は、得られた合金化溶融亜鉛めっき鋼板のBH量及びその標準偏差で評価した。つまり、図2に示すように、従来法では、平均で24MPaであったBH量が、本発明の適用で35MPaに向上していた。また、BH量の標準偏差も、従来法の6MPaより3MPaに低減し、BH量のばらつきも低減していた。   As a result, in the application of the present invention, as shown in Example 1 of Table 1, the cooling rate of the steel sheet 1 increased from 37 to 38 ° C./second to 56 to 58 ° C./second. The results of these operations were evaluated by the BH amount of the obtained galvannealed steel sheet and its standard deviation. That is, as shown in FIG. 2, in the conventional method, the BH amount, which was 24 MPa on average, was improved to 35 MPa by applying the present invention. In addition, the standard deviation of the BH amount was also reduced from 6 MPa of the conventional method to 3 MPa, and the variation in the BH amount was also reduced.

表1には、実施例1の操業条件及びNb/C原子比の異なる材料で行った結果(実施例2)、及びNb/C原子比が1.3の場合で加熱帯温度を860〜870℃に増大した時の結果(実施例3)を示す。また、逆にNb/C原子比が0.7未満となった場合に、冷却帯温度を従来よりも高く(670〜680℃)した時の結果も示す(実施例4)。   Table 1 shows the results (Example 2) of the results of the operation of Example 1 and materials having different Nb / C atomic ratios, and the heating zone temperature of 860 to 870 when the Nb / C atomic ratio is 1.3. The result (Example 3) when increasing to ° C. is shown. In contrast, when the Nb / C atomic ratio is less than 0.7, the results when the cooling zone temperature is higher than before (670 to 680 ° C.) are also shown (Example 4).

これらの結果より、Nb/C原子比が0.9であり、冷却帯温度を550℃未満とした時のBH量が最も高い。また、Nb/C原子比が1.0を超える場合は、加熱帯温度を従来よりも高く、逆にNb/C原子比が0.7未満の場合は、冷却帯温度を増大させることで、BH量を工程法(従来)より高くすることが可能となる。   From these results, the Nb / C atomic ratio is 0.9, and the BH amount is the highest when the cooling zone temperature is less than 550 ° C. Further, when the Nb / C atomic ratio exceeds 1.0, the heating zone temperature is higher than the conventional one. Conversely, when the Nb / C atomic ratio is less than 0.7, the cooling zone temperature is increased. It becomes possible to make the amount of BH higher than the process method (conventional).

なお、BH量の測定は、塗料焼付け相当処理後の引張試験(JIS G 3135)で測定した降伏応力から予歪み付与時の応力を差し引いて求めた。また、塗料焼付け相当処理は、鋼板から得た試験片をオイル・バスに170℃×20minの条件で浸漬することである。   The amount of BH was determined by subtracting the stress at the time of applying prestrain from the yield stress measured in the tensile test (JIS G 3135) after the paint baking equivalent treatment. The paint baking equivalent treatment is to immerse a test piece obtained from a steel plate in an oil bath under conditions of 170 ° C. × 20 min.

焼鈍炉内における鋼板のヒートパターンを、本発明に係るNbを含有する極低炭素鋼の焼付け硬化性調整方法と従来の調整方法を適用した場合で比較した図である。It is the figure which compared the heat pattern of the steel plate in an annealing furnace by the case where the bake hardenability adjustment method of the ultra-low carbon steel containing Nb which concerns on this invention, and the conventional adjustment method are applied. 製造した合金化溶融亜鉛めっき鋼板のBH量の頻度分布を示す図であり、(a)は従来法により製造した場合を、(b)は本発明により製造した場合である。It is a figure which shows the frequency distribution of the BH amount of the manufactured galvannealed steel plate, (a) is a case where it manufactures by a conventional method, (b) is a case where it manufactures by this invention. 連続溶融亜鉛めっき鋼板の製造ラインを説明する図である。It is a figure explaining the production line of a continuous hot dip galvanized steel plate.

符号の説明Explanation of symbols

1 コイル状の鋼帯(鋼板)
2 溶接機
3 台車
4 フラックス処理装置
5 加熱帯
6 冷却帯
7 スナウト
8 めっき槽
1 Coiled steel strip (steel plate)
2 Welding machine 3 Carriage 4 Flux treatment device 5 Heating zone 6 Cooling zone 7 Snout 8 Plating tank

Claims (6)

加熱帯及び冷却帯からなる竪型焼鈍炉、並びにめっき槽を備えた連続溶融亜鉛めっき鋼板の製造ラインに、Nbを含有する極低炭素鋼帯を通板し、溶融亜鉛めっきを施すに際し、
前記Nbを含有する極低炭素鋼帯の冷却帯出側での温度を550℃以下にして、前記冷却帯内で該鋼帯が700〜550℃の範囲にある時の冷却速度を40℃/秒超えにすることを特徴とするNbを含有する極低炭素鋼の焼付け硬化性調整方法。
When passing a very low carbon steel strip containing Nb through a vertical annealing furnace consisting of a heating zone and a cooling zone, and a continuous hot dip galvanized steel plate equipped with a plating tank, and applying hot dip galvanization,
The temperature at the cooling zone outlet side of the ultra low carbon steel strip containing Nb is set to 550 ° C. or less, and the cooling rate when the steel strip is in the range of 700 to 550 ° C. within the cooling zone is 40 ° C./second The bake hardenability adjustment method of the ultra-low carbon steel containing Nb characterized by making it exceed.
前記鋼帯のNb/C原子比を0.7〜1.0とすることを特徴とする請求項1記載のNbを含有する極低炭素鋼の焼付け硬化性調整方法。   2. The bake hardenability adjusting method for ultra-low carbon steel containing Nb according to claim 1, wherein the Nb / C atomic ratio of the steel strip is 0.7 to 1.0. 前記鋼帯のNb/C原子比を1.0超えにすると共に、前記鋼帯の加熱帯出側での温度を855〜880℃に保持することを特徴とする請求項1又は2記載のNbを含有する極低炭素鋼の焼付け硬化性調整方法。   The Nb / C atomic ratio of the steel strip is made to exceed 1.0, and the temperature on the heating strip exit side of the steel strip is kept at 855 to 880 ° C. Method for adjusting bake hardenability of ultra-low carbon steel contained. 加熱帯及び冷却帯からなる竪型焼鈍炉、並びにめっき槽を備えた連続溶融亜鉛めっき鋼板の製造ラインに、Nbを含有する極低炭素鋼帯を通板し、溶融亜鉛めっきを施すに際し、
前記鋼帯のNb/C原子比を0.7未満にすると共に、該鋼帯の冷却帯出側の温度を650〜680℃とすることを特徴とするNbを含有する極低炭素鋼の焼付け硬化性調整方法。
When passing a very low carbon steel strip containing Nb through a vertical annealing furnace consisting of a heating zone and a cooling zone, and a continuous hot dip galvanized steel plate equipped with a plating tank, and applying hot dip galvanization,
Bake hardening of ultra low carbon steel containing Nb, characterized in that the Nb / C atomic ratio of the steel strip is less than 0.7, and the temperature on the cooling zone exit side of the steel strip is 650-680 ° C. Sex adjustment method.
前記鋼帯のめっき槽への浸入時温度を450〜480℃に保持するように、前記冷却帯の通過後に該鋼板を保温することを特徴とする請求項1〜4のいずれかに記載のNbを含有する極低炭素鋼の焼付け硬化性調整方法。   The Nb according to any one of claims 1 to 4, wherein the steel plate is kept warm after passing through the cooling zone so as to keep the temperature when the steel strip enters the plating tank at 450 to 480 ° C. For adjusting the bake hardenability of ultra-low carbon steel containing iron. 前記溶融亜鉛めっき鋼板をさらに加熱して合金化することを特徴とする請求項1〜5のいずれかに記載のNbを含有する極低炭素鋼の焼付け硬化性調整方法。   6. The bake hardenability adjusting method for ultra-low carbon steel containing Nb according to any one of claims 1 to 5, wherein the hot-dip galvanized steel sheet is further heated and alloyed.
JP2006094382A 2006-03-30 2006-03-30 Method for adjusting bake hardenability of ultra-low carbon steel containing Nb Expired - Fee Related JP4904887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094382A JP4904887B2 (en) 2006-03-30 2006-03-30 Method for adjusting bake hardenability of ultra-low carbon steel containing Nb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094382A JP4904887B2 (en) 2006-03-30 2006-03-30 Method for adjusting bake hardenability of ultra-low carbon steel containing Nb

Publications (2)

Publication Number Publication Date
JP2007270181A true JP2007270181A (en) 2007-10-18
JP4904887B2 JP4904887B2 (en) 2012-03-28

Family

ID=38673287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094382A Expired - Fee Related JP4904887B2 (en) 2006-03-30 2006-03-30 Method for adjusting bake hardenability of ultra-low carbon steel containing Nb

Country Status (1)

Country Link
JP (1) JP4904887B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854211A (en) * 2012-10-09 2013-01-02 南京钢铁股份有限公司 Method for measuring dissolving temperature of Nb (C,N) in low-carbon micro-alloyed steel by internal friction method
CN104630647A (en) * 2015-02-02 2015-05-20 大连理工大学 Preparation method of high-strength hot galvanizing Q&P steel
CN109283053A (en) * 2018-11-01 2019-01-29 唐山钢铁集团有限责任公司 The ultra-low carbon baking hardening timeliness evaluation method of steel
US11753709B2 (en) 2016-12-22 2023-09-12 Posco Co., Ltd Hot-dip galvanized steel material having excellent weldability and press workability and manufacturing method therefor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016668A1 (en) * 1991-03-15 1992-10-01 Nippon Steel Corporation High-strength, cold-rolled steel sheet excellent in formability, hot-dip zinc coated high-strength cold rolled steel sheet, and method of manufacturing said sheets
JPH059698A (en) * 1991-07-09 1993-01-19 Nippon Steel Corp Production of high-strength galvannealed steel sheet having excellent formability and painting baking hardenability
JPH05263186A (en) * 1992-03-23 1993-10-12 Nippon Steel Corp High strength cold rolled steel sheet and galvanized high strength cold rolled steel sheet good in formability, and their manufacture
JPH06116648A (en) * 1992-10-02 1994-04-26 Nippon Steel Corp Production of cold rolled steel sheet or hot dip galvanized steel sheet excellent in baking hardenability and non-aging characteristic
JPH07278770A (en) * 1994-04-08 1995-10-24 Nippon Steel Corp Production of galvannealed high strength cold rolled steel sheet for automobile use, excellent in formability, having baking finish hardenability, and reduced in fluctuation in baking finish hardenability
JPH07300623A (en) * 1994-05-02 1995-11-14 Kawasaki Steel Corp Production of sheet steel for working excellent in baking hardenability and aging resistance
JPH1096064A (en) * 1996-08-01 1998-04-14 Sumitomo Metal Ind Ltd Galvannealed steel sheet and its production
JPH10298662A (en) * 1997-04-18 1998-11-10 Nippon Steel Corp Production of cold rolled steel sheet and galvannealed steel sheet excellent in coating/baking hardenability and its production
JP2001342541A (en) * 2000-05-31 2001-12-14 Kawasaki Steel Corp Hot dip galvanized steel sheet with high tensile strength and its production
JP2002012920A (en) * 2000-04-28 2002-01-15 Sumitomo Metal Ind Ltd Method for producing thin steel sheet superior in cold aging resistance, workability, and hardenability by coating/baking
JP2003342681A (en) * 2002-03-20 2003-12-03 Jfe Steel Kk Dual-phase high-tensile cold rolled steel sheet excellent in deep drawability and strain age hardenability, galvannealed steel sheet, and their production methods

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016668A1 (en) * 1991-03-15 1992-10-01 Nippon Steel Corporation High-strength, cold-rolled steel sheet excellent in formability, hot-dip zinc coated high-strength cold rolled steel sheet, and method of manufacturing said sheets
JPH059698A (en) * 1991-07-09 1993-01-19 Nippon Steel Corp Production of high-strength galvannealed steel sheet having excellent formability and painting baking hardenability
JPH05263186A (en) * 1992-03-23 1993-10-12 Nippon Steel Corp High strength cold rolled steel sheet and galvanized high strength cold rolled steel sheet good in formability, and their manufacture
JPH06116648A (en) * 1992-10-02 1994-04-26 Nippon Steel Corp Production of cold rolled steel sheet or hot dip galvanized steel sheet excellent in baking hardenability and non-aging characteristic
JPH07278770A (en) * 1994-04-08 1995-10-24 Nippon Steel Corp Production of galvannealed high strength cold rolled steel sheet for automobile use, excellent in formability, having baking finish hardenability, and reduced in fluctuation in baking finish hardenability
JPH07300623A (en) * 1994-05-02 1995-11-14 Kawasaki Steel Corp Production of sheet steel for working excellent in baking hardenability and aging resistance
JPH1096064A (en) * 1996-08-01 1998-04-14 Sumitomo Metal Ind Ltd Galvannealed steel sheet and its production
JPH10298662A (en) * 1997-04-18 1998-11-10 Nippon Steel Corp Production of cold rolled steel sheet and galvannealed steel sheet excellent in coating/baking hardenability and its production
JP2002012920A (en) * 2000-04-28 2002-01-15 Sumitomo Metal Ind Ltd Method for producing thin steel sheet superior in cold aging resistance, workability, and hardenability by coating/baking
JP2001342541A (en) * 2000-05-31 2001-12-14 Kawasaki Steel Corp Hot dip galvanized steel sheet with high tensile strength and its production
JP2003342681A (en) * 2002-03-20 2003-12-03 Jfe Steel Kk Dual-phase high-tensile cold rolled steel sheet excellent in deep drawability and strain age hardenability, galvannealed steel sheet, and their production methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102854211A (en) * 2012-10-09 2013-01-02 南京钢铁股份有限公司 Method for measuring dissolving temperature of Nb (C,N) in low-carbon micro-alloyed steel by internal friction method
CN104630647A (en) * 2015-02-02 2015-05-20 大连理工大学 Preparation method of high-strength hot galvanizing Q&P steel
US11753709B2 (en) 2016-12-22 2023-09-12 Posco Co., Ltd Hot-dip galvanized steel material having excellent weldability and press workability and manufacturing method therefor
CN109283053A (en) * 2018-11-01 2019-01-29 唐山钢铁集团有限责任公司 The ultra-low carbon baking hardening timeliness evaluation method of steel

Also Published As

Publication number Publication date
JP4904887B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
KR101303337B1 (en) Method for hot dip coating a strip of heavy-duty steel
JP7095804B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
KR101940250B1 (en) Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating
CN1152970C (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
EP2184374B1 (en) High-strength hot-dip galvanized steel sheet and process for producing the same
KR101275839B1 (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
JP6172297B2 (en) Manufacturing method and manufacturing equipment for high strength hot dip galvanized steel sheet
JP5073870B2 (en) Strain-age-hardened steel sheet with excellent aging resistance after paint baking and method for producing the same
JP6123957B1 (en) High strength steel plate and manufacturing method thereof
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP2009531538A5 (en)
KR102135839B1 (en) Method for manufacturing steel sheet and continuous annealing device for steel sheet
JP6075516B1 (en) High strength steel plate and manufacturing method thereof
JP5811841B2 (en) Method for producing Si-containing high-strength galvannealed steel sheet
RU2766611C1 (en) Method of producing a steel strip with improved adhesion of hot-dipped metal coatings
WO2016024371A1 (en) Method for manufacturing high-strength steel sheet
JP4904887B2 (en) Method for adjusting bake hardenability of ultra-low carbon steel containing Nb
JP7258619B2 (en) Steel plate continuous annealing equipment and method for manufacturing annealed steel plate
JP2011241429A (en) Hot-dip galvanized steel sheet and method for producing the same
JP4924203B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP6123958B1 (en) High strength steel plate and manufacturing method thereof
JP6740973B2 (en) Method for manufacturing hot-dip galvanized steel sheet
KR20230024333A (en) Plated steel sheet for hot press forming and its manufacturing method
KR101103588B1 (en) Method for Manufacturing Hot Dip Plated Steel Sheet
JP5533000B2 (en) Method for producing galvannealed steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees