JP2001342541A - Hot dip galvanized steel sheet with high tensile strength and its production - Google Patents

Hot dip galvanized steel sheet with high tensile strength and its production

Info

Publication number
JP2001342541A
JP2001342541A JP2000162499A JP2000162499A JP2001342541A JP 2001342541 A JP2001342541 A JP 2001342541A JP 2000162499 A JP2000162499 A JP 2000162499A JP 2000162499 A JP2000162499 A JP 2000162499A JP 2001342541 A JP2001342541 A JP 2001342541A
Authority
JP
Japan
Prior art keywords
less
hot
rolling
steel sheet
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000162499A
Other languages
Japanese (ja)
Other versions
JP4362948B2 (en
Inventor
Tsutomu Kami
力 上
Akio Tosaka
章男 登坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000162499A priority Critical patent/JP4362948B2/en
Publication of JP2001342541A publication Critical patent/JP2001342541A/en
Application granted granted Critical
Publication of JP4362948B2 publication Critical patent/JP4362948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot dip galvanized steel sheet which has a high r-value and is excellent in strain age-hardening property satisfying ΔTS: 40 MPa or more and plating properties, and provide its production method. SOLUTION: A slub contains C: 0.008% or below, Al: 0.005-0.020%, N: 0.0050-0.0250%, and further, one or more kinds of Nb, Ti and V, the contents of Si, Mn, P and S are also arranged, and N/(Al+Nb+Ti+V+B) satisfies 0.3 or more. The above slub is subjected, by turns, to rough rolling, finishing rolling at FDT800 deg.C or above, hot rolling process for rapidly cooling within 0.5s and taking up at 650 deg.C or below after finish rolling, treating process for forming internal oxide layer which is formed on hot rolling sheet, cold rolling process, annealing process for rapidly cooling to 550 deg.C or below after continuous annealing, plate treating process for forming hot dip galvanized layer, and alloying treating process, further.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車車体用とし
て好適な高張力溶融亜鉛めっき鋼板およびその製造方法
に係り、特に連続溶融亜鉛めっきラインで製造される延
性、めっき性、歪時効硬化特性の良好な高張力溶融亜鉛
めっき鋼板およびその製造方法に関する。なお、本発明
における鋼板は、鋼板および鋼帯を含むものとする。ま
た、本発明の溶融亜鉛めっき鋼板は、建設用、機械構造
用の構造部材としても適用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength hot-dip galvanized steel sheet suitable for use in an automobile body and a method for producing the same, and more particularly to a method of producing ductile, plated, and strain-age hardening characteristics manufactured by a continuous hot-dip galvanizing line. The present invention relates to a good high-strength hot-dip galvanized steel sheet and a method for producing the same. The steel sheet in the present invention includes a steel sheet and a steel strip. Further, the hot-dip galvanized steel sheet of the present invention can be applied as a structural member for construction and mechanical structures.

【0002】また、本発明でいう「歪時効硬化特性に優
れる」とは、引張歪5%の予変形後、170 ℃の温度で20
min 保持する条件で時効処理したとき、この時効処理前
後の変形応力増加量(BH量と記す;BH量=(時効処
理後の降伏応力)−(時効処理前の予変形応力))が80
MPa 以上であり、かつ歪時効処理( 前記予変形+前記時
効処理)前後の引張強さ増加量(ΔTSと記す;ΔTS
=(時効処理後の引張強さ)−(予変形前の引張強
さ))が40MPa 以上であることを意味する。
In the present invention, "excellent in strain age hardening characteristics" means that after pre-deformation with a tensile strain of 5%, a temperature of 170.degree.
When the aging treatment is performed under the condition of keeping the min, the increase in deformation stress before and after the aging treatment (hereinafter referred to as BH amount; BH amount = (yield stress after aging treatment) − (pre-deformation stress before aging treatment)) is 80.
MPa or more, and the amount of increase in tensile strength before and after the strain aging treatment (pre-deformation + aging treatment) (denoted as ΔTS; ΔTS
= (Tensile strength after aging treatment)-(tensile strength before pre-deformation)) is 40 MPa or more.

【0003】[0003]

【従来の技術】近年、地球環境の保全という観点から、
自動車の燃費改善が要求されている。さらに加えて、衝
突時に乗員を保護するため、自動車車体の安全性向上も
要求され、自動車車体の軽量化および自動車車体の強化
が積極的に進められている。自動車車体の軽量化と強化
を同時に満足させるには、部品素材を高強度化すること
が効果的であると言われており、最近では自動車部品に
高張力鋼板が積極的に使用される傾向となっている。
2. Description of the Related Art In recent years, from the viewpoint of preserving the global environment,
There is a demand for improved fuel efficiency of automobiles. In addition, in order to protect occupants in the event of a collision, it is also required to improve the safety of the vehicle body, and weight reduction of the vehicle body and reinforcement of the vehicle body have been actively promoted. It is said that increasing the strength of component materials is effective in simultaneously satisfying both the weight reduction and strengthening of automobile bodies. Recently, high-tensile steel sheets have been actively used in automobile parts. Has become.

【0004】鋼板を素材とする自動車部品の多くがプレ
ス加工によって成形されるため、自動車部品用鋼板には
優れたプレス成形性が要求される。優れたプレス成形性
を実現するには、第一義的には高い延性を確保すること
が肝要である。しかし、高張力鋼を使用すると、強度が
高いことから、形状凍結性が劣化する、延性が不足し成
形時に割れとかネッキングといった不具合が発生する、
などの問題がある。
[0004] Since many automotive parts made of steel sheets are formed by press working, steel sheets for automotive parts are required to have excellent press formability. In order to realize excellent press formability, it is essential to secure high ductility in the first place. However, when high-tensile steel is used, since the strength is high, the shape freezing property deteriorates, ductility is insufficient, and problems such as cracking and necking occur during molding,
There is such a problem.

【0005】これを打開するための手法として、例えば
外板パネル用の冷延鋼板では、極低炭素鋼を素材とし、
最終的に固溶状態で残存するC量を適正範囲に制御し
た、塗装焼付硬化型鋼板が知られている。この種の鋼板
は、プレス成形時には軟質に保たれ、形状凍結性、延性
を確保し、プレス成形後に行われる、170 ℃×20min 程
度の塗装焼付工程で起こる歪時効硬化現象を利用した降
伏応力の上昇を得て、耐デント性を確保しようとするも
のである。この種の鋼板では、プレス成形時にはCが鋼
中に固溶して軟質であり、一方、プレス成形後には、塗
装焼付工程で、プレス成形時に導入された転位に固溶C
が固着して、降伏応力が上昇する。
As a method for overcoming this problem, for example, in a cold rolled steel sheet for an outer panel, a very low carbon steel is used as a material.
There is known a paint bake hardening type steel sheet in which the amount of C finally remaining in a solid solution state is controlled within an appropriate range. This type of steel sheet is kept soft during press forming, secures shape freezing and ductility, and has a yield stress that utilizes the strain aging hardening phenomenon that occurs in the paint baking process at 170 ° C × 20 min after press forming. The aim is to secure the dent resistance by obtaining a rise. In this type of steel sheet, C is dissolved in the steel during press forming and is soft. On the other hand, after press forming, the solid solution C
Is fixed, and the yield stress increases.

【0006】また、例えば特公昭61-45689号公報には、
Ti、Nbの複合添加により、特開平5-25549 号公報には、
W、Cr、Moの単独または複合添加により、塗装焼付硬化
性を向上させた鋼板がそれぞれ開示されている。しかし
ながら、特公昭61-45689号公報、特開平5-25549 号公報
に記載された鋼板では、鋼中の固溶C、固溶Nを利用し
ているため、プレス成形後の塗装焼付処理により降伏応
力は上昇するが、引張強さまでも上昇することはでき
ず、強度部材に適用したときに、プレス成形後に耐衝撃
特性の向上が期待できない。
[0006] For example, Japanese Patent Publication No. 61-45689 discloses
Due to the complex addition of Ti and Nb, JP-A-5-25549 discloses that
Disclosed are steel sheets each having improved paint bake hardenability by adding W, Cr, and Mo individually or in combination. However, since the steel sheets described in JP-B-61-45689 and JP-A-5-25549 utilize solid solution C and solid solution N in the steel, the steel sheet yields by paint baking after press forming. Although the stress rises, it cannot rise even with tensile strength, and when applied to a strength member, improvement in impact resistance after press molding cannot be expected.

【0007】部品の軽量化には、単にプレス成形後の塗
装焼付処理による歪時効により降伏応力のみ上昇するの
ではなく、さらに変形が進んだときの強度特性の上昇が
必要である。言い換えれば、歪時効後の引張強さの上昇
が望まれている。プレス成形後に熱処理を施し、降伏応
力のみならず引張強さをも上昇させようとする鋼板が、
いくつか提案されている。
In order to reduce the weight of parts, it is necessary to increase not only the yield stress due to strain aging due to paint baking treatment after press molding, but also to increase the strength characteristics when the deformation is further advanced. In other words, an increase in tensile strength after strain aging is desired. A steel sheet that is subjected to heat treatment after press forming to increase not only the yield stress but also the tensile strength,
Some have been proposed.

【0008】例えば、特公平8-23048 号公報には、C:
0.02〜0.13%、Si:2.0 %以下、Mn:0.6 〜2.5 %、so
l.Al:0.10%以下、N:0.0080〜0.0250%を含む鋼を、
1100℃以上に再加熱し、850 〜950 ℃で仕上圧延を終了
する熱間圧延を施し、ついで15℃/s以上の冷却速度で15
0 ℃未満の温度まで冷却し巻取り、フェライトとマルテ
ンサイトを主体とする複合組織とする、熱延鋼板の製造
方法が提案されている。しかしながら、特公平8-23048
号公報に記載された技術で製造された鋼板では、歪時効
硬化により降伏応力とともに引張強さが増加するもの
の、150 ℃未満という極めて低い巻取温度で巻き取るた
め、機械的特性の変動が大きいという問題があった。ま
た、プレス成形−塗装焼付処理後の降伏応力の増加量の
ばらつきが大きく、さらに、穴拡げ率(λ)が低く、伸
びフランジ加工性が低下しプレス成形性が不足するとい
う問題もあった。
For example, Japanese Patent Publication No. 8-23048 discloses C:
0.02-0.13%, Si: 2.0% or less, Mn: 0.6-2.5%, so
l. Steel containing 0.10% or less and N: 0.0080-0.0250%
Reheat to 1100 ° C or higher, perform hot rolling to finish finish rolling at 850 to 950 ° C, and then cool at a cooling rate of 15 ° C / s or more.
There has been proposed a method for producing a hot-rolled steel sheet, which is cooled to a temperature of less than 0 ° C. and wound to form a composite structure mainly composed of ferrite and martensite. However, Japanese Patent Publication No. 8-23048
Although the tensile strength increases with the yield stress due to strain age hardening in the steel sheet manufactured by the technology described in the above-mentioned publication, since the coil is wound at an extremely low winding temperature of less than 150 ° C., there is a large variation in mechanical properties. There was a problem. In addition, there is a problem in that the variation in the amount of increase in the yield stress after the press forming-painting baking process is large, the hole expansion ratio (λ) is low, the stretch flange workability is reduced, and the press formability is insufficient.

【0009】また、特開平10-183301 号公報には、C:
0.01〜0.12%、N:0.0001〜0.01%に制限し、さらに平
均結晶粒径を8μm 以下に調整することにより、80MPa
以上という高いBH量と、45MPa 以下という低いAI値
とを有する熱延鋼板が提案されている。しかしながら、
特開平10-183301 号公報に記載された鋼板は、仕上圧延
後のオーステナイト−フェライト変態によりフェライト
の集合組織がランダム化するため、高いr値を得ること
が困難となり、十分な深絞り性を有しているとは言いが
たく、プレス成形性が低下するという問題があった。
Japanese Patent Application Laid-Open No. 10-183301 discloses that C:
By limiting to 0.01 to 0.12% and N: 0.0001 to 0.01%, and further adjusting the average crystal grain size to 8 μm or less, 80 MPa
A hot-rolled steel sheet having a high BH amount as described above and an AI value as low as 45 MPa or less has been proposed. However,
In the steel sheet described in JP-A-10-183301, since the texture of ferrite is randomized by austenite-ferrite transformation after finish rolling, it is difficult to obtain a high r value, and the steel sheet has sufficient deep drawability. However, there is a problem that press formability is reduced.

【0010】また、特公平8-23048 号公報、特開平10-1
83301 号公報に記載された熱延鋼板を出発材として、冷
間圧延および再結晶焼鈍を施しても、必ずしも熱延鋼板
と同じプレス成形性や歪時効硬化特性が得られるとは限
らない。これは、冷間圧延や、再結晶焼鈍により、微視
組織が熱延状態から変化するうえ、冷間圧延により歪が
蓄積し、再結晶焼鈍で炭化物、窒化物等の析出物の形成
が容易となり、固溶C、固溶N量が大きく変化するから
である。
[0010] Also, Japanese Patent Publication No. Hei 8-23048,
Even if cold rolling and recrystallization annealing are performed using the hot-rolled steel sheet described in JP 83301 as a starting material, the same press formability and strain age hardening characteristics as those of a hot-rolled steel sheet are not necessarily obtained. This is because the microstructure changes from the hot-rolled state by cold rolling or recrystallization annealing, and strain is accumulated by cold rolling, and precipitates such as carbides and nitrides are easily formed by recrystallization annealing. This is because the amounts of solid solution C and solid solution N greatly change.

【0011】一方、最近では、耐食性の向上と乗員の安
全性向上の観点から、プレス成形時には軟質で加工性に
優れ、加工後に塗装焼付処理等の熱処理により高強度と
なり部品強度を高くできる、加工性と耐衝撃特性がとも
に改善された溶融亜鉛めっき鋼板が要望されている。こ
のような要望に対し、例えば、特開平10-310824 号公
報、特開平10-310847号公報には、C:0.01〜0.08%、S
i:0.005 〜1.0 %、Mn:0.01〜3.0 %、Al:0.001 〜
0.1 %、N:0.0002〜0.01%を含み、さらにW、Cr、Mo
の1種または2種以上を合計量が0.05〜3.0 %含有し、
あるいはさらにTi、Nb、Vの1種または2種以上を含有
し、組織がフェライトあるいはフェライトを主体とする
成形後強度上昇熱処理性能を有する合金化溶融亜鉛めっ
き鋼板およびその製造方法が開示されている。ここでい
う、成形後強度上昇熱処理性能とは、2%以上の歪が加
わる成形加工後、200 〜450 ℃で加熱する熱処理を施し
て、熱処理前の引張強さに比べ、熱処理後の引張強さが
増加する性能をいう。
On the other hand, recently, from the viewpoint of improving corrosion resistance and occupant safety, it is soft and excellent in workability at the time of press forming, and can be made high in strength by heat treatment such as paint baking after working to increase the part strength. There is a demand for a hot-dip galvanized steel sheet having both improved properties and improved impact resistance. In response to such demands, for example, JP-A-10-310824 and JP-A-10-310847 disclose that C: 0.01 to 0.08%,
i: 0.005 to 1.0%, Mn: 0.01 to 3.0%, Al: 0.001 to
0.1%, N: 0.0002-0.01%, W, Cr, Mo
Contains a total of 0.05 to 3.0% of one or more of
Alternatively, there is disclosed an alloyed hot-dip galvanized steel sheet containing one or more of Ti, Nb, and V, and having a post-forming strength increasing heat treatment performance whose structure is mainly composed of ferrite or ferrite, and a method for producing the same. . As used herein, the post-molding strength increase heat treatment performance refers to the tensile strength after heat treatment, which is performed after heat treatment at 200 to 450 ° C. Is the performance that increases.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、特開平
10-310824 号公報、特開平10-310847 号公報に記載され
た技術で製造された鋼板では、塗装焼付け処理を従来
(170 ℃)より高い200 〜450 ℃という温度で行う必要
があり、部品製造の生産性が低下し経済的に不利となる
という問題があった。
SUMMARY OF THE INVENTION
In steel plates manufactured by the techniques described in Japanese Patent Application Laid-Open Nos. 10-310824 and 10-310847, it is necessary to perform the coating baking process at a temperature of 200 to 450 ° C., which is higher than the conventional (170 ° C.). However, there was a problem that productivity of the product was reduced and it became economically disadvantageous.

【0013】本発明は、上記した従来技術の問題を解決
し、延性と、高いr値とを有しプレス成形性に優れ、さ
らに歪時効硬化特性に優れ、部品成形後の耐衝撃特性に
優れる機械的特性を有するとともに、めっき性に優れた
溶融亜鉛めっき鋼板あるいは合金化溶融亜鉛めっき鋼板
およびそれらめっき鋼板を、安定して製造できる方法を
提案することを目的とする。なお、本発明のめっき鋼板
の歪時効硬化特性は、BH量:80MPa 以上およびΔT
S:40MPa 以上を目標とする。
The present invention solves the above-mentioned problems of the prior art, has excellent ductility and a high r value, is excellent in press moldability, is excellent in strain aging hardening characteristics, and is excellent in impact resistance characteristics after parts are formed. It is an object of the present invention to propose a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet having mechanical properties and excellent plating properties, and a method for stably producing such a galvanized steel sheet. The strain age hardening characteristics of the plated steel sheet of the present invention are as follows: BH amount: 80 MPa or more and ΔT
S: The target is 40MPa or more.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記した
課題を達成するため、機械的特性とめっき性の改善につ
いて鋭意研究した。その結果、従来、高加工性を要求さ
れる分野では積極的に利用されなかったNを強化元素と
して、この強化元素の作用により発現する大きな歪時効
硬化現象を有利に活用することにより、プレス成形性の
向上とプレス成形後の塗装焼付処理による高強度化とを
容易に両立させることができるという知見を得た。
Means for Solving the Problems In order to achieve the above objects, the present inventors have made intensive studies on improvement of mechanical properties and plating properties. As a result, N is used as a strengthening element, which has not been actively used in the field where high workability is conventionally required, and the large strain age hardening phenomenon developed by the action of the strengthening element is advantageously used to perform press forming. It has been found that it is possible to easily achieve both the improvement of the properties and the enhancement of the strength by the coating baking treatment after press molding.

【0015】さらに、本発明者らは、Nによる歪時効硬
化現象を有利に活用するためには、Nによる歪時効硬化
現象を自動車の塗装焼付け条件、あるいはさらに積極的
に成形後の熱処理条件と有利に結合させる必要があり、
そのために、熱延条件や、冷延焼鈍条件、溶融亜鉛めっ
き処理前の冷却条件等を適正化して、鋼板の微視組織と
固溶N量とをある範囲に制御することが有効であること
を見いだした。また、Nによる歪時効硬化現象を安定し
て発現させるためには、組成の面で、特にAl含有量をN
含有量に応じて制御することが重要であることも見いだ
した。また、本発明者らは、鋼板の組織を平均結晶粒径
20μm 以下のフェライト相とすることにより、従来問題
であった室温時効劣化の問題もなく、Nを充分に活用で
きることを見い出した。さらに、Nを強化元素とするこ
とにより、r値の低下は少なく、平均r値 1.5以上の良
好な加工性を確保できることを知見した。
Further, the present inventors, in order to advantageously utilize the strain age hardening phenomenon due to N, use the strain age hardening phenomenon due to N under the conditions of baking paint for automobiles or more aggressively with the heat treatment conditions after molding. Must be combined advantageously
Therefore, it is effective to control the microstructure of the steel sheet and the amount of solute N within a certain range by optimizing hot rolling conditions, cold rolling annealing conditions, cooling conditions before hot-dip galvanizing, and the like. Was found. Further, in order to stably develop the strain age hardening phenomenon due to N, in terms of composition, particularly, the Al content is set to N.
It was also found that it was important to control according to the content. In addition, the present inventors set the structure of the steel sheet to an average crystal grain size.
By using a ferrite phase of 20 μm or less, it has been found that N can be fully utilized without the conventional problem of deterioration due to aging at room temperature. Furthermore, it has been found that by using N as a strengthening element, a decrease in the r value is small and good workability with an average r value of 1.5 or more can be ensured.

【0016】また、フェライトの平均結晶粒径を微細と
するために、Nbを必須含有とする組成とし、さらに低温
域での熱間圧延を施すことが好ましいことを見いだし
た。また、本発明者らは、MnあるいはSi、P等の固溶強
化元素の増量に伴うめっき性の低下は、溶融亜鉛めっき
前の鋼板表層に内部酸化層を形成することにより改善さ
れることを見いだした。
It has also been found that in order to make the average crystal grain size of ferrite fine, it is preferable to make the composition containing Nb as an essential component and to perform hot rolling in a low temperature range. In addition, the present inventors have found that a decrease in plating property due to an increase in the amount of solid solution strengthening elements such as Mn, Si, and P is improved by forming an internal oxide layer on the surface layer of a steel sheet before hot-dip galvanizing. I found it.

【0017】本発明は、上記した知見に基づいて、さら
に検討を加え完成されたものである。すなわち、第1の
本発明は、鋼板表面に溶融亜鉛めっき層または合金化溶
融亜鉛めっき層を有する溶融亜鉛めっき鋼板であって、
前記鋼板と前記溶融亜鉛めっき層または前記合金化溶融
亜鉛めっき層との界面の地鉄側に内部酸化物を有し、さ
らに、前記鋼板が、質量%で、C:0.008 %以下、Si:
1.0 %以下、Mn:1.0%超2.0 %以下、P:0.1 %以
下、S:0.01%以下、Al:0.005 〜0.020 %、N:0.00
50〜0.0250%を含み、さらにNb:0.005 〜0.O45 %、T
i:0.005 〜0.070%、V:0.005 〜0.10%のうちから選
ばれた1種または2種以上を含有し、かつ次(1)式 N/(Al+Nb+Ti+V)≧0.3 ……(1) (ここで、N、Al、Nb、Ti、V:各元素含有量(質量
%))を満足して、固溶状態のNを0.0015%以上含有
し、残部Feおよび不可避的不純物からなる組成と、平均
結晶粒径20μm 以下のフェライトを有する組織とするこ
とを特徴とする引張強さ440MPa以上で歪時効硬化特性お
よび加工性に優れた高張力溶融亜鉛めっき鋼板であり、
また、第1の本発明では、前記組成に加えてさらに、質
量%で、次A群およびB群 A群:Mo:1.0 %以下、Ni:1.5 %以下、Cu:1.5 %以
下のうちの1種または2種以上 B群:B:0.01%以下 のうちの1群または2群を含有し、かつ前記(1)式に
代えて、次(2)式 N/(Al+Nb+Ti+V+B)≧0.3 ……(2) (ここで、N、Al、Nb、Ti、V、B:各元素含有量(質
量%))を満足させてもよい。
The present invention has been completed by further study based on the above findings. That is, the first present invention is a hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on a steel sheet surface,
The steel sheet has an internal oxide on the ground iron side at the interface between the steel sheet and the hot-dip galvanized layer or the alloyed hot-dip galvanized layer, and the steel sheet has a C content of 0.008% or less in mass%,
1.0% or less, Mn: more than 1.0%, 2.0% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.005 to 0.020%, N: 0.00
50-0.0250%, Nb: 0.005-0.0045%, T
i: 0.005 to 0.070%, V: one or more selected from 0.005 to 0.10%, and the following formula (1): N / (Al + Nb + Ti + V) ≧ 0.3 (1) , N, Al, Nb, Ti, V: content of each element (% by mass)), containing 0.0015% or more of N in a solid solution state, the composition comprising the balance of Fe and unavoidable impurities, and the average crystal. It is a high tensile galvanized steel sheet excellent in strain age hardening characteristics and workability with a tensile strength of 440 MPa or more, characterized by having a structure having ferrite with a particle size of 20 μm or less,
In the first aspect of the present invention, in addition to the above composition, the following group A and group B: group A: Mo: 1.0% or less, Ni: 1.5% or less, Cu: 1.5% or less Species or two or more B group: B: 0.01% or less. One or two groups are contained, and the following equation (2) is used instead of the above equation (1). N / (Al + Nb + Ti + V + B) ≧ 0.3 (0.3) 2) (Here, N, Al, Nb, Ti, V, B: content of each element (% by mass)) may be satisfied.

【0018】また、第2の本発明は、質量%で、C:0.
008 %以下、Si:1.0 %以下、Mn:1.0 %超2.0 %以
下、P:0.1 %以下、S:0.01%以下、Al:0.005 〜0.
020 %、N:0.0050〜0.0250%を含み、さらにNb:0.00
5 〜0.O45 %、Ti:0.005 〜0.070 %、V:0.005 〜0.
10%のうちから選ばれた1種または2種以上を含有し、
あるいはさらに次A群およB群 A群:Mo:1.0 %以下、Ni:1.5 %以下、Cu:1.5 %以
下 B群:B:0.01%以下 のうちの1群または2群を含有し、かつ次(2)式N/
(Al+Nb+Ti+V+B)≧0.3 ……(2) (ここで、N、Al、Nb、Ti、V、B:各元素含有量(質
量%)) を満足する組成の鋼スラブに、スラブ加熱温度:1000℃
以上として粗圧延してシートバーとし、該シートバーに
仕上圧延出側温度を800 ℃以上とする仕上圧延を施し熱
延板としたのち、前記仕上圧延終了後、0.5 s以内に冷
却を開始し、平均冷却速度40℃/s以上で急冷し、巻取
温度:650 ℃以下で巻き取る熱延工程と、ついで該熱延
板に内部酸化物層を形成する内部酸化層形成処理工程
と、前記内部酸化層形成処理工程を経た熱延板を酸洗し
たのち、冷間圧延し冷延板とする冷延工程と、前記冷延
板に、再結晶温度以上900 ℃以下の温度で10〜120 s間
保持する連続焼鈍を行ったのち、550 ℃以下までを平均
冷却速度10〜300 ℃/sで冷却する焼鈍工程と、該焼鈍
工程を経た冷延板に溶融亜鉛めっき処理を施し鋼板表面
に溶融亜鉛めっき層を形成するめっき処理工程と、を順
次施すことを特徴とする引張強さ440MPa以上で歪時効特
性および加工性に優れた高張力溶融亜鉛めっき鋼板の製
造方法である。
Further, the present invention according to the second invention is characterized in that C: 0.
008% or less, Si: 1.0% or less, Mn: more than 1.0% 2.0% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.005-0.
020%, N: 0.0050-0.0250%, Nb: 0.00
5 to 0.45%, Ti: 0.005 to 0.070%, V: 0.005 to 0.
Contains one or more selected from 10%,
Alternatively, the following groups A and B: Group A: Mo: 1.0% or less, Ni: 1.5% or less, Cu: 1.5% or less Group B: B: 0.01% or less The following equation (2) N /
(Al + Nb + Ti + V + B) ≧ 0.3 (2) (where N, Al, Nb, Ti, V, and B: content of each element (% by mass)) A steel slab having a composition satisfying the following conditions is used.
As described above, the sheet bar is roughly rolled to form a sheet bar. The sheet bar is subjected to finish rolling at a finish-rolling exit temperature of 800 ° C. or more to form a hot-rolled sheet.After the finish rolling, cooling is started within 0.5 s. A hot rolling step of rapidly cooling at an average cooling rate of 40 ° C./s or higher and winding at a winding temperature of 650 ° C. or lower; an internal oxide layer forming step of forming an internal oxide layer on the hot rolled sheet; After pickling the hot-rolled sheet after the internal oxide layer forming step, the cold-rolling step is performed by cold rolling to form a cold-rolled sheet, and the cold-rolled sheet is subjected to 10 to 120 After performing continuous annealing for holding for s, the steel sheet is subjected to an annealing step of cooling to 550 ° C. or lower at an average cooling rate of 10 to 300 ° C./s, and a hot-dip galvanizing process is applied to the cold-rolled sheet after the annealing step to form a steel sheet surface. And a plating step of forming a hot-dip galvanized layer. This is a method for producing a high-strength hot-dip galvanized steel sheet excellent in strain aging characteristics and workability at 440 MPa or more.

【0019】さらに、第3の本発明は、質量%で、C:
0.008 %以下、Si:1.0 %以下、Mn:1.0 %超2.0 %以
下、P:0.1 %以下、S:0.01%以下、Al:0.005 〜0.
020%、N:0.0050〜0.0250%を含み、さらにNb:0.005
〜0.O45 %、Ti:0.005 〜0.070 %、V:0.005 〜0.1
0%のうちから選ばれた1種または2種以上を含有し、
あるいはさらに次A群およB群 A群:Mo:1.0 %以下、Ni:1.5 %以下、Cu:1.5 %以
下 B群:B:0.01%以下 のうちの1群または2群を含有し、かつ次(2)式 N/(Al+Nb+Ti+V+B)≧0.3 ……(2) (ここで、N、Al、Nb、Ti、V、B:各元素含有量(質
量%))を満足する組成の鋼スラブに、スラブ加熱温
度:1000℃以上として粗圧延してシートバーとし、該シ
ートバーに仕上圧延出側温度を800 ℃以上とする仕上圧
延を施し熱延板としたのち、前記仕上圧延終了後、0.5
s以内に冷却を開始し、平均冷却速度40℃/s以上で急
冷し、巻取温度:650 ℃以下で巻き取る熱延工程と、つ
いで該熱延板を酸洗したのち、冷間圧延し冷延板とする
冷延工程と、該冷延板に内部酸化層を形成する内部酸化
層形成処理工程と、該内部酸化層形成処理工程を経た冷
延板に酸洗を施し、ついで、再結晶温度以上900 ℃以下
の温度で10〜120 s間保持する連続焼鈍を行ったのち、
550 ℃以下までを平均冷却速度10〜300℃/sで冷却す
る焼鈍工程と、該焼鈍工程を経た冷延板に溶融亜鉛めっ
き処理を施し鋼板表面に溶融亜鉛めっき層を形成するめ
っき処理工程と、を順次施すことを特徴とする引張強さ
440MPa以上で歪時効特性および加工性に優れた高張力溶
融亜鉛めっき鋼板の製造方法である。第2、第3の本発
明において、前記めっき処理工程に続いて、さらに溶融
亜鉛めっき層の合金化を行う合金化処理工程を施しても
よく、また、第2、第3の本発明においては、前記合金
化処理工程後300 ℃までの平均冷却速度を、5〜25℃/
sとするのが好ましい。また、第2、第3の本発明にお
いては、前記熱延工程が、スラブ加熱温度:1000℃以上
として、1000℃〜Ar3変態点の温度域で粗圧延を終了し
てシートバーとし、該シートバーにAr3変態点未満600
℃以上の温度域で潤滑を施しつつ、圧下率:80%以上の
仕上圧延を施し熱延板としたのち、巻き取る熱延工程で
あってもよい。
Further, the present invention according to a third aspect of the present invention provides,
0.008% or less, Si: 1.0% or less, Mn: more than 1.0% 2.0% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.005-0.
020%, N: 0.0050-0.0250%, Nb: 0.005
~ 0.045%, Ti: 0.005 ~ 0.070%, V: 0.005 ~ 0.1
Contains one or more selected from 0%,
Alternatively, the following groups A and B: Group A: Mo: 1.0% or less, Ni: 1.5% or less, Cu: 1.5% or less Group B: B: 0.01% or less Formula (2) N / (Al + Nb + Ti + V + B) ≧ 0.3 (2) (where N, Al, Nb, Ti, V, and B: a steel slab having a composition satisfying the content of each element (% by mass)). A slab heating temperature: at least 1000 ° C., rough rolling is performed to form a sheet bar, and the sheet bar is subjected to finish rolling at a finish rolling exit side temperature of 800 ° C. or more to form a hot rolled sheet.
Cooling is started within s, quenched at an average cooling rate of 40 ° C./s or more, and wound at a winding temperature of 650 ° C. or less. Then, the hot-rolled sheet is pickled and then cold-rolled. A cold rolling step of forming a cold rolled sheet, an internal oxide layer forming step of forming an internal oxide layer on the cold rolled sheet, and pickling the cold rolled sheet after the internal oxide layer forming step, After performing continuous annealing at a temperature of not less than the crystal temperature and not more than 900 ° C for 10 to 120 seconds,
An annealing step of cooling at an average cooling rate of 10 to 300 ° C./s to 550 ° C. or lower, and a galvanizing step of performing a hot-dip galvanizing process on the cold-rolled sheet after the annealing process to form a hot-dip galvanized layer on the steel sheet surface. , Sequentially applied, tensile strength
This is a method for producing a high-strength hot-dip galvanized steel sheet excellent in strain aging characteristics and workability at 440 MPa or more. In the second and third aspects of the present invention, an alloying step of alloying a hot-dip galvanized layer may be further performed subsequent to the plating step. After the alloying process, the average cooling rate up to 300 ° C is 5-25 ° C /
s is preferred. Further, in the second and third aspects of the present invention, the hot-rolling step sets the slab heating temperature to 1000 ° C. or higher, completes rough rolling in a temperature range from 1000 ° C. to the Ar 3 transformation point, and forms a sheet bar. 600 below the Ar 3 transformation point on the sheet bar
A hot rolling process may be performed in which a hot rolled sheet is formed by performing finish rolling at a rolling reduction of 80% or more while lubricating in a temperature range of not less than ° C. to form a hot rolled sheet.

【0020】[0020]

【発明の実施の形態】本発明の高張力溶融亜鉛めっき鋼
板は、鋼板表面に溶融亜鉛めっき層または合金化溶融亜
鉛めっき層を有する溶融亜鉛めっき鋼板である。本発明
の溶融亜鉛めっき鋼板は、鋼板と溶融亜鉛めっき層また
は合金化溶融亜鉛めっき層との界面の地鉄側に内部酸化
物を有する。内部酸化物は、2〜10μm深さ形成するの
がめっき性阻害元素の表面濃化抑制の観点から好まし
い。内部酸化物の存在によりめっき性、とくにめっき濡
れ性が向上する。内部酸化物はSi、Mn、Feの酸化物を主
として含む。
BEST MODE FOR CARRYING OUT THE INVENTION The high-strength hot-dip galvanized steel sheet of the present invention is a hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of the steel sheet. The hot-dip galvanized steel sheet of the present invention has an internal oxide on the ground iron side at the interface between the steel sheet and the hot-dip galvanized layer or the alloyed hot-dip galvanized layer. The internal oxide is preferably formed at a depth of 2 to 10 μm from the viewpoint of suppressing the surface concentration of the plating inhibiting element. Due to the presence of the internal oxide, plating properties, particularly plating wettability, are improved. The internal oxide mainly contains oxides of Si, Mn, and Fe.

【0021】つぎに、本発明に用いる鋼板の組成限定理
由について説明する。なお、以下、組成における質量%
は単に%と記す。 C:0.008 %以下 Cは、できるだけ低減するのが好ましく、含有量が少な
いほど深絞り性に優れ、プレス成形性には有利である
が、0.008 %までは許容できる。なお、フェライト相に
おけるCの固溶度はNのそれよりも低く、熱間圧延工程
以降の冷延工程において再溶解が進行し結晶粒内の固溶
Cが増加するため耐常温時効性を低下させやすいため、
Cは0.0030%以下とするのが好ましい。
Next, the reasons for limiting the composition of the steel sheet used in the present invention will be described. Hereinafter, mass% in the composition
Is simply expressed as%. C: 0.008% or less C is preferably reduced as much as possible. The smaller the content, the more excellent the deep drawability and the advantageous the press formability. However, up to 0.008% is acceptable. Note that the solid solubility of C in the ferrite phase is lower than that of N, and the re-dissolution proceeds in the cold rolling process after the hot rolling process, so that the solid solution C in the crystal grains increases, thereby deteriorating the aging resistance at room temperature. Because it is easy to make
C is preferably set to 0.0030% or less.

【0022】Si:1.0 %以下 Siは、延性を低下させることなく強度を増加させる有用
な元素であり、0.01%以上含有するのが好ましい。より
好ましくは0.05%以上である。一方、Siはめっき性のう
ち濡れ性を阻害する元素でもあり、1.0 %以下に限定し
た。なお、好ましくは0.75%以下である。
Si: 1.0% or less Si is a useful element for increasing strength without lowering ductility, and is preferably contained at 0.01% or more. It is more preferably at least 0.05%. On the other hand, Si is also an element that inhibits wettability in the plating properties, and is limited to 1.0% or less. In addition, it is preferably 0.75% or less.

【0023】Mn:1.0 %超2.0 %以下 Mnは、固溶強化により鋼を強化する有用な元素であり、
またSによる脆化を抑制する作用を有し、本発明では1.
0 %超の含有を必要とする。一方、Mnの多量含有は鋼板
の表面性状や延性、r値の低下を招く。このため、Mnは
2.0 %以下に限定した。なお、好ましくは1.50%以下で
ある。
Mn: more than 1.0% and 2.0% or less Mn is a useful element for strengthening steel by solid solution strengthening.
It also has the effect of suppressing embrittlement due to S, and in the present invention 1.
Requires a content of more than 0%. On the other hand, a large content of Mn causes a decrease in the surface properties, ductility, and r value of the steel sheet. For this reason, Mn
Limited to 2.0% or less. In addition, it is preferably 1.50% or less.

【0024】P:0.1 %以下 Pは、固溶強化により鋼の強化に有用な元素であり、こ
の効果を得るためには0.01%以上含有するのが望ましい
が、0.1 %を超えて含有すると、燐化物を形成し、延
性、深絞り性が低下する。このため、Pは0.1 %以下に
限定した。なお、好ましくは0.08%以下である。
P: 0.1% or less P is an element useful for strengthening steel by solid solution strengthening. To obtain this effect, it is desirable that P be contained in an amount of 0.01% or more. A phosphide is formed, and ductility and deep drawability decrease. Therefore, P is limited to 0.1% or less. In addition, it is preferably 0.08% or less.

【0025】S:0.01%以下 Sは、鋼中では介在物として存在し、延性の低下を招く
ためできるだけ低減するのが好ましいが、本発明では、
0.01%までは許容できる。このため、Sは0.01%以下に
限定した。なお、良好な延性を要求される用途には0.00
5 %以下とするのが好ましい。
S: 0.01% or less S is present as inclusions in steel, and it is preferable to reduce S as much as possible because it causes a decrease in ductility.
Up to 0.01% is acceptable. Therefore, S is limited to 0.01% or less. For applications requiring good ductility, 0.00
It is preferable that the content be 5% or less.

【0026】Nb:0.005 〜0.045 %、Ti:0.005 〜0.07
%、V:0.005 〜0.10%のうちから選ばれた1種または
2種以上 Nb、Ti、Vは、窒化物あるいは炭窒化物を形成し結晶粒
を微細化するとともに、固溶Cと結合しNbC 、TiC 、VC
として析出し、加工性改善および強度増加に寄与する元
素であり、本発明ではいずれも0.005 %以上含有するこ
とが好ましい。一方、Nbが0.045 %、Tiが0.07%、Vが
0.10%を超える含有は延性および固溶Nを低下する。こ
のため、Nbは0.005 〜0.045 %、Tiは0.005 〜0.07%、
Vは0.005 〜0.10%の範囲に限定するのが好ましい。
Nb: 0.005 to 0.045%, Ti: 0.005 to 0.07
%, V: one or more selected from 0.005 to 0.10% Nb, Ti, and V form nitrides or carbonitrides, refine crystal grains, and combine with solid solution C. NbC, TiC, VC
Is an element that contributes to improvement in workability and increase in strength. In the present invention, it is preferable that each of these elements contains 0.005% or more. On the other hand, Nb is 0.045%, Ti is 0.07%, and V is
If the content exceeds 0.10%, the ductility and the solute N decrease. Therefore, Nb is 0.005 to 0.045%, Ti is 0.005 to 0.07%,
V is preferably limited to the range of 0.005 to 0.10%.

【0027】Al:0.005 〜0.020 % Al含有量の制御は本発明において特に重要である。Al
は、脱酸剤として作用し鋼の清浄度を向上させるのに有
効な元素であり、本発明では0.005 %以上の含有を必要
とする。一方、AlはNと結合するため、過剰のAl含有
は、固溶状態のN量を減少させ、歪時効硬化現象に寄与
する固溶Nの確保を難しくする。また、固溶Nを確保で
きたとしてもAlが0.020 %を超えると、製造条件の変動
による歪時効硬化特性のバラツキが大きくなる。このた
め、本発明では、Al含有量は0.020 %以下と低く限定し
た。なお、歪時効硬化特性向上の観点からは、Alは 0.0
15%以下とするのが好ましい。
Al: 0.005 to 0.020% Control of the Al content is particularly important in the present invention. Al
Is an element that acts as a deoxidizing agent and is effective in improving the cleanliness of steel. In the present invention, the content of 0.005% or more is required. On the other hand, since Al bonds with N, an excessive Al content reduces the amount of N in the solid solution state, making it difficult to secure solid solution N that contributes to the strain age hardening phenomenon. Further, even if solid solution N can be ensured, if Al exceeds 0.020%, the variation in strain aging hardening characteristics due to fluctuations in manufacturing conditions increases. Therefore, in the present invention, the Al content is limited to as low as 0.020% or less. In addition, from the viewpoint of improving strain age hardening characteristics, Al is 0.0
It is preferably set to 15% or less.

【0028】N:0.0050〜0.0250% Nは、固溶強化と歪時効硬化により鋼板の強度を増加さ
せる元素であり、本発明において最も重要な元素であ
る。本発明では、適量のNを含有して、さらに製造条件
を制御することにより、最終製品で必要かつ十分な量の
固溶状態のNを確保し、それによって固溶強化と歪時効
硬化による強度(YS、TS)上昇効果を十分に発揮
し、焼付硬化量(BH量)80MPa 以上、塗装焼付処理前
後での引張強さの増加量ΔTS40MPa 以上という本発明
鋼板の機械的性質要件を安定して満足することができ
る。
N: 0.0050 to 0.0250% N is an element that increases the strength of the steel sheet by solid solution strengthening and strain age hardening, and is the most important element in the present invention. In the present invention, by containing an appropriate amount of N and further controlling the manufacturing conditions, a necessary and sufficient amount of N in the solid solution state in the final product is ensured, whereby the strength by solid solution strengthening and strain age hardening is ensured. (YS, TS) Sufficiently exerts the effect of increasing the baking hardening amount (BH amount) of 80 MPa or more, and stabilizes the mechanical property requirements of the steel sheet of the present invention of increasing the tensile strength before and after coating baking treatment ΔTS40 MPa or more. Can be satisfied.

【0029】Nが0.0050%未満では、上記の強度上昇効
果が安定して現れにくい。一方、Nが0.0250%を超える
と、伸び等の材質低下が著しくなり、鋼板の内部欠陥発
生率が高くなるとともに、連続鋳造時のスラブ割れなど
が多発するようになる。このため、Nは0.0050〜0.0250
%の範囲とした。なお、製造工程全体を考慮した材質の
安定性・歩留り向上、歪時効硬化特性向上の観点から
は、Nは0.0070〜0.0200%の範囲とするのが好ましい。
If N is less than 0.0050%, the above-mentioned effect of increasing strength is unlikely to appear stably. On the other hand, if N exceeds 0.0250%, material deterioration such as elongation becomes remarkable, the internal defect occurrence rate of the steel sheet increases, and slab cracking and the like during continuous casting occur frequently. Therefore, N is 0.0050 to 0.0250
%. Note that N is preferably in the range of 0.0070 to 0.0200% from the viewpoint of improving the stability and yield of the material and improving the strain aging hardening characteristics in consideration of the entire manufacturing process.

【0030】固溶状態のNを0.0015%以上 最終製品で十分な強度が確保され、さらにNによる歪時
効硬化が十分に発揮されるには、鋼中に固溶状態のN
(固溶Nともいう)が0.0015%以上の量(濃度)で存在
する必要がある。ここで、固溶N量は、鋼中の全N量か
ら析出N量を差し引いて求めるものとする。なお、析出
N量の分析法としては、本発明者らが種々の分析法を比
較検討した結果によれば、電解抽出を用いた分析法によ
り求めるのが最適である。この分析法は、アセチル・ア
セトンを溶媒として用いて定電位電解により地鉄を溶解
して抽出した残渣について化学分析により析出物となっ
ているN量を求めるものである。
0.0015% or more of N in the solid solution state In order to ensure sufficient strength in the final product and to sufficiently exert strain aging hardening due to N, the N in the solid solution state in the steel is required.
(Also referred to as solute N) in an amount (concentration) of 0.0015% or more. Here, the amount of solute N is determined by subtracting the amount of precipitated N from the total amount of N in steel. As a method of analyzing the amount of precipitated N, according to the results of comparison between various analysis methods by the present inventors, it is optimal to determine the amount by the analysis method using electrolytic extraction. In this analysis method, the amount of N as a precipitate is determined by chemical analysis of a residue obtained by dissolving and extracting ground iron by constant potential electrolysis using acetyl-acetone as a solvent.

【0031】なお、より高いBH量、ΔTSを得るため
には、固溶状態のN量は0.0020%以上、さらに高い値を
得るためには、0.0030%以上とするのが好ましい。製造
条件の変動によらず安定して固溶Nを0.0015%以上残留
させるためには、Nを強力に固定する元素であるAl、N
b、Ti、V、Bの量を制限する必要があり、本発明で
は、次(1)式、(2)式 N/(Al+Nb+Ti+V)≧0.3 ……(1) (ここで、N、Al、Nb、Ti、V:各元素含有量(質量
%)) N/(Al+Nb+Ti+V+B)≧0.3 ……(2) (ここで、N、Al、Nb、Ti、V、B:各元素含有量(質
量%))を満足させることが肝要となる。B含有の有無
により(1)、(2)式のいずれかを適用する。なお、
(1)式、(2)式に記載の元素のうち、含有しない元
素については0として(1)式、(2)式を計算するも
のとする。
In order to obtain a higher BH amount and ΔTS, the amount of N in the solid solution is preferably 0.0020% or more, and in order to obtain a higher value, it is preferably 0.0030% or more. In order to stably maintain the solid solution N of 0.0015% or more regardless of the fluctuation of the manufacturing conditions, elements such as Al and N which strongly fix N are used.
It is necessary to limit the amounts of b, Ti, V, and B. In the present invention, the following equations (1) and (2) N / (Al + Nb + Ti + V) ≧ 0.3 (1) (where N, Al, Nb, Ti, V: content of each element (% by mass)) N / (Al + Nb + Ti + V + B) ≧ 0.3 (2) (where, N, Al, Nb, Ti, V, B: content of each element (% by mass) It is important to satisfy)). Either formula (1) or (2) is applied depending on the presence or absence of B. In addition,
Of the elements described in the formulas (1) and (2), the elements that are not contained are assumed to be 0, and the formulas (1) and (2) are calculated.

【0032】本発明では、上記した成分以外には、必要
に応じ下記の成分を含有することができる。 次A群およびB群 A群:Mo:1.0 %以下、Ni:1.5 %以下、Cu:1.5 %以
下のうちの1種または2種以上 B群:B:0.01%以下 のうちから選ばれた1群または2群 A群:Mo、Ni、Cuは、いずれも、固溶強化で鋼の強度を
増加する元素であり、必要に応じ1種または2種以上を
含有するのが好ましい。このような効果はMo:0.1 %以
上、Ni:0.3 %以上、Cu:0.3 %以上で顕著に認められ
る。しかし、Mo:1.0 %、Ni:1.5 %、Cu:1.5 %を超
える含有は、延性を低下させる。このため、Mo:1.0
%、Ni:1.5 %、Cu:1.5 %をそれぞれ上限とした。
In the present invention, the following components can be contained, if necessary, in addition to the above components. Next group A and group B: Group A: one or more of Mo: 1.0% or less, Ni: 1.5% or less, Cu: 1.5% or less Group B: B: 0.01% or less 1 Group or Group 2 Group A: Mo, Ni, and Cu are all elements that increase the strength of steel by solid solution strengthening, and preferably contain one or more as necessary. Such an effect is remarkably recognized in Mo: 0.1% or more, Ni: 0.3% or more, and Cu: 0.3% or more. However, when the content exceeds 1.0% Mo, 1.5% Ni, and 1.5% Cu, the ductility decreases. Therefore, Mo: 1.0
%, Ni: 1.5%, and Cu: 1.5%, respectively.

【0033】B群:Bは、組織の微細化と、耐2次加工
脆性の向上に寄与する元素であり、必要に応じ含有でき
る。とくにNbと複合で含有することにより、結晶粒の微
細化大きな効果を示す。このような効果は0.0005%以上
の含有で顕著となり、0.0010%以上含有するのが好まし
い。一方、0.01%を超えて含有するとBNの析出が顕著と
なりr値および固溶Nが低下する。このため、Bは0.01
%以下とするのが好ましい。なお、より好ましくは0.00
05〜0.0030%である。
Group B: B is an element that contributes to the refinement of the structure and the improvement in the resistance to secondary working brittleness, and can be contained as necessary. In particular, when Nb and Nb are contained in combination, a great effect of refining crystal grains is exhibited. Such effects become remarkable when the content is 0.0005% or more, and preferably 0.0010% or more. On the other hand, when the content exceeds 0.01%, precipitation of BN becomes remarkable, and the r value and the solid solution N decrease. Therefore, B is 0.01
% Is preferable. In addition, more preferably 0.00
It is between 05 and 0.0030%.

【0034】残部Feおよび不可避的不純物 上記した成分以外の残部は、Feおよび不可避的不純物で
ある。なお、不可避的不純物としては、O:0.005 %以
下が許容できる。つぎに、本発明鋼板の組織について説
明する。本発明鋼板の組織は平均結晶粒径20μm 以下の
フェライト相とする。
The balance Fe and inevitable impurities The balance other than the above-mentioned components is Fe and inevitable impurities. As inevitable impurities, O: 0.005% or less can be tolerated. Next, the structure of the steel sheet of the present invention will be described. The structure of the steel sheet of the present invention is a ferrite phase having an average crystal grain size of 20 μm or less.

【0035】本発明では平均結晶粒径として、断面組織
写真からASTMに規定の求積法により算出した値と、
断面組織写真からASTMに規定の切断法により求めた
公称粒径(例えば梅本ら:熱処理, 24(1984), 334 参
照)のうち、いずれか大きい方を採用する。本発明のめ
っき鋼板は、製品として所定量の固溶Nを確保している
が、本発明者らの実験・検討結果によれば、固溶N量を
一定に保っても、平均結晶粒径が20μmを超えると歪時
効硬化特性に大きなばらつきが生じることが判明した。
また、室温で保管した場合の機械的特性の劣化も顕著と
なる。この詳細な機構は現在のところ不明であるが、歪
時効硬化特性のばらつきの原因の一つが結晶粒径にあ
り、結晶粒界への合金元素の偏析と析出、さらにはこれ
らに及ぼす加工、熱処理の影響に関係するものと推定さ
れる。したがって、歪時効硬化特性の安定化を図るに
は、フェライト相の平均結晶粒径を20μm以下とする必
要がある。なお、BH量およびΔTS量のさらなる増加
を、安定して得るためにはフェライトの平均結晶粒径は
15μm以下とするのが好ましい。
In the present invention, as the average crystal grain size, a value calculated by a quadrature method specified in ASTM from a photograph of a cross-sectional structure,
The larger of the nominal particle sizes (see, for example, Umemoto et al .: Heat Treatment, 24 (1984), 334) determined from the cross-sectional structure photograph by the cutting method prescribed by ASTM is adopted. Although the plated steel sheet of the present invention secures a predetermined amount of solid solution N as a product, according to the results of experiments and studies conducted by the present inventors, even if the solid solution N amount is kept constant, the average crystal grain size It has been found that when the average particle size exceeds 20 μm, large variations occur in the strain aging hardening characteristics.
In addition, the deterioration of the mechanical properties when stored at room temperature becomes remarkable. Although the detailed mechanism is unknown at present, one of the causes of the variation in strain age hardening characteristics is the crystal grain size, and segregation and precipitation of alloy elements at the crystal grain boundaries, and furthermore, processing and heat treatment on these It is presumed to be related to the effect of Therefore, in order to stabilize the strain age hardening characteristics, the average crystal grain size of the ferrite phase needs to be 20 μm or less. In order to stably obtain a further increase in the BH amount and the ΔTS amount, the average crystal grain size of the ferrite is
It is preferably 15 μm or less.

【0036】上記した組成と組織を有する本発明の溶融
亜鉛めっき鋼板は、引張強さ440MPa以上を有し、平均r
値1.5 以上で加工性に優れ、歪時効硬化特性に優れため
っき鋼板である。本発明において、「歪時効硬化特性に
優れた」とは、上記したように、引張歪5%の予変形
後、170 ℃の温度に20min 保持する条件で時効処理した
とき、BH量が80MPa 以上であり、ΔTSが40MPa 以上
であることを意味する。
The galvanized steel sheet of the present invention having the above composition and structure has a tensile strength of 440 MPa or more and an average
With a value of 1.5 or more, it is a plated steel sheet with excellent workability and excellent strain aging hardening characteristics. In the present invention, “excellent in strain age hardening characteristics” means that, as described above, after pre-deformation with a tensile strain of 5%, when subjected to aging treatment at a temperature of 170 ° C. for 20 minutes, the BH amount is 80 MPa or more. Which means that ΔTS is 40 MPa or more.

【0037】歪時効硬化特性を規定する場合、予歪(予
変形)量が重要な因子となる。本発明者らは、自動車用
鋼板に適用される変形様式を想定して、歪時効硬化特性
に及ぼす予歪量の影響について調査し、その結果、前
記変形様式における変形応力は、極めて深い絞り加工の
場合を除き、概ね1軸相当歪(引張歪)量で整理できる
こと、実部品ではこの1軸相当歪量が概ね5%を上回
っていること、部品強度が、予歪5%の歪時効処理後
に得られる強度(YSおよびTS)と良く対応すること
を突き止めた。この知見をもとに、本発明では、歪時効
処理の予変形を引張歪5%に定めた。
When defining the strain age hardening characteristics, the amount of pre-strain (pre-deformation) is an important factor. The present inventors have investigated the effect of the amount of pre-strain on the strain age hardening characteristics, assuming a deformation mode applied to a steel sheet for automobiles. As a result, the deformation stress in the deformation mode is extremely deep drawing. Except in the case of (1), it is possible to arrange by the amount of strain (tensile strain) equivalent to one axis. In actual parts, the amount of strain equivalent to one axis is more than 5%. It has been found that they correspond well to the strengths (YS and TS) obtained later. Based on this finding, in the present invention, the pre-deformation of the strain aging treatment was set to 5% tensile strain.

【0038】従来の塗装焼付け処理条件は、170 ℃×20
min が標準として採用されている。なお、多量の固溶N
を含む本発明鋼板に5%以上の歪が加わる場合は、より
緩やかな(低温側の)処理でも硬化が達成され、言い換
えれば時効条件をより幅広くとることが可能である。ま
た、一般に、硬化量を稼ぐには、過度の時効で軟化させ
ない限りにおいて、より高温で、より長時間保持するこ
とが有利である。
The conventional paint baking condition is 170 ° C. × 20
min is adopted as a standard. A large amount of solid solution N
When a strain of 5% or more is applied to the steel sheet of the present invention, the hardening is achieved even with a milder (lower temperature) treatment, in other words, the aging condition can be broadened. In general, in order to increase the amount of curing, it is advantageous to hold at a higher temperature and for a longer time as long as the material is not softened by excessive aging.

【0039】具体的に述べると、本発明鋼板では、予変
形後に硬化が顕著となる加熱温度の下限は概ね100 ℃で
ある。一方、加熱温度が300 ℃を超えると硬化が頭打ち
となり、逆にやや軟化する傾向が現れるほか、熱歪やテ
ンパーカラーの発生が目立つようになる。また、保持時
間については、加熱温度200 ℃程度のとき概ね30s程度
以上とすれば略十分な硬化が達成される。さらに大きな
安定した硬化を得るには保持時間60s以上とするのが好
ましい。しかし、20min を超える保持では、さらなる硬
化を望みえないばかりか、生産効率も著しく低下して実
用面では不利である。
Specifically, in the steel sheet of the present invention, the lower limit of the heating temperature at which the hardening becomes remarkable after pre-deformation is approximately 100 ° C. On the other hand, if the heating temperature exceeds 300 ° C., the curing hardens, and on the contrary, it tends to soften slightly, and the occurrence of heat distortion and temper color becomes conspicuous. If the holding time is about 30 seconds or more when the heating temperature is about 200 ° C., almost sufficient curing can be achieved. In order to obtain even larger stable curing, the holding time is preferably 60 seconds or more. However, if the holding time exceeds 20 minutes, not only no further curing can be expected, but also the production efficiency is significantly reduced, which is disadvantageous in practical use.

【0040】以上のことから、本発明では、時効処理条
件として従来の塗装焼付処理条件の加熱温度である170
℃、保持時間を20min で評価すると定めた。従来の塗装
焼付け型鋼板では十分な硬化が達成されない低温加熱・
短時間保持の時効処理条件下でも、本発明鋼板では大き
な硬化が安定的に達成される。なお、加熱の仕方はとく
に制限されず、通常の塗装焼付けに採用されている炉に
よる雰囲気加熱のほか、たとえば誘導加熱や、無酸化
炎、レーザ、プラズマなどによる加熱などのいずれも好
ましく用いうる。
From the above, according to the present invention, the aging treatment condition is the heating temperature of the conventional paint baking treatment condition of 170 ° C.
It was determined that the evaluation was performed at 20 ° C. and a holding time of 20 min. Low-temperature heating and
Even under the condition of aging treatment for a short time, large hardening is stably achieved in the steel sheet of the present invention. The method of heating is not particularly limited, and in addition to atmospheric heating using a furnace employed for normal coating baking, any of induction heating, heating using a non-oxidizing flame, laser, plasma, or the like can be preferably used.

【0041】自動車用の部品強度は外部からの複雑な応
力負荷に抗しうる必要があり、それゆえ素材鋼板では小
さな歪域での強度特性だけでなく大きな歪域での強度特
性も重要となる。本発明者らはこの点に鑑み、自動車部
品の素材となすべき本発明鋼板のBH量を80MPa 以上と
するとともに、ΔTSを40MPa 以上とする。なお、より
好ましくは、BH量100MPa以上、ΔTS50MPa 以上とす
る。BH量とΔTS量をより大きくするには、時効処理
の際の加熱温度をより高温側に、および/または、保持
時間をより長時間側に、設定すればよい。
It is necessary that the strength of automotive components be able to withstand complicated external stress loads. Therefore, not only the strength characteristics in a small strain range but also the strength characteristics in a large strain range are important for a material steel plate. . In view of this point, the present inventors set the BH amount of the steel sheet of the present invention to be used as a material for automobile parts to be 80 MPa or more and set ΔTS to be 40 MPa or more. More preferably, the BH amount is 100 MPa or more and ΔTS50 MPa or more. To increase the BH amount and the ΔTS amount, the heating temperature during the aging treatment may be set to a higher temperature and / or the holding time may be set to a longer time.

【0042】また、本発明鋼板は、成形加工されない状
態では、室温で1年程度の長時間放置されても時効劣化
(YSが増加しかつEl(伸び)が減少する現象)が起
こりにくいという、従来にない利点が備わっている。つ
ぎに、本発明の高張力溶融亜鉛めっき鋼板の製造方法に
ついて説明する。本発明の高張力溶融亜鉛めっき鋼板
は、上記した組成の鋼スラブを用いて、熱延工程と、内
部酸化相形成処理工程と、冷延工程と、焼鈍工程と、溶
融亜鉛めっき工程と、あるいはさらに合金化処理工程と
を経て製造される。
In addition, the steel sheet of the present invention is hardly subject to aging deterioration (phenomenon of increasing YS and decreasing El (elongation)) even if left undisturbed at room temperature for about one year. It has unprecedented advantages. Next, a method for producing the high-strength hot-dip galvanized steel sheet of the present invention will be described. The high-strength hot-dip galvanized steel sheet of the present invention uses a steel slab having the above composition, a hot-rolling step, an internal oxidation phase forming treatment step, a cold-rolling step, an annealing step, a hot-dip galvanizing step, or It is manufactured through an alloying process.

【0043】まず、熱延工程について、説明する。 スラブ加熱温度:1000℃以上 スラブ加熱温度は、初期状態として、必要かつ十分な固
溶N量を確保し、製品での固溶N量の目標値(0.0015%
以上)を満たすために、1000℃以上とするのが好まし
い。1000℃未満では、圧延荷重が高くなり、圧延トラブ
ルが発生しやすくなる。なお、酸化重量の増加に伴うロ
スの増大を避ける観点から、スラブ加熱温度は1280℃以
下とするのが好ましい。
First, the hot rolling process will be described. Slab heating temperature: 1000 ° C or higher The slab heating temperature is set as the initial state, ensuring a necessary and sufficient amount of solid solution N, and the target value of solid solution N in the product (0.0015%
In order to satisfy the above conditions, the temperature is preferably set to 1000 ° C. or higher. If the temperature is lower than 1000 ° C., the rolling load increases, and rolling troubles are likely to occur. Note that the slab heating temperature is preferably set to 1280 ° C. or lower from the viewpoint of avoiding an increase in loss due to an increase in oxidation weight.

【0044】上記した温度に加熱された鋼スラブはつい
で、粗圧延および仕上圧延からなる熱間圧延を施す熱延
工程により熱延板とされる。本発明では、熱延工程は、
A工程あるいはB工程いずれかの工程を採用することが
できる。 A工程 A工程は、鋼スラブを粗圧延しシートバーと、仕上圧延
出側温度を800 ℃以上とする仕上圧延を施し熱延板とし
たのち、仕上圧延終了後、0.5 s以内に冷却を開始し、
平均冷却速度40℃/s以上で急冷し、巻取温度:650 ℃
以下で巻き取る工程である。
The steel slab heated to the above-mentioned temperature is then turned into a hot-rolled sheet by a hot-rolling step of performing hot rolling including rough rolling and finish rolling. In the present invention, the hot rolling step comprises:
Either the step A or the step B can be adopted. Step A: In step A, the steel slab is rough-rolled, subjected to finish rolling at a temperature of 800 ° C. or more on the sheet bar and finish-rolled to form a hot-rolled sheet, and then cooled within 0.5 s after finish rolling. And
Rapidly cooling at an average cooling rate of 40 ° C / s or more, winding temperature: 650 ° C
The winding step is as follows.

【0045】上記した条件で加熱されたスラブは、粗圧
延によりシートバーとされる。なお、粗圧延の条件はと
くに規定する必要はなく、常法にしたがって行えばよ
い。しかし、固溶N量の確保という観点からはできるだ
け短時間での処理とするのが望ましい。ついで、シート
バーを仕上圧延して熱延板とする。
The slab heated under the conditions described above is turned into a sheet bar by rough rolling. The conditions for the rough rolling need not be particularly defined, but may be performed according to a conventional method. However, from the viewpoint of securing the amount of dissolved N, it is desirable to perform the treatment in as short a time as possible. Next, the sheet bar is finish-rolled to obtain a hot-rolled sheet.

【0046】なお、本発明では、粗圧延と仕上圧延の間
で、相前後するシートバー同士を接合し、連続的に仕上
圧延することが好ましい。接合手段としては、圧接法、
レーザ溶接法、電子ビーム溶接法などを用いるのが好ま
しい。これにより、仕上圧延およびその後の冷却におい
て形状の乱れを生じやすい非定常部(被処理材の先端部
および後端部)の存在割合が減少し、安定圧延長さ(同
一条件で圧延できる連続長さ)および安定冷却長さ(張
力をかけたまま冷却できる連続長さ)が延長して、製品
の形状・寸法精度および歩留りが向上する。
In the present invention, it is preferable that the successive sheet bars are joined between the rough rolling and the finish rolling, and the finish rolling is performed continuously. As a joining means, a pressure welding method,
It is preferable to use a laser welding method, an electron beam welding method, or the like. As a result, the existence ratio of the unsteady portion (the leading end and the trailing end of the material to be processed), which is likely to cause shape disturbance in the finish rolling and the subsequent cooling, is reduced, and the stable pressure is extended (the continuous length that can be rolled under the same conditions). ) And the stable cooling length (continuous length that can be cooled while applying tension) increase the product shape / dimensional accuracy and yield.

【0047】また、従来のシートバー毎の単発圧延では
通板性や噛込み性等の問題により実施が難しかった薄物
・広幅に対する潤滑圧延が容易に実施できるようにな
り、圧延荷重およびロール面圧が低減してロールの寿命
が延長する。また、本発明では、粗圧延と仕上圧延の間
で、シートバーの幅端部を加熱するシートバーエッジヒ
ータ、シートバーの長さ端部を加熱するシートバーヒー
タのいずれか一方または両方を使用して、シートバーの
幅方向および長手方向の温度分布を均一化することが好
ましい。これにより、鋼板内の材質ばらつきをさらに小
さくすることができる。シートバーエッジヒータ、シー
トバーヒータは誘導加熱方式のものとするのが好まし
い。
Further, in the conventional single-roll rolling for each sheet bar, lubricating rolling can be easily performed on thin materials and wide widths, which has been difficult to perform due to problems such as threadability and biting properties. And the life of the roll is extended. In the present invention, between the rough rolling and the finish rolling, one or both of a sheet bar edge heater for heating the width end of the sheet bar and a sheet bar heater for heating the length end of the sheet bar are used. Thus, it is preferable to uniform the temperature distribution in the width direction and the longitudinal direction of the sheet bar. Thereby, the material variation in the steel plate can be further reduced. It is preferable that the sheet bar edge heater and the sheet bar heater are of an induction heating type.

【0048】使用手順は、まずシートバーエッジヒータ
により幅方向の温度差を補償することが望ましい。この
ときの加熱量は、鋼組成などにもよるが、仕上圧延出側
での幅方向温度分布範囲が概ね20℃以下となるように設
定するのが好ましい。次いでシートバーヒータにより長
手方向の温度差を補償する。このときの加熱量は、長さ
端部温度が中央部温度よりも20〜40℃程度高くなるよう
に設定するのが好ましい。
It is desirable to use the sheet bar edge heater to compensate for the temperature difference in the width direction. The heating amount at this time depends on the steel composition and the like, but is preferably set so that the temperature distribution range in the width direction on the finish-rolling exit side is approximately 20 ° C. or less. Next, the temperature difference in the longitudinal direction is compensated by the sheet bar heater. The heating amount at this time is preferably set such that the temperature at the end of the length is higher by about 20 to 40 ° C. than the temperature at the center.

【0049】仕上圧延出側温度:800 ℃以上 仕上圧延出側温度FDTは、鋼板の組織を均一かつ微細
とするために、800 ℃以上とする。FDTが800 ℃を下
回ると、組織が不均一となり、一部に加工組織が残留し
たりする。このような加工組織の残留は、巻取温度を高
温とすることにより回避できる。しかし、巻取温度を高
温にすると、粗大結晶粒が発生し、また固溶N量も大き
く低下するため、目標の引張強さであるTS440MPa以上
を得ることが困難となる。なお、機械的性質をさらに改
善させるには、FDTは820 ℃以上とするのが望まし
い。仕上圧延後は結晶粒の微細化と固溶N量の確保のた
め、、早期に鋼板を冷却するのが望ましい。
Finish-rolling exit temperature: 800 ° C. or more The finish-rolling exit temperature FDT is set to 800 ° C. or more in order to make the structure of the steel sheet uniform and fine. When the FDT is lower than 800 ° C., the structure becomes non-uniform, and a partially processed structure remains. Such a residue of the processed structure can be avoided by setting the winding temperature to a high temperature. However, when the winding temperature is set to a high temperature, coarse crystal grains are generated and the amount of solute N is greatly reduced, so that it is difficult to obtain a target tensile strength of TS440 MPa or more. In order to further improve the mechanical properties, it is desirable that the FDT be 820 ° C. or higher. After finish rolling, it is desirable to cool the steel sheet early in order to refine the crystal grains and secure the amount of solute N.

【0050】仕上圧延後の冷却:仕上げ圧延終了後0.5
s以内に冷却を開始、冷却速度40℃/s以上の急冷 本発明では、仕上圧延終了後直ちに(0.5 s以内に)冷
却を開始し、冷却中の平均冷却速度を40℃/s以上とす
るのが望ましい。この条件を満足させることにより、Al
N が析出する高温域を急冷でき、固溶状態のNを有効に
確保できる。この冷却開始時間または冷却速度が、上記
条件を満足しない場合には、粒成長が進みすぎて結晶粒
径の微細化が達成しにくいうえ、圧延で導入された歪エ
ネルギーによるAlN の析出が進みすぎて固溶N量が欠乏
する恐れが増大する。なお、材質・形状の均一性を確保
する観点からは、冷却速度は300 ℃/s以下に抑えるの
が好ましい。
Cooling after finish rolling: 0.5 after finishing rolling
In the present invention, cooling is started immediately (within 0.5 s) after finishing rolling, and the average cooling rate during cooling is set to 40 ° C./s or more. It is desirable. By satisfying this condition, Al
The high-temperature region where N is precipitated can be rapidly cooled, and N in a solid solution state can be effectively secured. If the cooling start time or cooling rate does not satisfy the above conditions, the grain growth proceeds too much to make the crystal grain size finer, and the precipitation of AlN due to the strain energy introduced by rolling is too advanced. Therefore, the possibility that the amount of solute N is deficient increases. From the viewpoint of ensuring the uniformity of the material and the shape, the cooling rate is preferably suppressed to 300 ° C./s or less.

【0051】巻取温度:650 ℃以下 巻取温度CTの低下につれて、鋼板強度が増加する傾向
を示す。目標の引張強さTS440MPa以上を確保するため
には、CTは650 ℃以下とするのが好ましい。なお、C
Tが200 ℃未満では鋼板形状が乱れやすくなり、実操業
上、不具合を生じる危険性が高く、材質の均一性が低下
する傾向を示す。このため、CTは200℃以上とするの
が望ましい。なお、より材質の均一性が要求される場合
には、CTは300 ℃以上とするのが好ましい。なお、よ
り好ましくは450 ℃以上である。
Winding temperature: 650 ° C. or less The steel sheet strength tends to increase as the winding temperature CT decreases. In order to secure the target tensile strength of TS440 MPa or more, it is preferable that CT is 650 ° C. or less. Note that C
When T is less than 200 ° C., the shape of the steel sheet is easily disturbed, and there is a high risk of causing a problem in actual operation, and the uniformity of the material tends to be reduced. For this reason, CT is desirably 200 ° C. or higher. If more uniform material is required, the CT is preferably set to 300 ° C. or higher. The temperature is more preferably 450 ° C. or higher.

【0052】また、本発明では、仕上圧延において、熱
間圧延荷重を低減するために、潤滑圧延を行ってもよ
い。潤滑圧延を行うことにより、熱延板の形状・材質が
より均一化されるという効果がある。なお、潤滑圧延の
際の摩擦係数は0.25〜0.10の範囲とするのが好ましい。
また、潤滑圧延と連続圧延とを組み合わせることにより
さらに、熱間圧延の操業が安定する。 B工程 B工程は、上記のように加熱された鋼スラブを、1000℃
〜Ar3変態点の温度域で粗圧延を終了してシートバーと
し、シートバーにAr3変態点未満600 ℃以上の温度域で
潤滑を施しつつ、圧下率:80%以上の仕上圧延を施し熱
延板としたのち巻き取る熱延工程である。
In the present invention, in finish rolling, lubricating rolling may be performed in order to reduce the hot rolling load. By performing lubricating rolling, there is an effect that the shape and material of the hot rolled sheet are made more uniform. The coefficient of friction during lubricating rolling is preferably in the range of 0.25 to 0.10.
The operation of hot rolling is further stabilized by combining lubrication rolling and continuous rolling. Step B Step B is to heat the steel slab heated as described above to 1000 ° C.
A sheet bar finished the rough rolling in a temperature range of to Ar 3 transformation point, while lubricating subjected in a temperature range of 600 ° C. or higher than Ar 3 transformation point to the seat bar, rolling reduction: subjected to 80% or more finish rolling This is a hot rolling process in which a hot rolled sheet is formed and then wound.

【0053】粗圧延の終了温度RDTが1000℃を超える
と、γ相の結晶粒が大きくなるという不具合が生じ、一
方、Ar3変態点未満では、α相再結晶粒の粗大化という
問題がある。このため、RDTは1000℃〜Ar3変態点の
温度域とするのが好ましい。また、仕上圧延はAr3変態
点未満600 ℃以上の温度域で行うのが好ましい。仕上圧
延の温度がAr3変態点を超えると、熱延後γ→α変態が
進行し集合組織がランダム化するためr値が低下すると
いう問題があり、一方、600 ℃未満では圧延荷重が増大
する。このため、仕上圧延はAr3変態点未満600 ℃以上
の温度域で行うのが好ましい。また、仕上圧延を潤滑圧
延とすることにより、圧延荷重が低減し、さらに熱延板
の形状・材質が均一化される。なお、潤滑圧延の際の摩
擦係数は0.25〜0.10の範囲とするのが好ましい。
If the end temperature RDT of the rough rolling exceeds 1000 ° C., there occurs a problem that the crystal grains of the γ phase become large, while if it is less than the Ar 3 transformation point, there is a problem that the α phase recrystallized grains become coarse. . For this reason, it is preferable that RDT be in a temperature range from 1000 ° C. to the Ar 3 transformation point. Further, the finish rolling is preferably performed in a temperature range lower than the Ar 3 transformation point and higher than 600 ° C. When the finish rolling temperature exceeds the Ar 3 transformation point, there is a problem that the γ → α transformation proceeds after hot rolling and the texture is randomized, so that the r value decreases. On the other hand, when the temperature is lower than 600 ° C., the rolling load increases. I do. For this reason, the finish rolling is preferably performed in a temperature range of less than the Ar 3 transformation point and at least 600 ° C. Further, by making the finish rolling a lubricating rolling, the rolling load is reduced, and the shape and material of the hot rolled sheet are made uniform. The coefficient of friction during lubricating rolling is preferably in the range of 0.25 to 0.10.

【0054】また、仕上圧延の圧下率は80%以上とする
のが集合組織形成の観点から好ましい。圧下率が80%未
満では冷延焼鈍後のr値が低下するという問題がある。
仕上圧延後の熱延板は、ついで、巻き取られる。巻取り
に際しては、巻取温度CTの低下につれて、加工歪が蓄
積され、{111 }集合組織形成に有効に働くため、CT
を550 ℃以下とするのが好ましい。なお、CTが200 ℃
未満では鋼板形状が乱れやすくなり、実操業上、不具合
を生じる危険性が高く、材質の均一性が低下する傾向を
示す。このため、CTは200 ℃以上とするのが望まし
い。なお、より材質の均一性が要求される場合には、C
Tは300 ℃以上とするのが好ましい。なお、より好まし
くは450 ℃以上である。
The rolling reduction of the finish rolling is preferably 80% or more from the viewpoint of forming a texture. If the rolling reduction is less than 80%, there is a problem that the r-value after cold rolling annealing decreases.
The hot rolled sheet after finish rolling is then wound up. At the time of winding, as the winding temperature CT decreases, processing strain accumulates and works effectively for {111} texture formation.
Is preferably 550 ° C. or lower. CT is 200 ° C
If it is less than 1, the shape of the steel sheet tends to be disordered, and there is a high risk of causing a problem in actual operation, and the uniformity of the material tends to be reduced. For this reason, it is desirable that the CT be 200 ° C. or higher. If more uniform material is required, C
T is preferably set to 300 ° C. or higher. The temperature is more preferably 450 ° C. or higher.

【0055】上記したA工程あるいはB工程で得られた
熱延板は、ついで内部酸化層形成処理工程を施されたの
ち、酸洗され冷延工程を施されるか、あるいは酸洗され
冷延工程を施されたのち内部酸化層形成処理工程を施さ
れる。 冷延工程 熱延板あるいは内部酸化層形成処理工程を経た熱延板
は、通常公知の条件で酸洗されたのち、冷間圧延を施さ
れ冷延板とされる。冷間圧延の条件はとくに限定する必
要はなく、所望の寸法板厚に圧延できればよく、通常公
知の条件でよい。なお、圧下率は、その後の焼鈍処理で
再結晶が生じるために、50%以上とするのが好ましい。
The hot-rolled sheet obtained in the above-mentioned step A or B is subjected to an internal oxide layer forming step and then to an acid washing and a cold rolling step, or to an acid washing and a cold rolling step. After the steps, an internal oxide layer forming step is performed. Cold Rolling Step The hot rolled sheet or the hot rolled sheet that has been subjected to the internal oxide layer forming step is usually pickled under known conditions and then subjected to cold rolling to obtain a cold rolled sheet. The conditions of the cold rolling need not be particularly limited, as long as they can be rolled to a desired size plate thickness, and may be generally known conditions. The rolling reduction is preferably 50% or more because recrystallization occurs in the subsequent annealing treatment.

【0056】内部酸化層形成処理工程 内部酸化層形成処理工程は、めっき性改善の目的で、熱
延板あるいは冷延板表層に内部酸化層を2〜10μm 深さ
で形成するために施される。具体的には、熱延板または
冷延板(コイル)に、酸素ポテンシャル(P O2)を10
-30 〜10-10Pa とした雰囲気の、バッチ焼鈍あるいは連
続焼鈍で、650 〜 850℃で熱処理を施すことにより、鋼
板表層に内部酸化層を形成するのが好ましい。なお、熱
延板をバッチ焼鈍する場合は、熱延中に形成されるスケ
ールが内部酸化層形成処理時の酸素源となるため窒素ガ
ス雰囲気としてもい。内部酸化層形成処理中にフェライ
ト粒の粗大化が進行する恐れがあるが、本発明ではNbを
含有しているため、Nb炭窒化物等の析出物が熱延時、あ
るいは内部酸化層形成処理の加熱中に形成されフェライ
ト粒の粗大化は生じない。
Internal Oxide Layer Forming Step The internal oxide layer forming step is performed to form an internal oxide layer at a depth of 2 to 10 μm on the surface layer of a hot rolled sheet or a cold rolled sheet for the purpose of improving plating properties. . Specifically, the oxygen potential (P O2 ) is set to 10 on the hot or cold rolled sheet (coil).
It is preferable to form an internal oxide layer on the surface layer of the steel sheet by performing a heat treatment at 650 to 850 ° C. by batch annealing or continuous annealing in an atmosphere of −30 to 10 −10 Pa. When the hot-rolled sheet is subjected to batch annealing, a nitrogen gas atmosphere may be used since the scale formed during hot rolling becomes an oxygen source during the internal oxide layer forming treatment. The ferrite grains may be coarsened during the internal oxide layer forming process.However, in the present invention, since Nb is contained, precipitates such as Nb carbonitride are formed during hot rolling or during the internal oxide layer forming process. The ferrite grains formed during heating do not become coarse.

【0057】つぎに、冷延板または内部酸化層形成処理
工程を経た冷延板は焼鈍工程を施される。内部酸化層形
成処理工程を経た冷延板は、連続焼鈍前に通常公知の条
件で酸洗を施される。また、焼鈍工程に先立ち、好まし
くは、冷延板に通常公知の脱脂処理を施す。
Next, the cold-rolled sheet or the cold-rolled sheet which has been subjected to the internal oxide layer forming step is subjected to an annealing step. The cold rolled sheet that has undergone the internal oxide layer forming treatment step is usually subjected to pickling under known conditions before continuous annealing. Prior to the annealing step, the cold rolled sheet is preferably subjected to a generally known degreasing treatment.

【0058】焼鈍工程は、再結晶温度以上900 ℃以下の
温度で10〜120 s間保持する連続焼鈍を行ったのち、55
0 ℃以下までを平均冷却速度10〜300 ℃/sで冷却す
る。なお、焼鈍工程は、連続溶融亜鉛めっきラインで行
うのが好ましい。連続焼鈍温度は再結晶温度以上とし
た。連続焼鈍温度が再結晶温度未満では、再結晶が完了
せず、強度は目標を満足するものの延性が低く、そのた
め成形性が低下し自動車用鋼板としては適用できない。
なお、成形性をより一層向上させるためには、連続焼鈍
温度は700 ℃以上とするのが好ましい。一方、連続焼鈍
温度が900 ℃を超えると、AlN 等の窒化物が析出し、製
品である鋼板の固溶N量が不足する。このため、連続焼
鈍温度は再結晶温度以上で900 ℃以下とするのが好まし
い。
In the annealing step, after continuous annealing at a temperature of not less than the recrystallization temperature and not more than 900 ° C. for 10 to 120 s, 55
Cool to 0 ° C or lower at an average cooling rate of 10 to 300 ° C / s. The annealing step is preferably performed in a continuous hot-dip galvanizing line. The continuous annealing temperature was higher than the recrystallization temperature. If the continuous annealing temperature is lower than the recrystallization temperature, recrystallization is not completed and the strength satisfies the target, but the ductility is low.
In order to further improve the formability, the continuous annealing temperature is preferably set to 700 ° C. or higher. On the other hand, if the continuous annealing temperature exceeds 900 ° C., nitrides such as AlN are precipitated, and the amount of solute N in the product steel plate becomes insufficient. For this reason, it is preferable that the continuous annealing temperature be equal to or higher than the recrystallization temperature and equal to or lower than 900 ° C.

【0059】連続焼鈍温度での保持時間は、組織の微細
化、所望以上の固溶N量を確保する観点から、できるだ
け短時間とするのが好ましいが、操業の安定性からは10
s以上とするのが望ましい。保持時間が120 sを超える
と、組織の微細化、固溶N量の確保が困難となる。この
ため、連続焼鈍温度における保持時間は10〜120 sの範
囲とするのが好ましい。なお、焼鈍処理の雰囲気は、H2
とN2の混合ガス雰囲気である。H2とN2の混合ガスとは3
〜9%のH2ガスを含む窒素ガスとするのが好ましい。
The holding time at the continuous annealing temperature is preferably as short as possible from the viewpoint of refining the structure and securing a desired amount of solute N more than desired.
It is desirable to set it to s or more. If the holding time exceeds 120 s, it becomes difficult to refine the structure and secure the amount of dissolved N. For this reason, the holding time at the continuous annealing temperature is preferably in the range of 10 to 120 s. The atmosphere of the annealing treatment was H 2
And a mixed gas atmosphere of N 2 . The mixed gas of H 2 and N 2 is 3
It is preferable to use nitrogen gas containing 9% of H 2 gas.

【0060】連続焼鈍における均熱後の冷却は、組織の
微細化、固溶N量の確保の観点から重要であり、本発明
では、焼鈍後少なくとも550 ℃までの温度域を平均冷却
速度で10〜300 ℃/sとする。冷却速度が10℃/s未満
では、均一で微細な組織と所望量以上の固溶Nの確保が
困難となる。一方、冷却速度が300 ℃/sを超えると、
鋼板の幅方向での材質の均一性が不足する。
Cooling after soaking in continuous annealing is important from the viewpoint of refining the structure and securing the amount of solute N. In the present invention, the temperature range up to at least 550 ° C. after annealing is reduced by an average cooling rate of 10%. ~ 300 ° C / s. If the cooling rate is less than 10 ° C./s, it is difficult to secure a uniform and fine structure and a desired amount of solid solution N or more. On the other hand, if the cooling rate exceeds 300 ° C / s,
The uniformity of the material in the width direction of the steel plate is insufficient.

【0061】ついで、焼鈍工程を経た冷延板に溶融亜鉛
めっき処理を施し鋼板表面に溶融亜鉛めっき層を形成す
るめっき処理工程を施す。本発明におけるめっき処理工
程は、通常、溶融亜鉛めっきラインで行われる条件と同
様に、板温が450 〜550 ℃の温度範囲で溶融亜鉛めっき
を施し鋼板表層に溶融亜鉛めっき層を形成するのが好ま
しい。なお、亜鉛浴は、0.10〜0.15%Alを含有するZn浴
とするのが好ましい。また、めっき処理後、必要に応じ
目付量調整のためのワイピングを行ってもよいのはいう
までもない。
Then, a galvanizing process is performed on the cold-rolled sheet having undergone the annealing step to form a galvanized layer on the surface of the steel sheet. In the plating treatment step in the present invention, the hot-dip galvanizing is performed in the temperature range of 450 to 550 ° C. to form a hot-dip galvanized layer on the surface of the steel sheet, similarly to the conditions performed in the hot-dip galvanizing line. preferable. The zinc bath is preferably a Zn bath containing 0.10 to 0.15% Al. Needless to say, after the plating process, wiping for adjusting the basis weight may be performed as necessary.

【0062】めっき処理工程後、鋼板は冷却されるが、
めっき処理後300 ℃までの温度域では、冷却速度(平均
冷却速度)を、5〜25℃/sとするのが好ましい。ま
た、本発明では、めっき処理工程後、めっき層を合金化
処理する合金化処理工程を施してもよい。合金化処理に
おける加熱温度は、470 ℃〜(Ac1変態点)の温度とす
るのが好ましい。加熱温度が、470 ℃未満では、合金化
の進行が遅く生産性が低下する。一方、加熱温度が、A
c1変態点を超えると、めっき層の合金化が進行しすぎて
めっき層が脆化する。このため、本発明では、合金化処
理の加熱温度を470 ℃〜(Ac1変態点)の温度とするの
が好ましい。
After the plating process, the steel sheet is cooled.
In the temperature range up to 300 ° C. after the plating treatment, the cooling rate (average cooling rate) is preferably 5 to 25 ° C./s. Further, in the present invention, after the plating step, an alloying step of alloying the plating layer may be performed. The heating temperature in the alloying treatment is preferably 470 ° C. to (Ac 1 transformation point). If the heating temperature is lower than 470 ° C., the progress of alloying is slow and the productivity is reduced. On the other hand, when the heating temperature is A
Beyond c 1 transformation point, the plating layer becomes brittle alloying of the plating layer is too advanced. Therefore, in the present invention, the heating temperature of the alloying treatment is preferably set to a temperature of 470 ° C. to (Ac 1 transformation point).

【0063】また、本発明では、合金化処理を行う場合
は合金化処理工程後300 ℃までの温度域では、冷却速度
(平均冷却速度)を、5〜25℃/sとするのが好まし
い。これにより、冷却後に高延性および材質均一性を確
保できる。なお、めっき処理工程後、あるいは合金化処
理工程後の鋼板には、形状矯正、表面粗さ等の調整のた
めの調質圧延を加えてもよい。
In the present invention, when performing the alloying treatment, the cooling rate (average cooling rate) is preferably 5 to 25 ° C./s in a temperature range up to 300 ° C. after the alloying treatment step. Thereby, high ductility and material uniformity can be ensured after cooling. The steel sheet after the plating process or the alloying process may be subjected to temper rolling for shape correction, adjustment of surface roughness, and the like.

【0064】[0064]

【実施例】表1に示す組成を有する鋼を転炉にて溶製
し、連続鋳造法にて鋳片とした。表2に示す条件のスラ
ブ加熱温度SRT 、粗圧延、仕上圧延とし、圧延終了後表
2に示す条件で冷却し、表2に示す巻取温度で巻取る、
A工程あるいはB工程の熱延工程により熱延板とした。
次いで、これら熱延板に、表2に示す条件の内部酸化層
形成処理工程を施すか、あるいは施さずに、これら熱延
板を酸洗し、表2に示す条件で冷間圧延工程を施し冷延
板(板厚0.8 〜1.6mm )とした。熱延板に内部酸化層形
成処理工程を施さずに冷間圧延工程を施したものは、冷
間圧延工程後に表2に示す条件の内部酸化層形成処理工
程を施した。なお、内部酸化層形成処理における熱処理
の雰囲気は、バッチ焼鈍では窒素雰囲気、連続焼鈍では
02:1×10-11 Paの酸化ポテンシャルを示す雰囲気と
した。内部酸化層形成処理工程を経た冷延板には酸洗を
行った。また、一部の鋼板では、内部酸化層形成処理工
程を行わなかった。
EXAMPLES Steel having the composition shown in Table 1 was melted in a converter and cast into pieces by continuous casting. The slab heating temperature SRT under the conditions shown in Table 2, the rough rolling and the finish rolling were performed, and after the rolling was completed, the slab was cooled under the conditions shown in Table 2 and wound at the winding temperature shown in Table 2.
A hot rolled sheet was obtained by the hot rolling step A or B step.
Next, these hot-rolled sheets were subjected to an internal oxide layer forming treatment step under the conditions shown in Table 2 or, without such treatment, pickled, and then subjected to a cold rolling step under the conditions shown in Table 2. It was a cold rolled sheet (sheet thickness 0.8 to 1.6 mm). When the hot-rolled sheet was subjected to the cold rolling step without performing the internal oxide layer forming step, the internal oxide layer forming step under the conditions shown in Table 2 was performed after the cold rolling step. The atmosphere for the heat treatment in the internal oxide layer forming treatment was a nitrogen atmosphere for batch annealing, and an atmosphere showing an oxidation potential of P 02 : 1 × 10 −11 Pa for continuous annealing. Pickling was performed on the cold-rolled sheet after the internal oxide layer forming step. In some steel plates, the internal oxide layer forming process was not performed.

【0065】次いで、これら冷延板に、表2に示す条件
で連続溶融亜鉛めっきラインでの焼鈍工程、めっき処理
工程、あるいはさらに合金化処理工程を施した。なお、
焼鈍温度は全て再結晶温度以上であった。また合金化処
理後は表2に示す冷却速度で冷却した。めっき処理は、
溶融亜鉛めっき浴に鋼板を浸漬して行い、浸漬した鋼板
を引き上げたのちガスワイピングにより目付量を調整し
た。めっき処理の条件は、 めっき浴:0.13%Al−Zn 浴温 : 485℃ 目付量 :45g/m2(片面当り) とした。
Next, these cold-rolled sheets were subjected to an annealing step, a plating step, or a further alloying step in a continuous galvanizing line under the conditions shown in Table 2. In addition,
The annealing temperatures were all above the recrystallization temperature. After the alloying treatment, cooling was performed at a cooling rate shown in Table 2. The plating process is
The steel sheet was immersed in a hot-dip galvanizing bath. The immersed steel sheet was pulled up, and the basis weight was adjusted by gas wiping. The conditions of the plating treatment were as follows: plating bath: 0.13% Al-Zn bath temperature: 485 ° C, basis weight: 45 g / m 2 (per side).

【0066】また、合金化処理は表2に示す条件で行
い、合金化処理温度は全てAc1変態点以下であった。得
られためっき鋼板について、組織、固溶N量、引張特
性、めっき性、歪時効硬化性を調査した。組織は、鋼板
の圧延方向断面(C断面)について、光学顕微鏡あるい
は走査型電子顕微鏡を用いて、微視組織を撮像し、画像
解析装置を用いてフェライトの平均結晶粒径を求めた。
The alloying treatment was performed under the conditions shown in Table 2, and the alloying treatment temperatures were all below the Ac 1 transformation point. About the obtained plated steel sheet, the structure, the amount of solute N, the tensile properties, the plating properties, and the strain age hardening properties were investigated. The microstructure of the section of the steel sheet in the rolling direction (C section) was imaged using an optical microscope or a scanning electron microscope, and the average crystal grain size of ferrite was determined using an image analyzer.

【0067】固溶N量は、化学分析により求めた鋼中の
全N量から析出N量を差し引いて求めた。析出N量は、
電解抽出を用いた分析法により求めた。ここで、この分
析法は、アセチル・アセトンを溶媒として用いて定電位
電解により地鉄を溶解して抽出した残渣について化学分
析により析出物となっているN量を求める分析方法であ
る。
The amount of solute N was determined by subtracting the amount of precipitated N from the total amount of N in steel determined by chemical analysis. The amount of precipitated N is
It was determined by an analytical method using electrolytic extraction. Here, this analysis method is an analysis method for determining the amount of N as a precipitate by chemical analysis of a residue extracted by dissolving ground iron by constant potential electrolysis using acetyl-acetone as a solvent.

【0068】引張特性は、鋼板より圧延直角方向に採取
したJIS Z 2204に規定のJIS 5号試験片を用いて、歪速
度:3×10-3/sで引張試験を行い、降伏強さYS、引
張強さTS、伸びElを測定した。また、鋼板の圧延方
向(L方向)、圧延方向に対し45°方向(D方向)、圧
延方向に対し90°方向(C方向)から、JIS 5号試験片
を採取した。これら試験片に15%の単軸引張予歪を付与
した時の各試験片の幅歪と板厚歪を求め、幅歪と板厚歪
の比、 r=ln(w/w0 )/ln(t/t0 ) (ここで、w0 、t0 は試験前の試験片の幅および板厚
であり、w、tは試験後の試験片の幅および板厚であ
る。)から各方向のr値を求め、次式 rmean=(rL +2 rD +rc )/4 により平均r値rmeanを求めた。ここで、rL は、圧延
方向(L方向)のr値であり、rD は、圧延方向(L方
向)に対し45°方向(D方向)のr値であり、r c は、
圧延方向(L方向)に対し90°方向(C方向)のr値で
ある。ただし、均一伸びが15%未満の場合は単軸引張予
歪量をL、D、Cの3方向のうち最も小さい均一伸びの
値に合わせるものとし、15%未満とした。
The tensile properties were sampled from the steel sheet in the direction perpendicular to the rolling direction.
Using the JIS No. 5 test piece specified in JIS Z 2204
Degree: 3 × 10-3/ S tensile test, yield strength YS, pull
Tensile strength TS and elongation El were measured. Also, how to roll steel plate
Direction (L direction), 45 ° to rolling direction (D direction), pressure
JIS No. 5 test piece from 90 ° direction (C direction) to the elongation direction
Was collected. 15% uniaxial tensile prestrain is applied to these specimens
The width distortion and thickness distortion of each test piece at the time of
R = ln (w / w0) / Ln (t / t0(Where w0, T0Is the width and thickness of the specimen before the test
And w and t are the width and thickness of the test piece after the test.
You. ) Is determined in each direction from the following equation.mean= (RL+2 rD+ Rc) / 4 gives the average r value rmeanI asked. Where rLRolled
R value in the direction (L direction), and rDIs the rolling direction (L direction
Direction) is the r value in the 45 ° direction (D direction) with respect to cIs
The r value in the 90 ° direction (C direction) with respect to the rolling direction (L direction)
is there. However, if the uniform elongation is less than 15%,
The amount of strain is the smallest uniform elongation among the three directions of L, D and C.
The value should be adjusted to less than 15%.

【0069】めっき性は、鋼板表面を目視で観察し、不
めっき欠陥の存在の有無を判定し、不めっき面積率を求
めた。不めっきの面積率が0.3 %以上で不めっき発生と
判断し、×と評価した。さらに、めっき層の耐パウダリ
ング性、合金化度の指標として、めっき層中のFe含有量
を調査した。
The plating property was determined by visually observing the surface of the steel sheet, determining the presence or absence of non-plating defects, and calculating the non-plating area ratio. When the area ratio of non-plating was 0.3% or more, it was judged that non-plating occurred and evaluated as x. Further, the Fe content in the plating layer was investigated as an index of the powdering resistance and the degree of alloying of the plating layer.

【0070】めっき層中のFe含有量は、硫酸でめっき層
を溶解し、溶解した溶液について原子吸光法でFeを定量
し、めっき層中のFe含有率を求めた。耐パウダリング性
は、めっき鋼板に90°曲げ戻しを施したのち、めっき面
にセロハン粘着テープを貼付し、引き剥がして、テープ
に付着した亜鉛粉の量を蛍光X線により測定した。な
お、亜鉛粉量は計数管のカウント(cps)で表示した。亜
鉛粉量が2000cps 以上で耐パウダリング性不良と判断
し、×と評価した。
The Fe content in the plating layer was determined by dissolving the plating layer with sulfuric acid, quantifying Fe in the dissolved solution by an atomic absorption method, and determining the Fe content in the plating layer. The powdering resistance was determined by applying a cellophane adhesive tape to the plated surface after peeling off the plated steel sheet by 90 °, peeling it off, and measuring the amount of zinc powder adhered to the tape by fluorescent X-rays. In addition, the amount of zinc powder was shown by the count (cps) of the counter tube. When the amount of zinc powder was 2000 cps or more, the powdering resistance was judged to be poor, and evaluated as x.

【0071】歪時効硬化特性は、鋼板(製品板)からJI
S 5号試験片を圧延方向に採取し、予変形として5%の
引張歪を与えて予変形応力σ5%を測定し、ついで170 ℃
×20分の塗装焼付処理相当の熱処理(時効処理)を施し
たのち、歪速度:3×10-3/sで引張試験を実施し、予
変形−熱処理後の引張特性(降伏応力YSBH、引張強さ
TS)を求め、BH量=YSBH−σ 5% 、ΔTS=TS
BH−TSを算出した。なお、YSBH、TSBHは予変形−
熱処理後の降伏応力、引張強さであり、TSは製品板の
引張強さである。
The strain aging hardening characteristic is determined by the steel plate (product plate)
S No. 5 test piece was sampled in the rolling direction, 5% tensile strain was given as pre-deformation, and pre-deformation stress σ 5% was measured.
After applying a heat treatment (aging treatment) equivalent to a paint baking treatment for × 20 minutes, a tensile test was performed at a strain rate of 3 × 10 −3 / s, and the tensile properties after pre-deformation-heat treatment (yield stress YS BH , Tensile strength TS) is determined, and BH amount = YS BH −σ 5% , ΔTS = TS
BH- TS was calculated. YS BH and TS BH are pre-deformed
TS is the yield stress and tensile strength after heat treatment, and TS is the tensile strength of the product sheet.

【0072】それらの結果を表3に示す。Table 3 shows the results.

【0073】[0073]

【表1】 [Table 1]

【0074】[0074]

【表2】 [Table 2]

【0075】[0075]

【表3】 [Table 3]

【0076】本発明例は、いずれも高い延性と、rmean
値1.5 以上の高い加工性と、BH量:80MPa 以上、ΔT
S:40MPa 以上の高い歪時効硬化特性を有し、加工性お
よび歪時効硬化特性に優れ、さらに、不めっき欠陥も見
られず、めっき性に優れている。特にめっき層の合金化
処理を行った場合には、めっき層中のFe含有量も8〜12
%程度であり、耐パウダリング性にも優れた合金化溶融
亜鉛めっき鋼板となっている。
In each of the examples of the present invention, high ductility and r mean
Workability with a value of 1.5 or more, BH amount: 80 MPa or more, ΔT
S: High strain aging hardening property of 40 MPa or more, excellent workability and strain aging hardening property, no non-plating defect is observed, and excellent plating property. In particular, when the plating layer is alloyed, the Fe content in the plating layer is also 8 to 12%.
%, Which is an alloyed hot-dip galvanized steel sheet having excellent powdering resistance.

【0077】一方、本発明を外れる比較例は、延性が低
下するか、r値が低いか、歪時効硬化特性が低下する、
めっき性が低下するか、耐パウダリング性が低下するか
して、目標とする特性を満足していない。
On the other hand, the comparative examples deviating from the present invention show that the ductility is reduced, the r value is low, or the strain age hardening property is reduced.
The target properties are not satisfied due to a decrease in plating property or a decrease in powdering resistance.

【0078】[0078]

【発明の効果】本発明によれば、延性、加工性、歪時効
硬化特性に優れ、不めっきもなく、めっき性に優れた溶
融亜鉛めっき鋼板あるいは合金化溶融亜鉛めっき鋼板
を、安定して製造でき、産業上格段の効果を奏する。な
お、本発明のめっき鋼板は、成形加工時には軟質で、成
形加工後歪時効硬化により降伏強さとともに引張強さが
向上し、成形後製品の耐衝撃特性が格段に向上し、自動
車部品用として、用途が拡大するという効果もある。
According to the present invention, a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet having excellent ductility, workability, strain age hardening characteristics, no plating, and excellent plating properties can be stably manufactured. It has a significant industrial effect. Incidentally, the plated steel sheet of the present invention is soft at the time of forming, the tensile strength as well as the yield strength is improved by strain aging hardening after forming, the impact resistance of the product after forming is significantly improved, and for automotive parts This also has the effect of expanding the applications.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 2/28 C23C 2/28 2/40 2/40 Fターム(参考) 4K027 AA02 AA23 AB02 AB28 AB42 AC02 AC12 AC18 AC73 AE12 AE18 4K037 EA01 EA02 EA04 EA13 EA15 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EA32 EB02 EB03 FA02 FA03 FC03 FC04 FC05 FD04 FE01 FE02 FH01 FJ04 FJ05 FJ06 FK03 FK08 GA05 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C23C 2/28 C23C 2/28 2/40 2/40 F term (reference) 4K027 AA02 AA23 AB02 AB28 AB42 AC02 AC12 AC18 AC73 AE12 AE18 4K037 EA01 EA02 EA04 EA13 EA15 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EA32 EB02 EB03 FA02 FA03 FC03 FC04 FC05 FD04 FE01 FE02 FH01 FJ04 FJ05 FJ06 FK03 FK08 GA05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 鋼板表面に溶融亜鉛めっき層または合金
化溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であっ
て、前記鋼板と前記溶融亜鉛めっき層または前記合金化
溶融亜鉛めっき層との界面の地鉄側に内部酸化物を有
し、さらに、 前記鋼板が、質量%で、 C:0.008 %以下、 Si:1.0 %以下、 Mn:1.0 %超2.0 %以下、 P:0.1 %以下、 S:0.01%以下、 Al:0.005 〜0.020
%、 N:0.0050〜0.0250% を含み、さらにNb:0.005 〜0.O45 %、Ti:0.005 〜0.
070 %、V:0.005 〜0.10%のうちから選ばれた1種ま
たは2種以上を含有し、かつ下記(1)式を満足して、
固溶状態のNを0.0015%以上含有し、残部Feおよび不可
避的不純物からなる組成と、平均結晶粒径20μm 以下の
フェライトを有する組織とすることを特徴とする引張強
さ440MPa以上で歪時効硬化特性および加工性に優れた高
張力溶融亜鉛めっき鋼板。 記 N/(Al+Nb+Ti+V)≧0.3 ……(1) ここで、N、Al、Nb、Ti、V:各元素含有量(質量%)
1. A hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of a steel sheet, wherein a ground at an interface between the steel sheet and the hot-dip galvanized layer or the alloyed hot-dip galvanized layer is provided. It has an internal oxide on the iron side, and the steel sheet is, in mass%, C: 0.008% or less, Si: 1.0% or less, Mn: more than 1.0% 2.0% or less, P: 0.1% or less, S: 0.01 % Or less, Al: 0.005 to 0.020
%, N: 0.0050 to 0.0250%, Nb: 0.005 to 0.045%, Ti: 0.005 to 0.
070%, V: 0.005 to 0.10%, containing one or more selected from the group and satisfying the following formula (1):
Strain age hardening at a tensile strength of 440MPa or more, characterized by having a composition containing 0.0015% or more of N in the solid solution state, a composition comprising the balance of Fe and unavoidable impurities, and a ferrite having an average crystal grain size of 20μm or less. High tensile galvanized steel sheet with excellent properties and workability. N / (Al + Nb + Ti + V) ≧ 0.3 (1) where N, Al, Nb, Ti, and V: content of each element (% by mass)
【請求項2】 前記組成に加えてさらに、質量%で、下
記A群およびB群のうちの1群または2群を含有し、か
つ前記(1)式に代えて、下記(2)式を満足すること
を特徴とする請求項1に記載の高張力溶融亜鉛めっき鋼
板。 記 A群:Mo:1.0 %以下、Ni:1.5 %以下、Cu:1.5 %以
下のうちの1種または2種以上 B群:B:0.01%以下 N/(Al+Nb+Ti+V+B)≧0.3 ……(2) ここで、N、Al、Nb、Ti、V、B:各元素含有量(質量
%)
2. In addition to the above composition, the composition further contains one or two of the following groups A and B in mass%, and the following formula (2) is replaced by the above formula (1). The high tensile galvanized steel sheet according to claim 1, wherein the steel sheet is satisfied. Group A: one or more of Mo: 1.0% or less, Ni: 1.5% or less, Cu: 1.5% or less Group B: B: 0.01% or less N / (Al + Nb + Ti + V + B) ≧ 0.3 (2) Here, N, Al, Nb, Ti, V, B: content of each element (% by mass)
【請求項3】 質量%で、 C:0.008 %以下、 Si:1.0 %以下、 Mn:1.0 %超2.0 %以下、 P:0.1 %以下、 S:0.01%以下、 Al:0.005 〜0.020
%、 N:0.0050〜0.0250% を含み、さらにNb:0.005 〜0.O45 %、Ti:0.005 〜0.
070 %、V:0.005 〜0.10%のうちから選ばれた1種ま
たは2種以上を含有し、あるいはさらに下記A群およB
群のうちの1群または2群を含有し、かつ下記(2)式
を満足する組成の鋼スラブに、スラブ加熱温度:1000℃
以上として粗圧延してシートバーとし、該シートバーに
仕上圧延出側温度を800 ℃以上とする仕上圧延を施し熱
延板としたのち、前記仕上圧延終了後、0.5 s以内に冷
却を開始し、平均冷却速度40℃/s以上で急冷し、巻取
温度:650 ℃以下で巻き取る熱延工程と、ついで、該熱
延板内部酸化物層を形成する内部酸化層形成処理工程
と、前記内部酸化層形成処理工程を経た熱延板を酸洗し
たのち、冷間圧延し冷延板とする冷延工程と、前記冷延
板に、再結晶温度以上900 ℃以下の温度で10〜120 s間
保持する連続焼鈍を行ったのち、550 ℃までを平均冷却
速度10〜300 ℃/sで冷却する焼鈍工程と、該焼鈍工程
を経た冷延板に溶融亜鉛めっき処理を施し鋼板表面に溶
融亜鉛めっき層を形成するめっき処理工程と、を順次施
すことを特徴とする引張強さ440MPa以上で歪時効特性お
よび加工性に優れた高張力溶融亜鉛めっき鋼板の製造方
法。 記 A群:Mo:1.0 %以下、Ni:1.5 %以下、Cu:1.5 %以
下 B群:B:0.01%以下 N/(Al+Nb+Ti+V+B)≧0.3 ……(2) ここで、N、Al、Nb、Ti、V、B:各元素含有量(質量
%)
3. In mass%, C: 0.008% or less, Si: 1.0% or less, Mn: more than 1.0% 2.0% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.005 to 0.020
%, N: 0.0050 to 0.0250%, Nb: 0.005 to 0.045%, Ti: 0.005 to 0.
070%, V: 0.005 to 0.10%, contains one or more kinds selected from the group consisting of:
A steel slab containing one or two of the groups and having a composition satisfying the following formula (2) is heated to a slab temperature of 1000 ° C.
As described above, the sheet bar is roughly rolled to form a sheet bar. The sheet bar is subjected to finish rolling at a finish-rolling exit temperature of 800 ° C. or more to form a hot-rolled sheet.After the finish rolling, cooling is started within 0.5 s. A hot-rolling step of rapidly cooling at an average cooling rate of 40 ° C./s or higher and winding at a winding temperature of 650 ° C. or lower; and an internal oxide layer forming step of forming an internal oxide layer of the hot-rolled sheet; After pickling the hot-rolled sheet after the internal oxide layer forming step, the cold-rolling step is performed by cold rolling to form a cold-rolled sheet, and the cold-rolled sheet is subjected to 10 to 120 at a temperature of not less than a recrystallization temperature and not more than 900 ° C. After performing continuous annealing for holding for s, an annealing step of cooling to 550 ° C at an average cooling rate of 10 to 300 ° C / s, and a hot-dip galvanized steel sheet subjected to the annealing step is subjected to hot-dip galvanizing to melt the steel sheet surface. And a plating step of forming a galvanized layer, wherein the tensile strength is 440 MPa. The method for producing a high-strength hot-dip galvanized steel sheet having excellent strain aging characteristics and workability as described above. Note Group A: Mo: 1.0% or less, Ni: 1.5% or less, Cu: 1.5% or less Group B: B: 0.01% or less N / (Al + Nb + Ti + V + B) ≧ 0.3 (2) where N, Al, Nb, Ti, V, B: content of each element (% by mass)
【請求項4】 質量%で、 C:0.008 以下、 Si:1.0 %以下、 Mn:1.0 %超2.0 %以下、 P:0.1 %以下、 S:0.01%以下、 Al:0.005 〜0.020
%、 N:0.0050〜0.0250% を含むとともに、さらにNb:0.005 〜0.O45 %、Ti:0.
005 〜0.070 %、V:0.005 〜0.10%のうち1種または
2種以上を含有し、あるいはさらに下記A群およB群の
うちの1群または2群を含有し、かつ下記(2)式を満
足する組成の鋼スラブに、スラブ加熱温度:1000℃以上
として粗圧延してシートバーとし、該シートバーに仕上
圧延出側温度を800 ℃以上とする仕上圧延を施し熱延板
としたのち、前記仕上圧延終了後、0.5 s以内に冷却を
開始し、平均冷却速度40℃/s以上で急冷し、巻取温
度:650 ℃以下で巻き取る熱延工程と、ついで、該熱延
板を酸洗したのち、冷間圧延し冷延板とする冷延工程
と、該冷延板に内部酸化層を形成する内部酸化層形成処
理工程と、該内部酸化層形成処理工程を経た冷延板に酸
洗を施し、ついで、再結晶温度以上900 ℃以下の温度で
10〜120 s間保持する連続焼鈍を行ったのち、550 ℃ま
でを平均冷却速度10〜300 ℃/sで冷却する焼鈍工程
と、該焼鈍工程を経た冷延板に溶融亜鉛めっき処理を施
し鋼板表面に溶融亜鉛めっき層を形成するめっき処理工
程と、を順次施すことを特徴とする引張強さ440MPa以上
で歪時効特性および加工性に優れた高張力溶融亜鉛めっ
き鋼板の製造方法。 記 A群:Mo:1.0 %以下、Ni:1.5 %以下、Cu:1.5 %以
下 B群:B:0.01%以下 N/(Al+Nb+Ti+V+B)≧0.3 ……(2) ここで、N、Al、Nb、Ti、V、B:各元素含有量(質量
%)
4. In mass%, C: 0.008 or less, Si: 1.0% or less, Mn: more than 1.0% 2.0% or less, P: 0.1% or less, S: 0.01% or less, Al: 0.005 to 0.020
%, N: 0.0050 to 0.0250%, and further Nb: 0.005 to 0.045%, Ti: 0.4%.
005 to 0.070%, V: 0.005 to 0.10%, contains one or more of them, or further contains one or two of the following groups A and B, and has the following formula (2) A steel slab having a composition satisfying the following conditions is subjected to rough rolling at a slab heating temperature of 1000 ° C. or higher to form a sheet bar. The sheet bar is subjected to finish rolling at a finish rolling exit temperature of 800 ° C. or higher to obtain a hot rolled sheet. After the finish rolling, cooling is started within 0.5 s, quenched at an average cooling rate of 40 ° C./s or more, and wound at a winding temperature of 650 ° C. or less. Cold rolling after cold pickling and cold rolling to a cold rolled sheet, an internal oxide layer forming step for forming an internal oxide layer on the cold rolled sheet, and a cold rolled sheet passing through the internal oxide layer forming step Is pickled, and then at a temperature not lower than the recrystallization temperature and not higher than 900 ° C.
After performing continuous annealing for 10 to 120 seconds, the steel sheet is subjected to an annealing step of cooling to 550 ° C. at an average cooling rate of 10 to 300 ° C./s, and a hot-dip galvanized steel sheet subjected to the annealing step. A method for producing a high-strength hot-dip galvanized steel sheet having a tensile strength of 440 MPa or more and excellent strain aging characteristics and workability, characterized by sequentially performing a plating process of forming a hot-dip galvanized layer on the surface. Note Group A: Mo: 1.0% or less, Ni: 1.5% or less, Cu: 1.5% or less Group B: B: 0.01% or less N / (Al + Nb + Ti + V + B) ≧ 0.3 (2) where N, Al, Nb, Ti, V, B: content of each element (% by mass)
【請求項5】 前記めっき処理工程に続いて、さらに溶
融亜鉛めっき層の合金化を行う合金化処理工程を施すこ
とを特徴とする請求項3あるいは4に記載の高張力溶融
亜鉛めっき鋼板の製造方法。
5. The production of a high-strength hot-dip galvanized steel sheet according to claim 3, wherein an alloying step of alloying the hot-dip galvanized layer is further performed subsequent to the plating step. Method.
【請求項6】 前記合金化処理工程後300 ℃までの平均
冷却速度を、5〜25℃/sとすることを特徴とする請求
項5に記載の溶融亜鉛めっき鋼板の製造方法。
6. The method for producing a hot-dip galvanized steel sheet according to claim 5, wherein an average cooling rate to 300 ° C. after the alloying step is 5 to 25 ° C./s.
【請求項7】 前記熱延工程を、スラブ加熱温度:1000
℃以上として、1000℃〜Ar3変態点の温度域で粗圧延を
終了してシートバーとし、該シートバーにAr3変態点未
満600 ℃以上の温度域で潤滑を施しつつ、圧下率:80%
以上の仕上圧延を施し熱延板としたのち、巻き取る熱延
工程とすることを特徴とする請求項3ないし6のいずれ
かに記載の高張力溶融亜鉛めっき鋼板の製造方法。
7. The slab heating temperature: 1000 in the hot rolling step.
C. or higher, rough rolling is completed in the temperature range of 1000 ° C. to the Ar 3 transformation point to form a sheet bar, and while the sheet bar is lubricated in a temperature range of 600 ° C. or more lower than the Ar 3 transformation point, the rolling reduction: 80 %
The method for producing a high-strength hot-dip galvanized steel sheet according to any one of claims 3 to 6, wherein the hot-rolled sheet is subjected to the finish rolling described above to form a hot-rolled sheet, and then to a hot-rolling step.
JP2000162499A 2000-05-31 2000-05-31 High-tensile hot-dip galvanized steel sheet and manufacturing method thereof Expired - Fee Related JP4362948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000162499A JP4362948B2 (en) 2000-05-31 2000-05-31 High-tensile hot-dip galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000162499A JP4362948B2 (en) 2000-05-31 2000-05-31 High-tensile hot-dip galvanized steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001342541A true JP2001342541A (en) 2001-12-14
JP4362948B2 JP4362948B2 (en) 2009-11-11

Family

ID=18666390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000162499A Expired - Fee Related JP4362948B2 (en) 2000-05-31 2000-05-31 High-tensile hot-dip galvanized steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4362948B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270181A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk METHOD FOR ADJUSTING BAKE HARDENABILITY OF EXTRA-LOW CARBON STEEL CONTAINING Nb
JP2008248358A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk High strength hot-dip galvanized steel sheet
CN100465322C (en) * 2006-12-29 2009-03-04 北京科技大学 Superlow carbon baking hardened steel plate added with Ti and V and its making process
WO2010016447A1 (en) * 2008-08-05 2010-02-11 Jfeスチール株式会社 High-strength hot-dip zinc-coated steel sheet having excellent surface appearance and process for production of same
CN102991449A (en) * 2012-11-08 2013-03-27 上海冠驰汽车安全技术有限公司 Force-limiting torsion bar in relation to automobile safety belt
WO2013100610A1 (en) * 2011-12-27 2013-07-04 주식회사 포스코 High-manganese hot-rolled galvanized steel sheet and manufacturing method thereof
JP2016164291A (en) * 2015-03-06 2016-09-08 株式会社神戸製鋼所 Steel for cold working
KR20200076796A (en) * 2018-12-19 2020-06-30 주식회사 포스코 Zinc plated steel sheet having excellent spot weldability and manufacturing method thereof
WO2022139251A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 High strength zinc-plated steel sheet having excellent uniform spot weldability along width direction and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10196726B2 (en) 2013-02-26 2019-02-05 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet having excellent baking hardenability and low temperature toughness with maximum tensile strength of 980 MPa or more
CN107236853B (en) * 2017-06-26 2019-03-26 武汉钢铁有限公司 Short route rolls zinc-aluminum-magnesium coating hot forming steel and its manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270181A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk METHOD FOR ADJUSTING BAKE HARDENABILITY OF EXTRA-LOW CARBON STEEL CONTAINING Nb
CN100465322C (en) * 2006-12-29 2009-03-04 北京科技大学 Superlow carbon baking hardened steel plate added with Ti and V and its making process
JP2008248358A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk High strength hot-dip galvanized steel sheet
US9200352B2 (en) 2008-08-05 2015-12-01 Jfe Steel Corporation High strength galvannealed steel sheet with excellent appearance and method for manufacturing the same
WO2010016447A1 (en) * 2008-08-05 2010-02-11 Jfeスチール株式会社 High-strength hot-dip zinc-coated steel sheet having excellent surface appearance and process for production of same
JP2010037596A (en) * 2008-08-05 2010-02-18 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having excellent appearance and method for producing the same
US9708703B2 (en) 2011-12-27 2017-07-18 Posco High-manganese hot-rolled galvanized steel sheet and manufacturing method thereof
CN104136649A (en) * 2011-12-27 2014-11-05 Posco公司 High-manganese hot-rolled galvanized steel sheet and manufacturing method thereof
WO2013100610A1 (en) * 2011-12-27 2013-07-04 주식회사 포스코 High-manganese hot-rolled galvanized steel sheet and manufacturing method thereof
CN102991449A (en) * 2012-11-08 2013-03-27 上海冠驰汽车安全技术有限公司 Force-limiting torsion bar in relation to automobile safety belt
JP2016164291A (en) * 2015-03-06 2016-09-08 株式会社神戸製鋼所 Steel for cold working
KR20200076796A (en) * 2018-12-19 2020-06-30 주식회사 포스코 Zinc plated steel sheet having excellent spot weldability and manufacturing method thereof
WO2020130602A3 (en) * 2018-12-19 2020-10-22 주식회사 포스코 Zinc plated steel sheet having excellent spot weldability and manufacturing method thereof
KR102200175B1 (en) 2018-12-19 2021-01-08 주식회사 포스코 Zinc plated steel sheet having excellent spot weldability and manufacturing method thereof
CN113195776A (en) * 2018-12-19 2021-07-30 Posco公司 Galvanized steel sheet with excellent spot weldability and manufacturing method thereof
JP2022515159A (en) * 2018-12-19 2022-02-17 ポスコ Galvanized steel sheet with excellent spot weldability and its manufacturing method
CN113195776B (en) * 2018-12-19 2023-02-24 Posco公司 Galvanized steel sheet with excellent spot weldability and manufacturing method thereof
JP7244720B2 (en) 2018-12-19 2023-03-23 ポスコ カンパニー リミテッド Galvanized steel sheet with excellent spot weldability and its manufacturing method
WO2022139251A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 High strength zinc-plated steel sheet having excellent uniform spot weldability along width direction and manufacturing method thereof

Also Published As

Publication number Publication date
JP4362948B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
CN114015933B (en) High strength and high formability cold rolled and heat treated steel sheet and method of manufacturing the same
KR100611541B1 (en) Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
KR100595946B1 (en) High tensile cold-rolled steel sheet having excellent strain aging hardening properties
JP5163356B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4265545B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
EP2589677B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
JP4206642B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4362948B2 (en) High-tensile hot-dip galvanized steel sheet and manufacturing method thereof
JP4839527B2 (en) Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP5035268B2 (en) High tensile cold-rolled steel sheet
JP4556348B2 (en) Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP4292986B2 (en) High tensile cold-rolled steel sheet and method for producing the same
WO2013084477A1 (en) High-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP3959934B2 (en) High-tensile cold-rolled steel sheet excellent in strain age hardening characteristics, impact resistance characteristics and workability, and a method for producing the same
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
CN115461482A (en) Steel sheet, component and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees