JPH07298633A - 3相pwmインバータ - Google Patents
3相pwmインバータInfo
- Publication number
- JPH07298633A JPH07298633A JP6091413A JP9141394A JPH07298633A JP H07298633 A JPH07298633 A JP H07298633A JP 6091413 A JP6091413 A JP 6091413A JP 9141394 A JP9141394 A JP 9141394A JP H07298633 A JPH07298633 A JP H07298633A
- Authority
- JP
- Japan
- Prior art keywords
- fet
- power mos
- signal
- wave
- turned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
(57)【要約】
【目的】 モータのコイル電圧をPWM制御する3相P
WMインバータに関するもので、PchパワーMOS−
FETのオン抵抗による飽和損失を低減することを目的
とする。 【構成】 PchパワーMOS−FETとNchパワー
MOS−FETを上下のアームに配したものを3相備
え、3相正弦波の最小値側の包絡線値と三角波キャリア
信号ecの最小値との差を前記3相正弦波から減じた信
号を第1の変調波信号eu1,ev1,ew1とし、か
つ第1の変調波信号eu1,ev1,ew1の方が三角
波キャリア信号ecよりも値が大であるときにPchパ
ワーMOS−FETがオンしてNchパワーMOS−F
ETがオフし、それ以外のときにはPchパワーMOS
−FETがオフしてNchパワーMOS−FETがオン
する。
WMインバータに関するもので、PchパワーMOS−
FETのオン抵抗による飽和損失を低減することを目的
とする。 【構成】 PchパワーMOS−FETとNchパワー
MOS−FETを上下のアームに配したものを3相備
え、3相正弦波の最小値側の包絡線値と三角波キャリア
信号ecの最小値との差を前記3相正弦波から減じた信
号を第1の変調波信号eu1,ev1,ew1とし、か
つ第1の変調波信号eu1,ev1,ew1の方が三角
波キャリア信号ecよりも値が大であるときにPchパ
ワーMOS−FETがオンしてNchパワーMOS−F
ETがオフし、それ以外のときにはPchパワーMOS
−FETがオフしてNchパワーMOS−FETがオン
する。
Description
【0001】
【産業上の利用分野】本発明はモータのコイル電圧をP
WM制御する3相PWMインバータに関するもので、特
にスイッチング素子にパワーMOS−FETを使用した
ものに関するものである。
WM制御する3相PWMインバータに関するもので、特
にスイッチング素子にパワーMOS−FETを使用した
ものに関するものである。
【0002】
【従来の技術】近年、3相PWMインバータが急速に普
及し、広くモータ制御に利用されてきている。この中
で、特に低騒音化を図るためPWMキャリア周波数を非
可聴域である20kHz近くにまで上げたものではそのス
イッチング素子にスイッチング速度の速いパワーMOS
−FETを使用したものが主流となりつつある。
及し、広くモータ制御に利用されてきている。この中
で、特に低騒音化を図るためPWMキャリア周波数を非
可聴域である20kHz近くにまで上げたものではそのス
イッチング素子にスイッチング速度の速いパワーMOS
−FETを使用したものが主流となりつつある。
【0003】以下に、従来の3相PWMインバータの一
構成例について図面を参照しながら説明する。
構成例について図面を参照しながら説明する。
【0004】図4は従来の3相PWMインバータの回路
ブロック図であり、1はモータに供給する3相交流電圧
波形(PWM波形)の基本周波数と実効電圧値にもとづ
きPWM信号a,b,c,d,e,fを出力する3相P
WM信号発生回路で、その出力信号は2,3,4,5,
6,7のゲート駆動回路にそれぞれ伝えられ、さらにそ
の出力がスイッチング素子である8,9,10,11,
12,13のNchパワーMOS−FETのゲートに接
続されている。14はモータに電力を供給する主電源で
あり実際にはAC100Vを整流平滑したDC140V
程度のものや、AC200Vを整流平滑したDC280
V程度のものが一般的であるが、図面上では簡略化し電
池記号にて表記している。また、15,16,17,1
8は前記ゲート駆動回路2,3,4,5,6,7を動作
させるための制御電源でありその電圧は通常DC十数V
程度である。上アーム側のNchパワーMOS−FET
8,10,12のドレインは主電源14のプラス端子
に、下アーム側のNchパワーMOS−FET9,1
1,13のソースは主電源14のマイナス端子にそれぞ
れ接続され、そして上アーム側のNchパワーMOS−
FET8のソースと下アーム側のNchパワーMOS−
FET9のドレイン、上アーム側のNchパワーMOS
−FET10のソースと下アーム側のNchパワーMO
S−FET11のドレイン、上アーム側のNchパワー
MOS−FET12のソースと下アーム側のNchパワ
ーMOS−FET13のドレインがそれぞれ接続され
て、その各々の接続部分からモータに接続される出力端
子U,V,Wが配線されている。
ブロック図であり、1はモータに供給する3相交流電圧
波形(PWM波形)の基本周波数と実効電圧値にもとづ
きPWM信号a,b,c,d,e,fを出力する3相P
WM信号発生回路で、その出力信号は2,3,4,5,
6,7のゲート駆動回路にそれぞれ伝えられ、さらにそ
の出力がスイッチング素子である8,9,10,11,
12,13のNchパワーMOS−FETのゲートに接
続されている。14はモータに電力を供給する主電源で
あり実際にはAC100Vを整流平滑したDC140V
程度のものや、AC200Vを整流平滑したDC280
V程度のものが一般的であるが、図面上では簡略化し電
池記号にて表記している。また、15,16,17,1
8は前記ゲート駆動回路2,3,4,5,6,7を動作
させるための制御電源でありその電圧は通常DC十数V
程度である。上アーム側のNchパワーMOS−FET
8,10,12のドレインは主電源14のプラス端子
に、下アーム側のNchパワーMOS−FET9,1
1,13のソースは主電源14のマイナス端子にそれぞ
れ接続され、そして上アーム側のNchパワーMOS−
FET8のソースと下アーム側のNchパワーMOS−
FET9のドレイン、上アーム側のNchパワーMOS
−FET10のソースと下アーム側のNchパワーMO
S−FET11のドレイン、上アーム側のNchパワー
MOS−FET12のソースと下アーム側のNchパワ
ーMOS−FET13のドレインがそれぞれ接続され
て、その各々の接続部分からモータに接続される出力端
子U,V,Wが配線されている。
【0005】このような構成の3相PWMインバータの
動作を図5を用いて説明する。図5は前記3相PWM信
号発生回路1の動作を示す信号波形図である。3相PW
M信号発生回路1はモータに供給する3相交流電圧波形
の基本周波数と実効電圧値にもとづき互いに120度ず
つ位相のずれた3相正弦波の変調波信号eu,ev,e
wを作成し、これと三角波のキャリア信号ecとを比較
して前記ゲート駆動回路2,3,4,5,6,7に与え
るPWM信号a,b,c,d,e,fを生成する(図5
では変調波信号euとキャリア信号ecとの比較で得ら
れるPWM信号a,bのみ図示)。ここで、各相の上ア
ームを駆動するPWM信号a,c,eと下アームを駆動
するPWM信号b,d,fとはそれぞれが互いに論理反
転の関係にあり、これにより上アーム側のNchパワー
MOS−FET8,10,12と下アーム側のNchパ
ワーMOS−FET9,11,13が対応するものどう
しで交互にオンオフ動作を行う。このことにより出力端
子U,V,Wが主電源14のプラス端子とマイナス端子
に交互にスイッチしてそれに接続されたモータが駆動す
る。なお実際には、上アームを駆動するPWM信号a,
c,eと下アームを駆動するPWM信号b,d,fとは
単純な論理反転の関係ではなく、スイッチング動作の過
渡期に上下のアームが同時にオン状態となることを防止
するためのデッドタイムが設けられるのが通常である
が、本発明の本質には関わらないので省略する。
動作を図5を用いて説明する。図5は前記3相PWM信
号発生回路1の動作を示す信号波形図である。3相PW
M信号発生回路1はモータに供給する3相交流電圧波形
の基本周波数と実効電圧値にもとづき互いに120度ず
つ位相のずれた3相正弦波の変調波信号eu,ev,e
wを作成し、これと三角波のキャリア信号ecとを比較
して前記ゲート駆動回路2,3,4,5,6,7に与え
るPWM信号a,b,c,d,e,fを生成する(図5
では変調波信号euとキャリア信号ecとの比較で得ら
れるPWM信号a,bのみ図示)。ここで、各相の上ア
ームを駆動するPWM信号a,c,eと下アームを駆動
するPWM信号b,d,fとはそれぞれが互いに論理反
転の関係にあり、これにより上アーム側のNchパワー
MOS−FET8,10,12と下アーム側のNchパ
ワーMOS−FET9,11,13が対応するものどう
しで交互にオンオフ動作を行う。このことにより出力端
子U,V,Wが主電源14のプラス端子とマイナス端子
に交互にスイッチしてそれに接続されたモータが駆動す
る。なお実際には、上アームを駆動するPWM信号a,
c,eと下アームを駆動するPWM信号b,d,fとは
単純な論理反転の関係ではなく、スイッチング動作の過
渡期に上下のアームが同時にオン状態となることを防止
するためのデッドタイムが設けられるのが通常である
が、本発明の本質には関わらないので省略する。
【0006】また、図6は従来の3相PWMインバータ
の他の構成例であり1相分のみ示している。上アームに
19のPchパワーMOS−FETを下アームに20の
NchパワーMOS−FETをそれぞれ配し、Pchパ
ワーMOS−FET19のソースが主電源14のプラス
端子に、NchパワーMOS−FET20のソースが主
電源14のマイナス端子にそれぞれ接続され、そしてP
chパワーMOS−FET19のドレインとNchパワ
ーMOS−FET20のドレインが接続されてそこから
モータに接続される出力端子Uが配線されている。21
はオンオフ動作するスイッチ手段、22,23は抵抗で
あり、これらは主電源14のプラス端子−マイナス端子
間に直列に配線され抵抗22と抵抗23の接続部がPc
hパワーMOS−FET19のゲートに接続されてい
る。また、24のスイッチ手段はNchパワーMOS−
FET20のゲートを、主電源14とマイナス端子を共
通にした制御電源25のプラス端子かマイナス端子のど
ちらかに接続するものである。
の他の構成例であり1相分のみ示している。上アームに
19のPchパワーMOS−FETを下アームに20の
NchパワーMOS−FETをそれぞれ配し、Pchパ
ワーMOS−FET19のソースが主電源14のプラス
端子に、NchパワーMOS−FET20のソースが主
電源14のマイナス端子にそれぞれ接続され、そしてP
chパワーMOS−FET19のドレインとNchパワ
ーMOS−FET20のドレインが接続されてそこから
モータに接続される出力端子Uが配線されている。21
はオンオフ動作するスイッチ手段、22,23は抵抗で
あり、これらは主電源14のプラス端子−マイナス端子
間に直列に配線され抵抗22と抵抗23の接続部がPc
hパワーMOS−FET19のゲートに接続されてい
る。また、24のスイッチ手段はNchパワーMOS−
FET20のゲートを、主電源14とマイナス端子を共
通にした制御電源25のプラス端子かマイナス端子のど
ちらかに接続するものである。
【0007】ここで、抵抗22,23とスイッチ手段2
1およびスイッチ手段24は前記ゲート駆動回路2,3
に相当するものであって、前記PWM信号aによりスイ
ッチ手段21がオンオフ動作してPchパワーMOS−
FET19がオンオフ動作し、前記PWM信号bにより
スイッチ手段24がNchパワーMOS−FET20の
ゲート電位を切り換えオンオフ動作させる。その他の動
作については図4に示した従来例と同じである。
1およびスイッチ手段24は前記ゲート駆動回路2,3
に相当するものであって、前記PWM信号aによりスイ
ッチ手段21がオンオフ動作してPchパワーMOS−
FET19がオンオフ動作し、前記PWM信号bにより
スイッチ手段24がNchパワーMOS−FET20の
ゲート電位を切り換えオンオフ動作させる。その他の動
作については図4に示した従来例と同じである。
【0008】
【発明が解決しようとする課題】しかしながら、図4に
示した従来の3相PWMインバータでは、スイッチング
素子をNchパワーMOS−FETのみで構成している
ためにゲート駆動回路2,3,4,5,6,7を動作さ
せるための制御電源の数が多いという問題があった。M
OS−FETをオンオフ動作させる際にはそのソース電
位が基準となるが、下アーム側の3つのNchパワーM
OS−FET9,11,13のソースはすべて主電源1
4のマイナス端子と接続されているためにその電位は一
定であるが、上アーム側のNchパワーMOS−FET
8,10,12のソース電位は各相の出力電圧の大きさ
にしたがい3つがそれぞれ独立に変動する。よって、上
アーム側のNchパワーMOS−FET8,10,12
に関しては、出力電圧に関わらずオンさせるに要する所
定のゲート−ソース電圧を得るには独立した3つのフロ
ーティングされた制御電源が必要となる。したがって、
下アーム用の1つと上アーム用の3つを合わせ合計4つ
の独立した制御電源15,16,17,18を必要とし
た。さらに、上アーム側のゲート駆動回路2,4,6に
PWM信号a,c,eを伝達する際、回路がフローティ
ングされているがゆえにコストの高い高速タイプのフォ
トカプラ等を介さなければならない等、回路構成が複雑
かつ高コストになってしまうという問題があった。
示した従来の3相PWMインバータでは、スイッチング
素子をNchパワーMOS−FETのみで構成している
ためにゲート駆動回路2,3,4,5,6,7を動作さ
せるための制御電源の数が多いという問題があった。M
OS−FETをオンオフ動作させる際にはそのソース電
位が基準となるが、下アーム側の3つのNchパワーM
OS−FET9,11,13のソースはすべて主電源1
4のマイナス端子と接続されているためにその電位は一
定であるが、上アーム側のNchパワーMOS−FET
8,10,12のソース電位は各相の出力電圧の大きさ
にしたがい3つがそれぞれ独立に変動する。よって、上
アーム側のNchパワーMOS−FET8,10,12
に関しては、出力電圧に関わらずオンさせるに要する所
定のゲート−ソース電圧を得るには独立した3つのフロ
ーティングされた制御電源が必要となる。したがって、
下アーム用の1つと上アーム用の3つを合わせ合計4つ
の独立した制御電源15,16,17,18を必要とし
た。さらに、上アーム側のゲート駆動回路2,4,6に
PWM信号a,c,eを伝達する際、回路がフローティ
ングされているがゆえにコストの高い高速タイプのフォ
トカプラ等を介さなければならない等、回路構成が複雑
かつ高コストになってしまうという問題があった。
【0009】また、図6に示すPchパワーMOS−F
ET19とNchパワーMOS−FET20を組み合わ
せて1アームを構成する方法では制御電源は少なくてす
むが、PchパワーMOS−FETが抱えるオン抵抗が
大きいという欠点が特性に影響する。すなわち、MOS
−FETは多数キャリア素子であるため、その多数キャ
リアの移動度が大きいほどチャネルの比抵抗が下がりオ
ン抵抗は小さくなる。多数キャリアはNchパワーMO
S−FETでは電子、PchパワーMOS−FETでは
ホールであり、その移動度は電子の方がホールより約3
倍大きいため、製造プロセスおよびチップサイズが同一
の場合にはPchパワーMOS−FETはNchパワー
MOS−FETよりもオン抵抗が約3倍大きくなる。オ
ン抵抗を小さくするにはチップサイズを大きくしなけれ
ばならず、これは即コストの上昇につながりまた寄生容
量も増加して特性が悪化するため、そのバランスから実
際に使用されるPchパワーMOS−FETはオン抵抗
がNchパワーMOS−FETの2倍程度のものが多
い。このような本質的にオン抵抗が大きいという欠点を
有しているPchパワーMOS−FETを使用して構成
した3相PWMインバータでは、NchパワーMOS−
FETのみで構成したものと比べて当然に飽和損失が大
きく、また出力電圧も小さいものとなってしまう。
ET19とNchパワーMOS−FET20を組み合わ
せて1アームを構成する方法では制御電源は少なくてす
むが、PchパワーMOS−FETが抱えるオン抵抗が
大きいという欠点が特性に影響する。すなわち、MOS
−FETは多数キャリア素子であるため、その多数キャ
リアの移動度が大きいほどチャネルの比抵抗が下がりオ
ン抵抗は小さくなる。多数キャリアはNchパワーMO
S−FETでは電子、PchパワーMOS−FETでは
ホールであり、その移動度は電子の方がホールより約3
倍大きいため、製造プロセスおよびチップサイズが同一
の場合にはPchパワーMOS−FETはNchパワー
MOS−FETよりもオン抵抗が約3倍大きくなる。オ
ン抵抗を小さくするにはチップサイズを大きくしなけれ
ばならず、これは即コストの上昇につながりまた寄生容
量も増加して特性が悪化するため、そのバランスから実
際に使用されるPchパワーMOS−FETはオン抵抗
がNchパワーMOS−FETの2倍程度のものが多
い。このような本質的にオン抵抗が大きいという欠点を
有しているPchパワーMOS−FETを使用して構成
した3相PWMインバータでは、NchパワーMOS−
FETのみで構成したものと比べて当然に飽和損失が大
きく、また出力電圧も小さいものとなってしまう。
【0010】本発明は上記従来の課題を解決するもの
で、制御電源の数が少なく飽和損失の小さい3相PWM
インバータを提供することを目的とする。
で、制御電源の数が少なく飽和損失の小さい3相PWM
インバータを提供することを目的とする。
【0011】
【課題を解決するための手段】この目的を達成するため
に本発明の3相PWMインバータは、スイッチング素子
として上アームにPchパワーMOS−FETを、下ア
ームにNchパワーMOS−FETを配したものを3相
備え、前記スイッチング素子を駆動制御する信号が変調
波信号と三角波キャリア信号とを比較して得られたPW
M信号である3相PWMインバータにおいて、前記変調
波信号は、3相正弦波の最小値側の包絡線値と三角波キ
ャリア信号の最小値との差を前記3相正弦波から減じた
信号である第1の変調波、もしくは3相正弦波の最大値
側の包絡線値と三角波キャリア信号の最大値との差を前
記3相正弦波に加えた信号である第2の変調波であっ
て、かつ、変調波が前記第1の変調波である場合には、
変調波信号の方が三角波キャリア信号よりも値が大であ
るときに上アームのPchパワーMOS−FETがオン
して下アームのNchパワーMOS−FETがオフし、
それ以外のときには上アームのPchパワーMOS−F
ETがオフして下アームのNchパワーMOS−FET
がオンするように構成し、変調波が前記第2の変調波で
ある場合には、変調波信号の方が三角波キャリア信号よ
りも値が小であるときに上アームのPchパワーMOS
−FETがオンして下アームのNchパワーMOS−F
ETがオフし、それ以外のときには上アームのPchパ
ワーMOS−FETがオフして下アームのNchパワー
MOS−FETがオンする構成となっており、また、ス
イッチング素子として上アームにNchパワーMOS−
FETを、下アームにPchパワーMOS−FETを配
したものを3相備え、前記スイッチング素子を駆動制御
する信号が変調波信号と三角波キャリア信号とを比較し
て得られたPWM信号である3相PWMインバータにお
いて、前記変調波信号は、3相正弦波の最小値側の包絡
線値と三角波キャリア信号の最小値との差を前記3相正
弦波から減じた信号である第1の変調波、もしくは3相
正弦波の最大値側の包絡線値と三角波キャリア信号の最
大値との差を前記3相正弦波に加えた信号である第2の
変調波であって、かつ、変調波が前記第1の変調波であ
る場合には、変調波信号の方が三角波キャリア信号より
も値が大であるときに上アームのNchパワーMOS−
FETがオフして下アームのPchパワーMOS−FE
Tがオンし、それ以外のときには上アームのNchパワ
ーMOS−FETがオンして下アームのPchパワーM
OS−FETがオフするように構成し、変調波が前記第
2の変調波である場合には、変調波信号の方が三角波キ
ャリア信号よりも値が小であるときに上アームのNch
パワーMOS−FETがオフして下アームのPchパワ
ーMOS−FETがオンし、それ以外のときには上アー
ムのNchパワーMOS−FETがオンして下アームの
PchパワーMOS−FETがオフする構成となってい
る。
に本発明の3相PWMインバータは、スイッチング素子
として上アームにPchパワーMOS−FETを、下ア
ームにNchパワーMOS−FETを配したものを3相
備え、前記スイッチング素子を駆動制御する信号が変調
波信号と三角波キャリア信号とを比較して得られたPW
M信号である3相PWMインバータにおいて、前記変調
波信号は、3相正弦波の最小値側の包絡線値と三角波キ
ャリア信号の最小値との差を前記3相正弦波から減じた
信号である第1の変調波、もしくは3相正弦波の最大値
側の包絡線値と三角波キャリア信号の最大値との差を前
記3相正弦波に加えた信号である第2の変調波であっ
て、かつ、変調波が前記第1の変調波である場合には、
変調波信号の方が三角波キャリア信号よりも値が大であ
るときに上アームのPchパワーMOS−FETがオン
して下アームのNchパワーMOS−FETがオフし、
それ以外のときには上アームのPchパワーMOS−F
ETがオフして下アームのNchパワーMOS−FET
がオンするように構成し、変調波が前記第2の変調波で
ある場合には、変調波信号の方が三角波キャリア信号よ
りも値が小であるときに上アームのPchパワーMOS
−FETがオンして下アームのNchパワーMOS−F
ETがオフし、それ以外のときには上アームのPchパ
ワーMOS−FETがオフして下アームのNchパワー
MOS−FETがオンする構成となっており、また、ス
イッチング素子として上アームにNchパワーMOS−
FETを、下アームにPchパワーMOS−FETを配
したものを3相備え、前記スイッチング素子を駆動制御
する信号が変調波信号と三角波キャリア信号とを比較し
て得られたPWM信号である3相PWMインバータにお
いて、前記変調波信号は、3相正弦波の最小値側の包絡
線値と三角波キャリア信号の最小値との差を前記3相正
弦波から減じた信号である第1の変調波、もしくは3相
正弦波の最大値側の包絡線値と三角波キャリア信号の最
大値との差を前記3相正弦波に加えた信号である第2の
変調波であって、かつ、変調波が前記第1の変調波であ
る場合には、変調波信号の方が三角波キャリア信号より
も値が大であるときに上アームのNchパワーMOS−
FETがオフして下アームのPchパワーMOS−FE
Tがオンし、それ以外のときには上アームのNchパワ
ーMOS−FETがオンして下アームのPchパワーM
OS−FETがオフするように構成し、変調波が前記第
2の変調波である場合には、変調波信号の方が三角波キ
ャリア信号よりも値が小であるときに上アームのNch
パワーMOS−FETがオフして下アームのPchパワ
ーMOS−FETがオンし、それ以外のときには上アー
ムのNchパワーMOS−FETがオンして下アームの
PchパワーMOS−FETがオフする構成となってい
る。
【0012】
【作用】この構成により、上下のアームをPchパワー
MOS−FETとNchパワーMOS−FETを組み合
わせて構成したことからそのゲートを駆動するための制
御電源が少なくてすみ、また変調波信号の平均値が三角
波キャリア信号の中間値から最大値側もしくは最小値側
にずれて上アームと下アームの平均オン時間に差が生
じ、そして、その平均オン時間の短い方のアームがオン
抵抗の大きなPchパワーMOS−FETに、平均オン
時間の長い方のアームがオン抵抗の小さなNchパワー
MOS−FETになるよう構成したことにより飽和損失
の低減が図れる。
MOS−FETとNchパワーMOS−FETを組み合
わせて構成したことからそのゲートを駆動するための制
御電源が少なくてすみ、また変調波信号の平均値が三角
波キャリア信号の中間値から最大値側もしくは最小値側
にずれて上アームと下アームの平均オン時間に差が生
じ、そして、その平均オン時間の短い方のアームがオン
抵抗の大きなPchパワーMOS−FETに、平均オン
時間の長い方のアームがオン抵抗の小さなNchパワー
MOS−FETになるよう構成したことにより飽和損失
の低減が図れる。
【0013】
(実施例1)以下、本発明の一実施例について図面を参
照しながら説明する。
照しながら説明する。
【0014】本発明の一実施例における3相PWMイン
バータの回路構成は、3相PWM信号発生回路を除いて
は前述した従来例の図6に示したものと同じであって、
上アームにPchパワーMOS−FETを、下アームに
NchパワーMOS−FETをそれぞれ配したものであ
り、本図と図1を用いて以下その動作を説明する。図1
は本発明の一実施例における3相PWMインバータの3
相PWM信号発生回路(図示せず)の動作を示す信号波
形図である。その第1の変調波信号eu1,ev1,e
w1は,従来例を示した図5における3相正弦波の変調
波信号eu,ev,ewの最小値側の包絡線値elと三
角波キャリア信号ecの最小値との差を3相正弦波の変
調波信号eu,ev,ewからそれぞれ減じた信号であ
り、この第1の変調波信号eu1,ev1,ew1と三
角波キャリア信号ecとを比較して得られるPWM信号
g,h,iは1/3周期スイッチングが休止する波形と
なる。これはスイッチング素子のスイッチング回数を減
少しスイッチング損失を低減する方法として知られてい
るものである(例えば、電気学会論文誌B,Vol.1
04,No.5,p319,昭59−5)。
バータの回路構成は、3相PWM信号発生回路を除いて
は前述した従来例の図6に示したものと同じであって、
上アームにPchパワーMOS−FETを、下アームに
NchパワーMOS−FETをそれぞれ配したものであ
り、本図と図1を用いて以下その動作を説明する。図1
は本発明の一実施例における3相PWMインバータの3
相PWM信号発生回路(図示せず)の動作を示す信号波
形図である。その第1の変調波信号eu1,ev1,e
w1は,従来例を示した図5における3相正弦波の変調
波信号eu,ev,ewの最小値側の包絡線値elと三
角波キャリア信号ecの最小値との差を3相正弦波の変
調波信号eu,ev,ewからそれぞれ減じた信号であ
り、この第1の変調波信号eu1,ev1,ew1と三
角波キャリア信号ecとを比較して得られるPWM信号
g,h,iは1/3周期スイッチングが休止する波形と
なる。これはスイッチング素子のスイッチング回数を減
少しスイッチング損失を低減する方法として知られてい
るものである(例えば、電気学会論文誌B,Vol.1
04,No.5,p319,昭59−5)。
【0015】この際に、第1の変調波信号eu1,ev
1,ew1の方が三角波キャリア信号ecよりも値が大
であるときに図6に示す上アームのPchパワーMOS
−FET19がオンして下アームのNchパワーMOS
−FET20がオフし、それ以外のときには上アームの
PchパワーMOS−FET19がオフして下アームの
NchパワーMOS−FET20がオンするように構成
されている。すなわち1相分のみ説明すると、前記PW
M信号gによりスイッチ手段21が、PWM信号gの論
理反転信号によりスイッチ手段24がそれぞれ動作し
て、PWM信号gが‘H’であるときにPchパワーM
OS−FET19がオンしてNchパワーMOS−FE
T20がオフし、PWM信号gが‘L’であるときにP
chパワーMOS−FET19がオフしてNchパワー
MOS−FET20がオンする構成となっている。この
ことにより、1/3周期のスイッチングが休止する期間
においては上アームのPchパワーMOS−FET19
がオフ、下アームのNchパワーMOS−FET20が
オンとなる。
1,ew1の方が三角波キャリア信号ecよりも値が大
であるときに図6に示す上アームのPchパワーMOS
−FET19がオンして下アームのNchパワーMOS
−FET20がオフし、それ以外のときには上アームの
PchパワーMOS−FET19がオフして下アームの
NchパワーMOS−FET20がオンするように構成
されている。すなわち1相分のみ説明すると、前記PW
M信号gによりスイッチ手段21が、PWM信号gの論
理反転信号によりスイッチ手段24がそれぞれ動作し
て、PWM信号gが‘H’であるときにPchパワーM
OS−FET19がオンしてNchパワーMOS−FE
T20がオフし、PWM信号gが‘L’であるときにP
chパワーMOS−FET19がオフしてNchパワー
MOS−FET20がオンする構成となっている。この
ことにより、1/3周期のスイッチングが休止する期間
においては上アームのPchパワーMOS−FET19
がオフ、下アームのNchパワーMOS−FET20が
オンとなる。
【0016】以上のように本実施例によれば、上アーム
側にPchパワーMOS−FET19を配し、その駆動
の際の基準となるソースが主電源14のプラス端子に接
続されてその電位が変動しないため、図示したような制
御電源を不要とする構成がとれる。よって、必要な制御
電源は下アーム用の1つだけですむ。また、上下アーム
のスイッチング素子の平均オン時間のデューティーは三
角波キャリア信号の振幅値に対する変調波信号の平均値
の割合となるが、本実施例の構成の場合、上アーム側の
PchパワーMOS−FET19の平均オン時間のデュ
ーティーは、最も大きくなる最大出力電圧時(変調波信
号の振幅が三角波キャリア信号の振幅と一致)において
も約48%であり、出力電圧ゼロ時においては0%すな
わちPchパワーMOS−FET19は完全にオフしN
chパワーMOS−FET20がオンし続ける。従来例
では出力電圧に関わらず常に平均オン時間のデューティ
ーは50%すなわちPchパワーMOS−FET19の
平均オン時間とNchパワーMOS−FET20の平均
オン時間は同じであるから、従来例と比較し出力電圧の
低いときほどオン抵抗の大きいPchパワーMOS−F
ET19の平均オン時間を減らすことによる飽和損失の
低減の効果は高いものとなる。実使用時においては常に
最大出力電圧で運転することは希であるため飽和損失を
低減することができ、特にV/F一定制御によってモー
タを低速で回転させるような用途においては出力電圧が
小さいため効果の高いものである。さらに、1/3周期
のスイッチング休止期間によりスイッチング回数が従来
の2/3に減少するためスイッチング損失の低減も図る
ことができ、また、スイッチングに伴い発生する高周波
電流成分が浮遊容量を介して漏洩する電流についても、
スイッチング回数の減少によって低減される。
側にPchパワーMOS−FET19を配し、その駆動
の際の基準となるソースが主電源14のプラス端子に接
続されてその電位が変動しないため、図示したような制
御電源を不要とする構成がとれる。よって、必要な制御
電源は下アーム用の1つだけですむ。また、上下アーム
のスイッチング素子の平均オン時間のデューティーは三
角波キャリア信号の振幅値に対する変調波信号の平均値
の割合となるが、本実施例の構成の場合、上アーム側の
PchパワーMOS−FET19の平均オン時間のデュ
ーティーは、最も大きくなる最大出力電圧時(変調波信
号の振幅が三角波キャリア信号の振幅と一致)において
も約48%であり、出力電圧ゼロ時においては0%すな
わちPchパワーMOS−FET19は完全にオフしN
chパワーMOS−FET20がオンし続ける。従来例
では出力電圧に関わらず常に平均オン時間のデューティ
ーは50%すなわちPchパワーMOS−FET19の
平均オン時間とNchパワーMOS−FET20の平均
オン時間は同じであるから、従来例と比較し出力電圧の
低いときほどオン抵抗の大きいPchパワーMOS−F
ET19の平均オン時間を減らすことによる飽和損失の
低減の効果は高いものとなる。実使用時においては常に
最大出力電圧で運転することは希であるため飽和損失を
低減することができ、特にV/F一定制御によってモー
タを低速で回転させるような用途においては出力電圧が
小さいため効果の高いものである。さらに、1/3周期
のスイッチング休止期間によりスイッチング回数が従来
の2/3に減少するためスイッチング損失の低減も図る
ことができ、また、スイッチングに伴い発生する高周波
電流成分が浮遊容量を介して漏洩する電流についても、
スイッチング回数の減少によって低減される。
【0017】なお、前記第1の変調波信号eu1,ev
1,ew1は図5における3相正弦波の変調波信号e
u,ev,ewの最大値側の包絡線値ehと三角波キャ
リア信号ecの最大値との差を3相正弦波の変調波信号
eu,ev,ewにそれぞれ加えた図2に示す第2の変
調波信号eu2,ev2,ew2であってもよく、この
場合に、第2の変調波信号eu2,ev2,ew2の方
が三角波キャリア信号ecよりも値が小であるときに図
6に示す上アームのPchパワーMOS−FET19が
オンして下アームのNchパワーMOS−FET20が
オフし、それ以外のときには上アームのPchパワーM
OS−FET19がオフして下アームのNchパワーM
OS−FET20がオンするように構成すれば同様の効
果を得ることができる。すなわち、図1と同様にPWM
信号g,h,iが‘H’であるときにPchパワーMO
S−FETがオンしてNchパワーMOS−FETがオ
フし、PWM信号g,h,iが‘L’であるときにPc
hパワーMOS−FETがオフしてNchパワーMOS
−FETがオンする構成とすればよい。
1,ew1は図5における3相正弦波の変調波信号e
u,ev,ewの最大値側の包絡線値ehと三角波キャ
リア信号ecの最大値との差を3相正弦波の変調波信号
eu,ev,ewにそれぞれ加えた図2に示す第2の変
調波信号eu2,ev2,ew2であってもよく、この
場合に、第2の変調波信号eu2,ev2,ew2の方
が三角波キャリア信号ecよりも値が小であるときに図
6に示す上アームのPchパワーMOS−FET19が
オンして下アームのNchパワーMOS−FET20が
オフし、それ以外のときには上アームのPchパワーM
OS−FET19がオフして下アームのNchパワーM
OS−FET20がオンするように構成すれば同様の効
果を得ることができる。すなわち、図1と同様にPWM
信号g,h,iが‘H’であるときにPchパワーMO
S−FETがオンしてNchパワーMOS−FETがオ
フし、PWM信号g,h,iが‘L’であるときにPc
hパワーMOS−FETがオフしてNchパワーMOS
−FETがオンする構成とすればよい。
【0018】(実施例2)以下、本発明の第2の実施例
について説明する。
について説明する。
【0019】図3は本発明の第2の実施例における3相
PWMインバータの回路構成を示すものであり1相分の
み示している。上アームに26のNchパワーMOS−
FETを、下アームに27のPchパワーMOS−FE
Tをそれぞれ配し、NchパワーMOS−FET26の
ドレインを主電源14のプラス端子に、PchパワーM
OS−FET27のドレインを主電源14のマイナス端
子にそれぞれ接続している。NchパワーMOS−FE
T26とPchパワーMOS−FET27はゲートとソ
ースをそれぞれ共通に接続し、そのゲート−ソース間に
はツェナーダイオード32,33で構成された電圧リミ
ット手段と抵抗34を接続し、そのソースがモータに接
続される出力端子Uとしている。主電源14にはプラス
端子側に制御電源30を、マイナス端子側に制御電源3
1を直列に配し、その制御電源30と前記共通接続され
たゲートとの間に電流制御手段28を、制御電源31と
前記共通接続されたゲートとの間に電流制御手段29を
それぞれ配置している。
PWMインバータの回路構成を示すものであり1相分の
み示している。上アームに26のNchパワーMOS−
FETを、下アームに27のPchパワーMOS−FE
Tをそれぞれ配し、NchパワーMOS−FET26の
ドレインを主電源14のプラス端子に、PchパワーM
OS−FET27のドレインを主電源14のマイナス端
子にそれぞれ接続している。NchパワーMOS−FE
T26とPchパワーMOS−FET27はゲートとソ
ースをそれぞれ共通に接続し、そのゲート−ソース間に
はツェナーダイオード32,33で構成された電圧リミ
ット手段と抵抗34を接続し、そのソースがモータに接
続される出力端子Uとしている。主電源14にはプラス
端子側に制御電源30を、マイナス端子側に制御電源3
1を直列に配し、その制御電源30と前記共通接続され
たゲートとの間に電流制御手段28を、制御電源31と
前記共通接続されたゲートとの間に電流制御手段29を
それぞれ配置している。
【0020】本発明の第2の実施例を動作させるPWM
信号は前記第1の実施例と同じであり図1に示すPWM
信号gにより電流制御手段29が、PWM信号gの論理
反転信号により電流制御手段28がそれぞれ所定の電流
を流す動作を行う。PWM信号gが‘H’であるときに
は電流制御手段29が所定の電流を流して電流制御手段
28が電流を遮断し、これによってPchパワーMOS
−FET27がオンして、NchパワーMOS−FET
26がオフする。逆にPWM信号gが‘L’であるとき
には電流制御手段29が電流を遮断して電流制御手段2
8が所定の電流を流し、これによりPchパワーMOS
−FET27がオフして、NchパワーMOS−FET
26がオンする。
信号は前記第1の実施例と同じであり図1に示すPWM
信号gにより電流制御手段29が、PWM信号gの論理
反転信号により電流制御手段28がそれぞれ所定の電流
を流す動作を行う。PWM信号gが‘H’であるときに
は電流制御手段29が所定の電流を流して電流制御手段
28が電流を遮断し、これによってPchパワーMOS
−FET27がオンして、NchパワーMOS−FET
26がオフする。逆にPWM信号gが‘L’であるとき
には電流制御手段29が電流を遮断して電流制御手段2
8が所定の電流を流し、これによりPchパワーMOS
−FET27がオフして、NchパワーMOS−FET
26がオンする。
【0021】以上のように本発明の第2の実施例によれ
ば、必要な制御電源は上アーム用と下アーム用に各々1
つの計2つですむため従来例よりも制御電源の数を減ら
すことができ、また第1の実施例と同様の理由によりス
イッチング素子の飽和損失およびスイッチング損失を低
減することができる。さらに、プッシュプル構成となっ
ているため第1の実施例の構成に比べ、オンさせるとき
もオフさせるときもNchパワーMOS−FET26と
PchパワーMOS−FET27の両方を高速に駆動す
ることができる。したがって、キャリア周波数を高める
ことが可能であり静音化を図ることができる。
ば、必要な制御電源は上アーム用と下アーム用に各々1
つの計2つですむため従来例よりも制御電源の数を減ら
すことができ、また第1の実施例と同様の理由によりス
イッチング素子の飽和損失およびスイッチング損失を低
減することができる。さらに、プッシュプル構成となっ
ているため第1の実施例の構成に比べ、オンさせるとき
もオフさせるときもNchパワーMOS−FET26と
PchパワーMOS−FET27の両方を高速に駆動す
ることができる。したがって、キャリア周波数を高める
ことが可能であり静音化を図ることができる。
【0022】なお、第1の実施例で述べたとおり、変調
波信号は第1の変調波信号eu1,ev1,ew1では
なく第2の変調波信号eu2,ev2,ew2であって
もよい。
波信号は第1の変調波信号eu1,ev1,ew1では
なく第2の変調波信号eu2,ev2,ew2であって
もよい。
【0023】
【発明の効果】以上のように本発明は、上下のアームを
PchパワーMOS−FETとNchパワーMOS−F
ETを組み合わせて構成したことによりそのゲートを駆
動するための制御電源が少なくてすみ、よって簡単な回
路構成とすることができる。
PchパワーMOS−FETとNchパワーMOS−F
ETを組み合わせて構成したことによりそのゲートを駆
動するための制御電源が少なくてすみ、よって簡単な回
路構成とすることができる。
【0024】また、スイッチング素子をPWM制御する
際の変調波信号を、3相正弦波の最小値側の包絡線値と
三角波キャリア信号の最小値との差を3相正弦波から減
じた信号とする、あるいは3相正弦波の最大値側の包絡
線値と三角波キャリア信号の最大値との差を3相正弦波
に加えた信号とすることにより、上アームと下アームの
平均オン時間に差が生じ、そして、その平均オン時間の
短い方のアームをオン抵抗の大きなPchパワーMOS
−FETに、平均オン時間の長い方のアームをオン抵抗
の小さなNchパワーMOS−FETにそれぞれ割り当
てたことによってPchパワーMOS−FETの飽和損
失を低減できる。これにより、オン抵抗の大きなPch
パワーMOS−FETを使用でき、換言すればNchパ
ワーMOS−FETとチップサイズに大差のないPch
パワーMOS−FETを使用できることとなりコストダ
ウンが図れる。
際の変調波信号を、3相正弦波の最小値側の包絡線値と
三角波キャリア信号の最小値との差を3相正弦波から減
じた信号とする、あるいは3相正弦波の最大値側の包絡
線値と三角波キャリア信号の最大値との差を3相正弦波
に加えた信号とすることにより、上アームと下アームの
平均オン時間に差が生じ、そして、その平均オン時間の
短い方のアームをオン抵抗の大きなPchパワーMOS
−FETに、平均オン時間の長い方のアームをオン抵抗
の小さなNchパワーMOS−FETにそれぞれ割り当
てたことによってPchパワーMOS−FETの飽和損
失を低減できる。これにより、オン抵抗の大きなPch
パワーMOS−FETを使用でき、換言すればNchパ
ワーMOS−FETとチップサイズに大差のないPch
パワーMOS−FETを使用できることとなりコストダ
ウンが図れる。
【0025】さらに、前記変調波信号を用いたことから
1/3周期のスイッチング休止期間によりスイッチング
回数が減少してスイッチング損失が低減される。これに
より、前述した飽和損失の低減と合わせスイッチング素
子の発熱を低くおさえることができる。加えて、浮遊容
量を介して流出する漏洩電流についても、スイッチング
回数の減少により低減される。
1/3周期のスイッチング休止期間によりスイッチング
回数が減少してスイッチング損失が低減される。これに
より、前述した飽和損失の低減と合わせスイッチング素
子の発熱を低くおさえることができる。加えて、浮遊容
量を介して流出する漏洩電流についても、スイッチング
回数の減少により低減される。
【図1】本発明の第1の実施例における3相PWMイン
バータの動作を示す信号波形図
バータの動作を示す信号波形図
【図2】本発明の第1の実施例における3相PWMイン
バータの動作を示す信号波形図
バータの動作を示す信号波形図
【図3】本発明の第2の実施例における3相PWMイン
バータの回路構成図
バータの回路構成図
【図4】従来の3相PWMインバータの回路ブロック図
【図5】従来の動作を示す信号波形図
【図6】従来の他の構成例を示す回路構成図
19,27 PchパワーMOS−FET 8,9,10,11,12,13,20,26 Nch
パワーMOS−FET eu1,ev1,ew1 第1の変調波信号 eu2,ev2,ew2 第2の変調波信号 ec 三角波キャリア信号
パワーMOS−FET eu1,ev1,ew1 第1の変調波信号 eu2,ev2,ew2 第2の変調波信号 ec 三角波キャリア信号
Claims (2)
- 【請求項1】スイッチング素子として上アームにPch
パワーMOS−FETを、下アームにNchパワーMO
S−FETを配したものを3相備え、前記スイッチング
素子を駆動制御する信号が変調波信号と三角波キャリア
信号とを比較して得られたPWM信号である3相PWM
インバータにおいて、 前記変調波信号は、3相正弦波の最小値側の包絡線値と
三角波キャリア信号の最小値との差を前記3相正弦波か
ら減じた信号である第1の変調波、もしくは3相正弦波
の最大値側の包絡線値と三角波キャリア信号の最大値と
の差を前記3相正弦波に加えた信号である第2の変調波
であって、かつ、 変調波が前記第1の変調波である場合には、変調波信号
の方が三角波キャリア信号よりも値が大であるときに上
アームのPchパワーMOS−FETがオンして下アー
ムのNchパワーMOS−FETがオフし、それ以外の
ときには上アームのPchパワーMOS−FETがオフ
して下アームのNchパワーMOS−FETがオンする
ように構成し、 変調波が前記第2の変調波である場合には、変調波信号
の方が三角波キャリア信号よりも値が小であるときに上
アームのPchパワーMOS−FETがオンして下アー
ムのNchパワーMOS−FETがオフし、それ以外の
ときには上アームのPchパワーMOS−FETがオフ
して下アームのNchパワーMOS−FETがオンする
ように構成したことを特徴とする3相PWMインバー
タ。 - 【請求項2】スイッチング素子として上アームにNch
パワーMOS−FETを、下アームにPchパワーMO
S−FETを配したものを3相備え、前記スイッチング
素子を駆動制御する信号が変調波信号と三角波キャリア
信号とを比較して得られたPWM信号である3相PWM
インバータにおいて、 前記変調波信号は、3相正弦波の最小値側の包絡線値と
三角波キャリア信号の最小値との差を前記3相正弦波か
ら減じた信号である第1の変調波、もしくは3相正弦波
の最大値側の包絡線値と三角波キャリア信号の最大値と
の差を前記3相正弦波に加えた信号である第2の変調波
であって、かつ、 変調波が前記第1の変調波である場合には、変調波信号
の方が三角波キャリア信号よりも値が大であるときに上
アームのNchパワーMOS−FETがオフして下アー
ムのPchパワーMOS−FETがオンし、それ以外の
ときには上アームのNchパワーMOS−FETがオン
して下アームのPchパワーMOS−FETがオフする
ように構成し、 変調波が前記第2の変調波である場合には、変調波信号
の方が三角波キャリア信号よりも値が小であるときに上
アームのNchパワーMOS−FETがオフして下アー
ムのPchパワーMOS−FETがオンし、それ以外の
ときには上アームのNchパワーMOS−FETがオン
して下アームのPchパワーMOS−FETがオフする
ように構成したことを特徴とする3相PWMインバー
タ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09141394A JP3163896B2 (ja) | 1994-04-28 | 1994-04-28 | 3相pwmインバータ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09141394A JP3163896B2 (ja) | 1994-04-28 | 1994-04-28 | 3相pwmインバータ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07298633A true JPH07298633A (ja) | 1995-11-10 |
JP3163896B2 JP3163896B2 (ja) | 2001-05-08 |
Family
ID=14025701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09141394A Expired - Fee Related JP3163896B2 (ja) | 1994-04-28 | 1994-04-28 | 3相pwmインバータ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3163896B2 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1085489A (ja) * | 1996-09-18 | 1998-04-07 | Matsushita Electric Ind Co Ltd | 洗濯機等の制御装置 |
JP2006320177A (ja) * | 2005-05-16 | 2006-11-24 | Hitachi Ltd | 回転電機制御装置 |
US7327181B2 (en) | 2004-02-19 | 2008-02-05 | Mitsubishi Denki Kabushiki Kaisha | Multiple phase simultaneous switching preventing circuit, PWM inverter and its driving method |
JP2009065185A (ja) * | 1996-05-15 | 2009-03-26 | Siliconix Inc | シンクロナス整流器或いは電圧クランプ用の3端子パワーmosfetスイッチ |
JP2014068428A (ja) * | 2012-09-25 | 2014-04-17 | Mitsubishi Electric Corp | 電力変換装置 |
US9628004B2 (en) | 2013-09-19 | 2017-04-18 | Denso Corporation | Motor drive device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101253232B1 (ko) * | 2005-10-18 | 2013-04-16 | 삼성전자주식회사 | 인버터 압축기의 예열 장치 및 그 방법 |
-
1994
- 1994-04-28 JP JP09141394A patent/JP3163896B2/ja not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009065185A (ja) * | 1996-05-15 | 2009-03-26 | Siliconix Inc | シンクロナス整流器或いは電圧クランプ用の3端子パワーmosfetスイッチ |
JPH1085489A (ja) * | 1996-09-18 | 1998-04-07 | Matsushita Electric Ind Co Ltd | 洗濯機等の制御装置 |
US7327181B2 (en) | 2004-02-19 | 2008-02-05 | Mitsubishi Denki Kabushiki Kaisha | Multiple phase simultaneous switching preventing circuit, PWM inverter and its driving method |
JP2006320177A (ja) * | 2005-05-16 | 2006-11-24 | Hitachi Ltd | 回転電機制御装置 |
JP2014068428A (ja) * | 2012-09-25 | 2014-04-17 | Mitsubishi Electric Corp | 電力変換装置 |
US9628004B2 (en) | 2013-09-19 | 2017-04-18 | Denso Corporation | Motor drive device |
Also Published As
Publication number | Publication date |
---|---|
JP3163896B2 (ja) | 2001-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7391181B2 (en) | Loss minimized PWM for voltage source inverters taking into account inverter non-linearity | |
US5107151A (en) | Switching circuit employing electronic devices in series with an inductor to avoid commutation breakdown and extending the current range of switching circuits by using igbt devices in place of mosfets | |
JP4509092B2 (ja) | 電子機器及び電源回路 | |
JPH07222493A (ja) | 電力用電子機器における直流アクチュエータの制御装置 | |
EP2678941B1 (en) | Driver circuit for a semiconductor power switch | |
JP3163896B2 (ja) | 3相pwmインバータ | |
US7616047B2 (en) | Transistor arrangement for rectifier and inverter | |
JP2000209080A (ja) | 交流モ―ドで動作する半導体素子を有するスイッチ制御回路 | |
US5747958A (en) | Circuit arrangement for powering a two-phase asynchronous motor | |
JP2007159364A (ja) | 変換器 | |
KR100565023B1 (ko) | 직류 모터용 제어 회로 | |
JPH11262269A (ja) | パルス幅変調形インバータ装置の制御方法 | |
WO2014024596A1 (ja) | インバータ駆動回路 | |
US20220140748A1 (en) | Semiconductor device and inverter device | |
JPH05308778A (ja) | 電気自動車駆動用インバータ | |
JP4893007B2 (ja) | 交流スイッチ | |
JPH10209832A (ja) | 半導体スイッチ回路 | |
JPH0287975A (ja) | 単相インバータ装置 | |
KR102402453B1 (ko) | 3상 인버터 및 그 구동방법 | |
KR20080057970A (ko) | 비대칭 pwm 방식을 위한 3상 비대칭 인버터회로 | |
JPH1169842A (ja) | 駆動回路 | |
KR100387333B1 (ko) | 브리지형태로회로구성이이루어진전력변환기의스위칭장치및방법 | |
CN115333144A (zh) | 一种逆变器、电路和控制方法 | |
JP3119034B2 (ja) | Pwmインバータ用出力回路 | |
KR101158928B1 (ko) | 단상 인버터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |