JPH07296717A - Electric field discharging type cold negative electrode - Google Patents

Electric field discharging type cold negative electrode

Info

Publication number
JPH07296717A
JPH07296717A JP8858294A JP8858294A JPH07296717A JP H07296717 A JPH07296717 A JP H07296717A JP 8858294 A JP8858294 A JP 8858294A JP 8858294 A JP8858294 A JP 8858294A JP H07296717 A JPH07296717 A JP H07296717A
Authority
JP
Japan
Prior art keywords
gate electrode
cold cathode
field emission
substrate
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8858294A
Other languages
Japanese (ja)
Other versions
JP2646999B2 (en
Inventor
Hironori Imura
裕則 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8858294A priority Critical patent/JP2646999B2/en
Publication of JPH07296717A publication Critical patent/JPH07296717A/en
Application granted granted Critical
Publication of JP2646999B2 publication Critical patent/JP2646999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly eliminate a metal layer without any remaining part within a short time during a step for lifting off a high melting point metal layer at the process of manufacturing a negative electrode by forming a specific pattern in an electric field discharging type cold negative electrode having a specified structure. CONSTITUTION:In an electric field discharging type cold negative electrode provided with a gate electrode 3 having more than one emitter cones 7 with sharp tips and an opening for surrounding the tips thereof on a base plate 1 consisting of an insulating body having a conductive body or a conductive layer on its surface, and an insulating layer 2 between the base plate 1 and the gate electrode 3, an island like, a belt like or a comb like projecting part pattern 8 is formed on an outer peripheral part on the base plate 1 in which the pattern on the electric field discharging type cool negative electrode is not formed. Preferably, the upper surface of the projecting part pattern 8 is formed of an electric conductive layer made of the same material as that of the gate electrode 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子放出源となる冷陰
極、特に鋭利な先端から電子を放出する電界放出型冷陰
極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold cathode which serves as an electron emission source, and more particularly to a field emission cold cathode which emits electrons from a sharp tip.

【0002】[0002]

【従来の技術】LSI製造技術を応用した微小構造を制
作するマイクロマシーニング技術により、スピント
(C.A.Spindt)らはシリコンウエハ上に電界
放出型冷陰極を制作している(ジャーナル・オブ・アプ
ライド・フィジックス(Journal of App
lied Physics)第39巻3504−350
5頁1968年)。
2. Description of the Related Art Spin Spin et al. (C.A. Spindt) et al. Produce a field emission cold cathode on a silicon wafer by a micromachining technique for producing a microstructure by applying an LSI manufacturing technique (Journal of・ Applied Physics (Journal of App
Lied Physics) Vol. 39, 3504-350
P. 5, 1968).

【0003】以下に、図6に示す従来の陰極製造工程と
構造の断面図を参照して従来の製造工程を簡単に述べ
る。
The conventional manufacturing process will be briefly described below with reference to the sectional view of the conventional cathode manufacturing process and structure shown in FIG.

【0004】単結晶シリコンからなる基板1上に1μm
圧の絶縁層2およびモリブデンからなるゲート電極3が
形成されており、絶縁層2およびゲート電極3を貫通し
た直径約1.5μmのキャビティ4を形成する(図6−
a)。
1 μm on a substrate 1 made of single crystal silicon
Pressure insulating layer 2 and a gate electrode 3 made of molybdenum are formed, and a cavity 4 having a diameter of about 1.5 μm is formed through the insulating layer 2 and the gate electrode 3 (FIG. 6-
a).

【0005】基板1の中心を貫通する基板1の法線を回
転軸とし、基板1を回転させながら前記法線から70°
の方向よりアルミニウム(以下、Alと記す。)からな
る犠牲層5を真空蒸着法を用いてゲート電極3および前
記穴の側面の一部上に形成する(図6−b)。
With the normal line of the substrate 1 penetrating the center of the substrate 1 as the axis of rotation, while rotating the substrate 1, 70 ° from the normal line.
The sacrificial layer 5 made of aluminum (hereinafter, referred to as Al) is formed on the gate electrode 3 and a part of the side surface of the hole by a vacuum evaporation method (FIG. 6-b).

【0006】次に、基板1の中心を貫通する基板1の法
線を回転軸とし、基板1を回転させながら法線方向から
モリブデン(以下、Moと記す。)等の高融点金属を真
空蒸着法により犠牲層5上に蒸着形成する。Moにより
形成される高融点金属層6がゲート電極1上に積層され
るに従い、キャビティ4上に形成される高融点金属層6
の穴は穴側面にもMoが推積するために次第に小さくな
る。一方、高融点金属層6の穴を通過したMoはキャビ
ティ4底面に推積するが、高融点金属層6の穴が小さく
なるに従い推積する面積が小さくなる。高融点金属層6
の穴が完全に閉じるまでMoを推積すれば、キャビティ
4底面に形成される推積物(以下、エミッタコーン7と
称する。)は円錐形状となる(図6−c)。
Next, a high melting point metal such as molybdenum (hereinafter referred to as Mo) is vacuum-deposited from the normal direction while rotating the substrate 1 with the normal line of the substrate 1 penetrating the center of the substrate 1 as a rotation axis. It is formed on the sacrificial layer 5 by vapor deposition by the method. As the refractory metal layer 6 formed of Mo is stacked on the gate electrode 1, the refractory metal layer 6 formed on the cavity 4 is formed.
The holes are gradually smaller because Mo accumulates on the side surfaces of the holes. On the other hand, Mo that has passed through the holes of the high-melting point metal layer 6 is deposited on the bottom surface of the cavity 4, but the area that is deposited becomes smaller as the holes of the high-melting point metal layer 6 become smaller. Refractory metal layer 6
When Mo is deposited until the hole of (3) is completely closed, the deposit formed on the bottom surface of the cavity 4 (hereinafter referred to as the emitter cone 7) has a conical shape (FIG. 6-c).

【0007】高融点金属層6を形成後、リン酸等の弱酸
に浸し、犠牲層5を溶解すればリフトオフ法により高融
点金属層6も除去する事が出来、微小電界放出型冷陰極
を得る(図6−d)。
After forming the refractory metal layer 6, the refractory metal layer 6 can be removed by a lift-off method by immersing it in a weak acid such as phosphoric acid and dissolving the sacrifice layer 5 to obtain a minute field emission cold cathode. (Fig. 6-d).

【0008】基板1とゲート電極3間にゲート電極3が
正の電位となるように数10〜200Vの電圧を印加す
る事により、エミッタコーン7の先端には107 V/c
m以上の電界が発生しエミッタコーン7の先端から電子
が放出される。
By applying a voltage of several tens to 200 V between the substrate 1 and the gate electrode 3 so that the gate electrode 3 has a positive potential, 10 7 V / c is applied to the tip of the emitter cone 7.
An electric field of m or more is generated and electrons are emitted from the tip of the emitter cone 7.

【0009】現在、1エミッタコーンあたり100μA
以上の放出電流が観測されており、様々な応用案が提案
されている。
Currently, 100 μA per emitter cone
The above emission currents have been observed, and various application plans have been proposed.

【0010】例えば、この素子を電子源とした微小な三
極管によるスイッチング素子試作の試みや、マトリック
ス状に多数の素子を並べてなる平板のエミッション源に
より蛍光体を発光させるディスプレイパネル制作の試み
がなされている。
For example, trial production of a switching element using a minute triode using this element as an electron source and trial production of a display panel in which a fluorescent substance is emitted by a flat plate emission source in which a large number of elements are arranged in a matrix form have been made. There is.

【0011】また特開昭48−90467号公報におい
ては従来の熱陰極の代わりに1個もしくはマトリックス
状に複数の電界放出型冷陰極を並べてなるエミッション
源を用いたカラー受像菅が開示されている。
Further, Japanese Patent Application Laid-Open No. 48-90467 discloses a color image receiving tube using an emission source in which one or a plurality of field emission cold cathodes are arranged in a matrix instead of the conventional hot cathode. .

【0012】[0012]

【発明が解決しようとする課題】上述した電界放出型冷
陰極の製造工程において、弱酸による犠牲層5を溶解す
るリフトオフ法では、犠牲層5上に弱酸では溶解しない
Mo層6があるため、横方向外周から順次溶解するサイ
ドエッチングによらなければならない。故に、この工程
は長時間を要するという欠点を有する。
In the field-emission cold cathode manufacturing process described above, in the lift-off method in which the sacrificial layer 5 is dissolved by a weak acid, the Mo layer 6 which is not dissolved by the weak acid is present on the sacrificial layer 5. It must be done by side etching that sequentially dissolves from the outer circumference. Therefore, this process has the disadvantage that it takes a long time.

【0013】また、犠牲層5が溶解された高融点金属層
6は内部の歪により湾曲しながら基板1より解離する。
ある程度解離した高融点金属層6の一部は任意の形状に
割れて基板1からリフトオフされる。故に、完全に高融
点金属層6がリフトオフされたことを確認することが難
しく、多くの場合、数μmサイズの高融点金属層6の残
渣がゲート電極3上に残るという欠点を有する。
Further, the refractory metal layer 6 in which the sacrificial layer 5 is melted is dissociated from the substrate 1 while being curved due to internal strain.
A part of the refractory metal layer 6 dissociated to some extent is broken into an arbitrary shape and lifted off from the substrate 1. Therefore, it is difficult to confirm that the refractory metal layer 6 is completely lifted off, and in many cases, the residue of the refractory metal layer 6 having a size of several μm remains on the gate electrode 3.

【0014】さらに、長時間の弱酸の浸せきにより、エ
ミッタコーン7の表面に酸化層が形成されるという欠点
を有する。この酸化層はエミッタコーン7先端の仕事関
数を増大させ、電界放出型冷陰極の電子放出特性を悪化
させる原因となる。
Further, there is a drawback that an oxide layer is formed on the surface of the emitter cone 7 due to the long-time weak acid immersion. This oxide layer increases the work function at the tip of the emitter cone 7 and causes the electron emission characteristics of the field emission cold cathode to deteriorate.

【0015】[0015]

【課題を解決するための手段】本発明の電界放出型冷陰
極は、基板1上のゲート電極3の外周部に島状または帯
状の凸部パターン8を有し、凸部パターン8間およびゲ
ート電極3・凸部パターン8間に有する絶縁層2が露出
し、絶縁層2の外周には基板1が露出している。
A field emission type cold cathode according to the present invention has island-shaped or strip-shaped projection patterns 8 on the outer periphery of a gate electrode 3 on a substrate 1, and between the projection patterns 8 and the gate. The insulating layer 2 between the electrode 3 and the convex pattern 8 is exposed, and the substrate 1 is exposed on the outer periphery of the insulating layer 2.

【0016】凸部パターン上面は、引き出し電極に接続
されエミッタコーンと同電位が印加される。
The upper surface of the convex pattern is connected to the extraction electrode and the same potential as that of the emitter cone is applied.

【0017】[0017]

【作用】本発明において提案する凸部パターンにより、
陰極全面に起伏が形成される。基板と高融点金属層の熱
膨張係数の差により、この起伏の周辺上に推積された高
融点金属層に微小な割れ目が生じる。よって犠牲層エッ
チングを容易にかつ短時間に行うことができるととも
に、高融点金属層は制御された形状で剥離することがで
きるため、完全に高融点金属層を除去することができ
る。
By the convex pattern proposed in the present invention,
Undulations are formed on the entire surface of the cathode. Due to the difference in thermal expansion coefficient between the substrate and the refractory metal layer, minute cracks are formed in the refractory metal layer deposited on the periphery of the undulations. Therefore, the sacrifice layer can be easily etched in a short time, and the refractory metal layer can be peeled off in a controlled shape, so that the refractory metal layer can be completely removed.

【0018】[0018]

【実施例】以下に、本発明の電界放出型冷陰極の実施例
を図面を参照して説明する。
Embodiments of the field emission cold cathode of the present invention will be described below with reference to the drawings.

【0019】図1は本発明の第一の実施例である電界放
出型冷陰極の断面を含む外観図である。図2は本発明の
第一の実施例である電界放出型冷陰極の平面図である。
FIG. 1 is an external view including a cross section of a field emission cold cathode which is a first embodiment of the present invention. FIG. 2 is a plan view of the field emission cold cathode according to the first embodiment of the present invention.

【0020】また、図3は本発明の第一の実施例である
電界放出型冷陰極の制作工程の1つである犠牲層エッチ
ングによる高融点金属層のリフトオフ工程途中の断面図
である。
FIG. 3 is a cross-sectional view during the lift-off process of the refractory metal layer by sacrificial layer etching which is one of the manufacturing processes of the field emission cold cathode according to the first embodiment of the present invention.

【0021】約0.7mmの単結晶シリコンSi基板1
上には、酸化シリコンSiO2 を熱酸化法で約0.5μ
m圧に積層した絶縁層2を有し、さらに絶縁層2の上に
タングステンシリサイドWSi層をスパッタ法で0.2
μm厚に積層した後、フォトリソグラフィとドライエッ
チング法により余分な絶縁層2とタングステンシリサイ
ドWSi層からなり島状もしくは帯状もしくは櫛歯上の
凸部パターン8を有している。犠牲層5としてはキャビ
ティ4の底面に犠牲層が形成されないように基板1の法
線に対し斜め方向より、アルミニウムAlを真空蒸着法
により0.1μm厚に積層することにより形成してい
る。高融点金属層6としては基板1の法線方向よりモリ
ブデンMoを真空蒸着法により犠牲層5上に約1.5μ
m積層することにより形成している。高融点金属層6の
形成時、キャビティ4上の高融点金属層6の穴は積層す
るにしたがって小さくなるため、キャビティ4内にはモ
リブデンMoからなる円錐形のエミッタコーン7が形成
される。
About 0.7 mm single crystal silicon Si substrate 1
Silicon oxide SiO 2 is deposited on the top by thermal oxidation to about 0.5μ.
It has an insulating layer 2 laminated at m pressure, and a tungsten silicide WSi layer is further formed on the insulating layer 2 by sputtering.
After being laminated to have a thickness of μm, an excessive insulating layer 2 and a tungsten silicide WSi layer are formed by photolithography and dry etching to have an island-shaped, strip-shaped, or comb-shaped convex pattern 8. The sacrificial layer 5 is formed by stacking aluminum Al to a thickness of 0.1 μm by a vacuum evaporation method in a direction oblique to the normal line of the substrate 1 so that the sacrificial layer is not formed on the bottom surface of the cavity 4. As the refractory metal layer 6, molybdenum Mo is deposited on the sacrifice layer 5 in a direction of a normal line of the substrate 1 by vacuum deposition to a thickness of about 1.5 μm.
It is formed by stacking m layers. When the refractory metal layer 6 is formed, the holes of the refractory metal layer 6 on the cavity 4 become smaller as they are stacked, so that a conical emitter cone 7 made of molybdenum Mo is formed in the cavity 4.

【0022】真空蒸着法による高融点金属層6の形成時
は、Moソースからの熱輻射により電界放出型冷陰極全
体が約200℃まで加熱される。高融点金属層6の形成
後、室温まで冷却されると高融点金属と基板1の材質で
あるシリコンの熱膨張係数差により、ゲート電極3およ
び凸部パターン8のエッジ部分に微小な割れが生じる。
When the refractory metal layer 6 is formed by the vacuum deposition method, the entire field emission cold cathode is heated to about 200 ° C. by the heat radiation from the Mo source. After the refractory metal layer 6 is formed, when it is cooled to room temperature, minute cracks are generated in the edge portions of the gate electrode 3 and the convex pattern 8 due to the difference in thermal expansion coefficient between the refractory metal and silicon that is the material of the substrate 1. .

【0023】高融点金属層6のリフトオフ工程におい
て、例えばリン酸等の弱酸中に工程途中品を浸せきした
時、上述の微小な割れを通りAlからなる犠牲層5まで
上記弱酸が到達し犠牲層5を溶解する。犠牲層5が溶解
された部分の高融点金属層6は、高融点金属層内の内部
歪によりゲート電極3から離れる方向に湾曲し、且つ凸
部パターンに沿った形状で長手方向に順次剥離される。
このため、剥離されるMo層6の形状及び大きさが制御
できるため、リフトオフ工程を均一に且つ短時間に、残
渣を残すことなく完全に行うことができる。発明者の実
験によれば、隣接した凸部パターン8間の間隔は5μm
未満である場合、凸部パターン8間に形成される凹部上
の高融点金属層6はリフトオフにしにくいので隣接した
凹部パターン8間隔は5μm以上である必要があり望ま
しくは10μm以上とするとよいことがわかった。また
上限は500μm程度まで許容できる。50〜100μ
mとしたときに良好な結果を得られた。本発明によりリ
フトオフ工程に要する時間は、ゲート電極3および凹部
パターン8の寸法によるが、少なくとも従来に比べ1/
4に短縮する事ができた。
In the lift-off process of the refractory metal layer 6, when the intermediate product is dipped in a weak acid such as phosphoric acid, the weak acid reaches the sacrifice layer 5 made of Al through the minute cracks described above and the sacrifice layer is reached. Dissolve 5. The refractory metal layer 6 in the portion where the sacrificial layer 5 is dissolved is curved in a direction away from the gate electrode 3 due to internal strain in the refractory metal layer, and is sequentially peeled in the longitudinal direction in a shape along the convex pattern. It
Therefore, the shape and size of the peeled Mo layer 6 can be controlled, so that the lift-off process can be uniformly performed in a short time and completely without leaving a residue. According to the experiment by the inventor, the interval between the adjacent protrusion patterns 8 is 5 μm.
If it is less than the above, the refractory metal layer 6 on the concave portions formed between the convex patterns 8 is difficult to be lifted off. Therefore, the interval between the adjacent concave pattern 8 needs to be 5 μm or more, and preferably 10 μm or more. all right. Further, the upper limit is allowable up to about 500 μm. 50-100μ
Good results were obtained when m was set. The time required for the lift-off process according to the present invention depends on the dimensions of the gate electrode 3 and the recess pattern 8, but is at least 1 / n compared to the conventional case.
I was able to shorten to 4.

【0024】図4は本発明の第2の実施例である電界放
出型冷陰極の断面を含む外観図である。本実施例の構造
は、ゲート電極3及び凸部パターン8の外周部上面に絶
縁層2が露出している点が本発明の第1の実施例と異な
る。
FIG. 4 is an external view including a cross section of a field emission cold cathode according to a second embodiment of the present invention. The structure of this embodiment is different from that of the first embodiment of the present invention in that the insulating layer 2 is exposed on the upper surface of the outer peripheral portion of the gate electrode 3 and the convex pattern 8.

【0025】本実施例の構造はレジストによるパターニ
ングおよびエッチングを2回行えば実現可能である。
The structure of this embodiment can be realized by performing patterning with a resist and etching twice.

【0026】凸部パターン8上の導電層はゲート電極3
の形成時に同時に形成されたものだがゲート電極3およ
び基板1と絶縁されている。電界放出型冷陰極を動作さ
せた場合、この導電層はチャージアップし導電層・基板
1間で放電が発生し、真空度を劣化させる場合がある。
しかし、本実施例の構造では上記導電層と基板1間の距
離を十分にとることが可能となり、放電を防止すること
ができる。
The conductive layer on the convex pattern 8 is the gate electrode 3
It is formed at the same time as the formation of, but is insulated from the gate electrode 3 and the substrate 1. When the field emission cold cathode is operated, this conductive layer may be charged up and a discharge may be generated between the conductive layer and the substrate 1 to deteriorate the degree of vacuum.
However, in the structure of this embodiment, it is possible to secure a sufficient distance between the conductive layer and the substrate 1, and it is possible to prevent discharge.

【0027】エミッタ材料としてはモリブデンMoの他
にタングステンW,シリコンSi,白金Pt,タンタル
Taなどの高融点材料やこの化合物が使用でき、ゲート
材料としてはタンタグステンシリサイドWSiの他にモ
リブデンMo,タングステンWなどの材料やこの化合物
が使用できる。基板としてはシリコンSiの他に金属あ
るいは絶縁体の上に導電材を積層したものが使用でき
る。
In addition to molybdenum Mo, a high melting point material such as tungsten W, silicon Si, platinum Pt, tantalum Ta, or this compound can be used as the emitter material, and molybdenum Mo, in addition to tantalum sten silicide WSi, can be used as the gate material. A material such as tungsten W or this compound can be used. In addition to silicon Si, a substrate in which a conductive material is laminated on a metal or an insulator can be used as the substrate.

【0028】図5は本発明の第3の実施例である電界放
出型冷陰極の外観図である。凸部パターン8上の導電層
はエミッタコーン7と導電位となり、凸部パターン8上
の導電層と基板1間の放電を防止することができる。
尚、図5において本発明の電界放出型冷陰極および外部
電極9を保持する陰極構体は一部のみ図示している。
FIG. 5 is an external view of a field emission cold cathode according to a third embodiment of the present invention. The conductive layer on the convex pattern 8 becomes conductive with the emitter cone 7, and it is possible to prevent discharge between the conductive layer on the convex pattern 8 and the substrate 1.
In FIG. 5, only a part of the cathode assembly holding the field emission cold cathode and the external electrode 9 of the present invention is shown.

【0029】[0029]

【発明の効果】以上説明した通り、本発明によるところ
の電界放出型冷陰極では、リフトオフ法による高融点金
属層除去工程が短時間に且つ残渣を残さず確実に行うこ
とができる。
As described above, in the field emission type cold cathode according to the present invention, the refractory metal layer removing step by the lift-off method can be surely performed in a short time without leaving a residue.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である電界放出型冷陰極
の断面を含む外観を示す斜視図。
FIG. 1 is a perspective view showing an appearance including a cross section of a field emission cold cathode which is a first embodiment of the present invention.

【図2】本発明の第1の実施例である電界放出型冷陰極
の平面図。
FIG. 2 is a plan view of the field emission cold cathode according to the first embodiment of the present invention.

【図3】本発明の電界放出型冷陰極の制作工程の一部で
あるリフトオフ工程途中を示す断面図。
FIG. 3 is a cross-sectional view showing the middle of a lift-off process which is a part of a process for manufacturing the field emission cold cathode of the present invention.

【図4】本発明の第2の実施例である電界放出型冷陰極
の断面を含む外観を示す斜視図。
FIG. 4 is a perspective view showing an appearance including a cross section of a field emission cold cathode according to a second embodiment of the present invention.

【図5】本発明の第3の実施例である電界放出型冷陰極
の外観を示す斜視図。
FIG. 5 is a perspective view showing the appearance of a field emission cold cathode according to a third embodiment of the present invention.

【図6】従来の電界放出型冷陰極の製造工程と構造の断
面図。
FIG. 6 is a cross-sectional view of a manufacturing process and structure of a conventional field emission cold cathode.

【符号の説明】[Explanation of symbols]

1 基板 2 絶縁層 3 ゲート電極 4 キャビティ 5 犠牲層 6 高融点金属層 7 エミッタコーン 8 凸部パターン 9 外部電極 10 ボンディングワイヤ 11 レジスト 12 ガラス基板 1 Substrate 2 Insulating Layer 3 Gate Electrode 4 Cavity 5 Sacrificial Layer 6 Refractory Metal Layer 7 Emitter Cone 8 Convex Pattern 9 External Electrode 10 Bonding Wire 11 Resist 12 Glass Substrate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電体もしくは表面に導電性層を有する
絶縁体からなる基板上に1つもしくは複数の先端の尖っ
たエミッタコーンと前記エミッタコーンの先端を取り囲
む開口部を有するゲート電極と前記基板と前記ゲート電
極間に絶縁層を有する電界放出冷陰極において、前記基
板上の電界放出冷陰極のパターンが形成されない外周部
に島状または帯状または櫛歯状の凸部パターンを有する
ことを特徴とする電界放出型冷陰極。
1. A gate electrode having one or more pointed emitter cones and an opening surrounding the tip of the emitter cone on a substrate made of a conductor or an insulator having a conductive layer on the surface thereof, and the substrate. A field emission cold cathode having an insulating layer between the gate electrode and the gate electrode, wherein the field emission cold cathode on the substrate has an island-shaped, strip-shaped, or comb-teeth-shaped convex portion pattern on the outer peripheral portion thereof. Field emission type cold cathode.
【請求項2】 前記凸部パターン上面は前記ゲート電極
と同じ材質の導電層からなることを特徴とする請求項1
記載の電界放出型冷陰極。
2. The upper surface of the convex pattern is made of a conductive layer made of the same material as the gate electrode.
The field emission cold cathode described.
【請求項3】 前記凸部パターンの周縁部および前記ゲ
ート電極周辺に前記基板・前記凸部パターン間に有する
前記絶縁層が露出し、かつ前記絶縁層外周には前記基板
が露出していることを特徴とする請求項2記載の電界放
出型冷陰極。
3. The insulating layer between the substrate and the convex pattern is exposed at the peripheral edge of the convex pattern and the periphery of the gate electrode, and the substrate is exposed at the outer periphery of the insulating layer. The field emission cold cathode according to claim 2.
【請求項4】 前記凸部パターン上面は引き出し電極に
接続され前記コーンと同電位が印加されることを特徴と
する請求項2記載の電界放出型冷陰極。
4. The field emission cold cathode according to claim 2, wherein the upper surface of the convex pattern is connected to an extraction electrode and the same potential as that of the cone is applied.
【請求項5】 前記凸部パターン間および前記ゲート電
極・前記凸部パターン間距離が5μm以上500μm以
下であることを特徴とする請求項1記載の電界放出型冷
陰極。
5. The field emission cold cathode according to claim 1, wherein distances between the convex patterns and between the gate electrode and the convex patterns are 5 μm or more and 500 μm or less.
JP8858294A 1994-04-26 1994-04-26 Field emission cold cathode Expired - Lifetime JP2646999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8858294A JP2646999B2 (en) 1994-04-26 1994-04-26 Field emission cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8858294A JP2646999B2 (en) 1994-04-26 1994-04-26 Field emission cold cathode

Publications (2)

Publication Number Publication Date
JPH07296717A true JPH07296717A (en) 1995-11-10
JP2646999B2 JP2646999B2 (en) 1997-08-27

Family

ID=13946845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8858294A Expired - Lifetime JP2646999B2 (en) 1994-04-26 1994-04-26 Field emission cold cathode

Country Status (1)

Country Link
JP (1) JP2646999B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018215A (en) * 1996-11-22 2000-01-25 Nec Corporation Field emission cold cathode having a cone-shaped emitter
US6042442A (en) * 1996-02-28 2000-03-28 Nec Corporation Enhancement in bonding strength in field emission electron source
JP2009505424A (en) * 2005-08-15 2009-02-05 マイクロン テクノロジー, インク. Reproducible variable resistance insulated memory device and method of forming the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454639A (en) * 1987-08-26 1989-03-02 Matsushita Electric Works Ltd Field emission cathode
JPH01283735A (en) * 1988-05-10 1989-11-15 Canon Inc Electron beam generating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454639A (en) * 1987-08-26 1989-03-02 Matsushita Electric Works Ltd Field emission cathode
JPH01283735A (en) * 1988-05-10 1989-11-15 Canon Inc Electron beam generating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042442A (en) * 1996-02-28 2000-03-28 Nec Corporation Enhancement in bonding strength in field emission electron source
US6018215A (en) * 1996-11-22 2000-01-25 Nec Corporation Field emission cold cathode having a cone-shaped emitter
JP2009505424A (en) * 2005-08-15 2009-02-05 マイクロン テクノロジー, インク. Reproducible variable resistance insulated memory device and method of forming the same

Also Published As

Publication number Publication date
JP2646999B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
JP2897674B2 (en) Field emission type cold cathode and electron gun using the same
JP2576760B2 (en) Micro field emission cold cathode and manufacturing method thereof
US5483118A (en) Field emission cold cathode and method for production thereof
KR100235212B1 (en) A field emission cathode and maunfacture thereof
US5869169A (en) Multilayer emitter element and display comprising same
EP0520780A1 (en) Fabrication method for field emission arrays
US5651713A (en) Method for manufacturing a low voltage driven field emitter array
KR100243990B1 (en) Field emission cathode and method for manufacturing the same
JP3094459B2 (en) Method of manufacturing field emission cathode array
JPH07201273A (en) Field emission cold cathode and electron tube using it
JP2900837B2 (en) Field emission type cold cathode device and manufacturing method thereof
JPH0850850A (en) Field emission type electron emission element and its manufacture
JP2646999B2 (en) Field emission cold cathode
US5787337A (en) Method of fabricating a field-emission cold cathode
JPH04167326A (en) Field emission type emitter and manufacture thereof
JP2897671B2 (en) Field emission cold cathode
JP3526462B2 (en) Field emission type cathode device
JP2940360B2 (en) Method of manufacturing field emission device array
JPH06131970A (en) Manufacture of micro-vacuum element
JP3084768B2 (en) Field emission type cathode device
JP2743794B2 (en) Field emission cathode and method of manufacturing field emission cathode
JPH08148083A (en) Surface reforming method for field emitter
JP2969913B2 (en) Field emission type emitter
JPH11162326A (en) Field electron-emission element
JP3094464B2 (en) Method of manufacturing field emission type microcathode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970408