JPH0729192B2 - Continuous casting injection method - Google Patents

Continuous casting injection method

Info

Publication number
JPH0729192B2
JPH0729192B2 JP1252070A JP25207089A JPH0729192B2 JP H0729192 B2 JPH0729192 B2 JP H0729192B2 JP 1252070 A JP1252070 A JP 1252070A JP 25207089 A JP25207089 A JP 25207089A JP H0729192 B2 JPH0729192 B2 JP H0729192B2
Authority
JP
Japan
Prior art keywords
casting
shell
continuous casting
mold
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1252070A
Other languages
Japanese (ja)
Other versions
JPH03114638A (en
Inventor
昌紀 皆川
秀幸 三隅
孝文 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1252070A priority Critical patent/JPH0729192B2/en
Publication of JPH03114638A publication Critical patent/JPH03114638A/en
Publication of JPH0729192B2 publication Critical patent/JPH0729192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は連続鋳造方法に係わり、特に高速連続鋳造の注
入方法であって、溶鋼温度、ノズル形状および鋳造速度
を特定条件下に適性化する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a continuous casting method, and more particularly to an injection method for high-speed continuous casting, in which molten steel temperature, nozzle shape and casting speed are optimized under specific conditions. It is about the method.

[従来の技術] 近年4m/min以上の速度で鋳造し、鋳造凝固過程の抜熱量
が2×106kcal/hr・m2程度のスラブの高速連続鋳造方法
が試みられ、あらためて鋳型で発生する縦割れが生産
性、生産費に多大の影響があることが重視され、その防
止方法の検討が重ねられている。
[Prior Art] In recent years, a high-speed continuous casting method for slabs that has been cast at a speed of 4 m / min or more and the heat removal amount in the casting solidification process is about 2 × 10 6 kcal / hr · m 2 has been attempted, and it is newly generated in the mold. It is emphasized that vertical cracks have a great influence on productivity and production cost, and studies are being made on ways to prevent them.

上記高速鋳造においては、モールドへ注入する溶鋼の吐
き出し流によりシェル洗いが発生し、これによりシェル
厚みが不均一が生じて縦割れが発生する。
In the above high-speed casting, shell discharge occurs due to the discharge flow of molten steel injected into the mold, which causes uneven shell thickness and vertical cracking.

この縦割れは鋳片の表面疵として以後の加工工程を経て
も残留し、製品疵として歩留を低下するばかりでなく、
連続鋳造時にブレークアウトを惹起することから、この
縦割れの防止技術の確率が強く望まれている。
This vertical crack remains as a surface flaw of the slab even after the subsequent processing steps, and not only decreases the yield as a product flaw, but also
The probability of this technology for preventing vertical cracking is strongly desired because it causes breakout during continuous casting.

通常行われているスラブの連続鋳造は、良く知られてい
る様に、水冷銅鋳型を使用し、フラックスを潤滑剤とし
て厚み200〜300mm前後、幅1000〜2000mm前後の鋳を1〜
2m/minの速度で鋳造し、鋳造凝固過程の抜熱量は7×10
5kcal/hr・m2程度の連続鋳造方法を用いている。
As is well known, continuous casting of slabs, which is usually performed, uses a water-cooled copper mold and uses a flux as a lubricant to form a casting with a thickness of 200 to 300 mm and a width of 1000 to 2000 mm.
Casting at a speed of 2 m / min, the heat removal amount in the casting solidification process is 7 × 10
A continuous casting method of about 5 kcal / hr · m 2 is used.

この連続鋳造方法においては、縦割れは代表的な表面疵
として認識されており、無欠陥鋳片を製造するに当たっ
て、その生成過程を解明し、縦割れの発生を防止するこ
とが試みられている。
In this continuous casting method, vertical cracks are recognized as a typical surface flaw, and in producing defect-free cast pieces, it has been attempted to elucidate the formation process and prevent the occurrence of vertical cracks. .

一般に縦割れの成因としては、 鋳型幅方向の不均一シェル厚みの発生。In general, the cause of vertical cracking is the occurrence of non-uniform shell thickness in the mold width direction.

鋳造凝固過程に生ずる応力。にあることが知られて
いる。
Stress generated during the solidification process of casting. It is known to be in.

本発明は、上記した成因の鋳型幅方向の不均一シェル
厚みの発生による縦割れを対象として、その改善を行う
ものである。
The present invention is directed to the vertical cracks caused by the above-described generation of the non-uniform shell thickness in the mold width direction, and the improvement thereof.

鋳型幅方向の不均一シェル厚みによる縦割れについて
は、種々の報告、提案がある。
There are various reports and proposals regarding vertical cracking due to non-uniform shell thickness in the mold width direction.

例えば、鉄と鋼Vol.68,No.13の1773頁〜1781頁に、鋳片
の縦割れにおよぼす局部的凝固おくれの影響について次
の記載がある。
For example, on pages 1773 to 1781 of Iron and Steel Vol.68, No.13, there is the following description about the effect of local solidification delay on vertical cracking of a cast piece.

メニスカス近傍で発生した、鋳型幅方向の温度偏差
による不均一シェル厚みは、鋳片の移動によっても解消
せず、縦割れの原因となること。
The non-uniform shell thickness caused by the temperature deviation in the mold width direction, which occurs near the meniscus, cannot be eliminated by the movement of the slab and causes vertical cracking.

凝固シェル厚みの不均一度が中炭素鋼で10%を超え
ると縦割れが発生すること。
Vertical cracking occurs when the nonuniformity of the solidified shell thickness exceeds 10% in medium carbon steel.

含有炭素が0.12%〜0.16%の鋳片は、縦割れの発生
が顕著であること。
Slabs with carbon content of 0.12% to 0.16% have significant vertical cracking.

等が記載されている。Etc. are described.

続いて、縦割れが発生を見ない時は、鋳型幅方向の温度
差は殆どなく、鋳型縦方向にも安定した温度分布が見ら
れること。これに反し、縦割れの発生を見ているとき
は、鋳型疵部の温度が低く、鋳型下端に向けられて、こ
の傾向は次第に強くなり、縦割れ部の鋳片表面温度は、
健全部より高いことを述べている。
Next, when vertical cracking is not observed, there is almost no temperature difference in the width direction of the mold, and a stable temperature distribution is also observed in the vertical direction of the mold. On the contrary, when looking at the occurrence of vertical cracks, the temperature of the mold flaw is low, it is directed to the lower end of the mold, this tendency becomes stronger gradually, the slab surface temperature of the vertical cracks,
It says that it is higher than the health department.

しかし、4m/min以上の鋳造速度でスラブを高速鋳造する
方法においては、鋳型は、エンドレス鋼帯ベルトで構成
し、注入溶鋼の凝固、引抜き経過に同期して移動する長
辺と、エンドレスに連結されたブロックで構成され、前
記長辺にメニスカス上で挟持されて該長辺と一体的に移
動する短辺から構成される連続鋳造機を用いて鋳造する
方法があり、上記した従来の連続鋳造で認められる縦割
れ発生の成因の存在は考えられるが、その成因の発生メ
カニズムは大きく異なるものと思われる。
However, in the method for high-speed casting of slabs at a casting speed of 4 m / min or more, the mold is composed of an endless steel strip belt, and the long side that moves in synchronization with the solidification and drawing process of the injected molten steel is connected endlessly. There is a method of casting using a continuous casting machine that is composed of a block and is composed of a short side that is sandwiched by the long side on a meniscus and moves integrally with the long side. It is considered that there is a cause of the occurrence of vertical cracks observed in No. 1, but the mechanism of occurrence of the cause seems to be greatly different.

[発明が解決しようとする課題] 本発明は、連続鋳造速度が4m/minを超える高速連続鋳造
における縦割れの発生要因を解明し、連続鋳造速度が4m
/minを超える高速連続鋳造において縦割れを実質的に発
生せしめない高速連続鋳造の注入方法、具体的には溶鋼
温度、ノズル形状および鋳造速度を特定条件下に適正化
する方法を確立することを課題とするものである。
[Problems to be Solved by the Invention] The present invention clarifies the cause of vertical cracking in high-speed continuous casting in which the continuous casting speed exceeds 4 m / min.
It is necessary to establish an injection method for high-speed continuous casting that does not substantially cause vertical cracks in high-speed continuous casting that exceeds / min, specifically, to optimize the molten steel temperature, nozzle shape, and casting speed under specific conditions. This is an issue.

[課題を解決するための手段] 本発明は上記課題を達成するため、 後記するシェル洗い率φが0.1以下になるように鋳造速
度Vと、モールド断面積と注入ノズルの吐出口面積との
比率Sの少なくとも何れか一方を調整して溶鋼を鋳型に
注入することを手段とするものである。
[Means for Solving the Problem] In order to achieve the above object, the present invention provides a ratio of a casting speed V, a mold cross-sectional area, and a discharge port area of an injection nozzle so that a shell washing ratio φ described below is 0.1 or less. The means is to adjust at least one of S and inject the molten steel into the mold.

シェル洗い率φ=(δmax−δmin)/δmax φ=f(ΔT,V,S)あるいは φ=A・ΔT・V0.473・S0.8但し、 δmax:同一幅断面内での最大シェル厚み δmin:同一幅断面内での最小シェル厚み A:5.6×10-4(定数) V:鋳造速度(m/hr) S:ノズルの吐出口に対するモールドの断面積比 ΔT:溶鋼の加熱温度(deg) [作用] 本発明者等は、上記課題を達成するため種々の実験、検
討を重ね、鋳造速度が4m/min以上の高速連続鋳造方法に
おいては、鋳造速度が大きくなると、浸漬ノズルからの
溶鋼の吐出流速が大きくなり、この大きくなった吐出流
速でシェルが洗われ、これによってシエル厚みの不均一
が助長されて縦割れが発生することを突き止めた。
Shell wash rate φ = (δ max −δ min ) / δ max φ = f (ΔT, V, S) or φ = A ・ ΔT ・ V 0.473・ S 0.8 However, δ max : Maximum shell in the same width section Thickness δ min : Minimum shell thickness within the same width A: 5.6 × 10 -4 (constant) V: Casting speed (m / hr) S: Cross-sectional area ratio of mold to nozzle outlet ΔT: Heating temperature of molten steel (Deg) [Operation] The inventors of the present invention have conducted various experiments and studies to achieve the above-mentioned object. In the high-speed continuous casting method with a casting speed of 4 m / min or more, when the casting speed is increased, the immersion nozzle The discharge velocity of molten steel of No. 2 increased, and the shell was washed with this increased discharge velocity, which promoted uneven shell thickness and caused vertical cracking.

この時前記した従来の連続鋳造方法で確認されていた知
見の「凝固シェル厚みの不均一度が中炭素鋼で10%を
超えると縦割れが発生する。」を参考に検討を重ねたと
ころ、4m/min以上の鋳造速度で行う連続鋳造も同様に凝
固シエル厚みの不均一度が中炭素鋼で10%を超えると縦
割れが発生することを見出した。
At this time, a study was repeated with reference to the knowledge that was confirmed by the above-mentioned conventional continuous casting method "vertical cracking occurs when the nonuniformity of the solidified shell thickness exceeds 10% in medium carbon steel." In continuous casting performed at a casting speed of 4 m / min or more, it was similarly found that vertical cracking occurs when the non-uniformity of solidified shell thickness exceeds 10% in medium carbon steel.

従来の知見は鋳型に人口疵を設けた実験による知見であ
る。鋳型の人口疵部の温度が低くなり、そこに対応する
鋳片の部分は逆に温度が高くなって、それによって生じ
たシェルの厚み不均一度である。
The conventional knowledge is the knowledge obtained from an experiment in which a mold has a flaw. The temperature of the artificial flaw portion of the mold becomes lower, and the temperature of the corresponding slab portion becomes higher, which is the nonuniformity of the thickness of the shell caused thereby.

一方本発明が対象とする高速連続鋳造の実験による知見
は、浸漬ノズルからの溶鋼吐出流により生じたシェル洗
いが生成したシェルの厚み不均一度を対象としたもので
ある。
On the other hand, the findings of the experiment of high-speed continuous casting, which is the subject of the present invention, are for the nonuniformity of the thickness of the shell produced by the shell washing caused by the molten steel discharge flow from the immersion nozzle.

なお、シェル洗いによるシェル厚みの不均一度(シェル
洗い率)は、δmax,δminによって決定されるが、その
δmax,δminは鋳造中に硫黄などのトレーサーを溶鋼と
ともに注入し、鋳造後の鋳片のある断面におけるトレー
サーの濃度分布を測定することによってその断面のシェ
ル厚を測定することで求められる。
Incidentally, non-uniformity of the shell thickness by the shell washing (Shell washing rate), [delta] max, is determined by the [delta] min, the [delta] max, [delta] min is a tracer such as sulfur injected with molten steel during casting, casting It can be determined by measuring the concentration distribution of the tracer in a certain cross section of the subsequent slab to measure the shell thickness of that cross section.

しかるに両者は共に、凝固シェル厚みの不均一度が10%
を超えると縦割れが発生することは、発生のメカニズム
が異なっていても、結局は縦割れを形成する本質的な要
因がシェルの厚み不均一度であり、両者は同じ現象によ
ることを見出した。
However, in both cases, the non-uniformity of the solidified shell thickness is 10%.
It was found that, even if the mechanism of occurrence is different, in the end, the essential factor that forms vertical cracks is the non-uniformity of shell thickness, even if the mechanism of occurrence is different. .

そこで本発明者等は、高速連続鋳造において、シェル厚
み不均一の発生原因である溶鋼吐出流によるシエル洗い
を防止するため、更に実験、検討を続け、その結果を集
約して次の式を得た。
Therefore, the present inventors continued experiments and studies in order to prevent shell washing due to molten steel discharge flow, which is the cause of uneven shell thickness in high-speed continuous casting, and summarized the results to obtain the following formula. It was

シェル洗い率φ=(δmax−δmin)/δmax φ=A・ΔT・V0.473・S0.8 δmax:同一幅断面内での最大シェル厚み δmin:同一幅断面内での最小シェル厚み A:5.6×10-4(定数) V:鋳造速度(m/hr) S:ノズルの吐出口に対するモールドの断面積比 ΔT:溶鋼の過熱温度(deg) この式はシェル洗い率が、ΔTとVとSの関数であるこ
とを表わしている。この式による計算値と実測値を第1
図に示しており、両者がよく一致していることを示して
いる。
Shell wash rate φ = (δ max −δ min ) / δ max φ = A ・ ΔT ・ V 0.473・ S 0.8 δ max : Maximum shell thickness within the same width section δ min : Minimum shell thickness within the same width section A: 5.6 × 10 -4 (constant) V: Casting speed (m / hr) S: Cross-sectional area ratio of mold to nozzle outlet ΔT: Superheated temperature of molten steel (deg) This formula shows that the shell washing rate is ΔT. It is a function of V and S. Calculated value and measured value by this formula
It is shown in the figure, indicating that they are in good agreement.

本発明は上記知見を基になされたものである。The present invention is based on the above findings.

すなわち、連続鋳造に先立ち、使用予定のノズルの吐出
口面積よりS1を計算し、狙いとする溶鋼の過熱温度ΔT1
および鋳造速度V1を求め、それらより、シェル洗い率φ
を計算し、そのφが適性領域つまり0.1以下なら
ば、その条件を適性とする。もしφが0.1より大きけ
れば、ノズル形状を変更してS1を修正するかおよび/ま
たは鋳造速度を修正して、φが0.1以下の値とし、そ
の修正条件に変更して連続鋳造の注入作業を開始するよ
うにする。
That is, prior to continuous casting, S 1 is calculated from the discharge port area of the nozzle to be used, and the target superheat temperature ΔT 1 of the molten steel is calculated.
And casting speed V 1 are obtained, and the shell washing rate φ
1 is calculated, and if φ 1 is in the appropriate region, that is, 0.1 or less, the condition is determined to be appropriate. If φ 1 is larger than 0.1, the nozzle shape is changed to correct S 1 and / or the casting speed is adjusted so that φ 1 is a value of 0.1 or less. Start the injection process.

加えて、連続鋳造を開始した後は、ノズルの吐出口面積
S1は一定であるがΔT1は実測できるので、その実測ΔT1
ではφが0.1より大きくなる場合には、鋳造速度Vを
φが適性領域、即ち0.1以下になるように調整して、
φが連続鋳造中、常に適性領域に確保できるようにす
るのが望ましい。一般に、ΔT1は連続鋳造時間がたつ程
低下してゆくので、鋳造速度Vは増加してゆくことがで
きる。
In addition, after continuous casting is started, the nozzle outlet area
Although S 1 is constant, ΔT 1 can be measured, so the measured ΔT 1
Then, when φ 1 becomes larger than 0.1, the casting speed V is adjusted so that φ 1 is in an appropriate range, that is, 0.1 or less,
It is desirable that φ 1 can always be secured in an appropriate area during continuous casting. In general, ΔT 1 decreases as the continuous casting time elapses, so that the casting speed V can be increased.

[実施例] (1)連続条件 鋳型断面寸法(mm×mm):600×50,1200×50の2種 ノズル吐出口寸法(mm×mm):200×10,300×10,400×
10の3種 鋳造速度(m/min):10,20の2種 シェル洗い率:第2図に示す。
[Example] (1) Continuous conditions Two types of mold cross-sectional dimensions (mm x mm): 600 x 50, 1200 x 50 Nozzle discharge port dimensions (mm x mm): 200 x 10,300 x 10,400 x
3 types of 10 Casting speed (m / min): 2 types of 10 and 20 Shell washing rate: Shown in Fig. 2.

(2)調整方法 前記、、、およびは、シェル洗い率が0.1に
達しない場合であったので、調整を必要としないもので
ある。一方、A、A、A、AおよびAは、そ
れぞれシェル洗い率が0.1以上になった場合であるの
で、それぞれ次のような調整を行った後をB、B、
B、BおよびBに示す。具体的な調整方法は、
の場合はAのノズルをBでは2本並列使用し、の場
合、ノズルの吐出口幅をAの300mmから600mmに変更し、
、の場合も同様にノズルの吐出口幅を2倍に拡大し
たものに置換し、の場合、溶鋼の過熱度を10℃と予想
したのにAの場合20℃と大きかったのでφ>0.1とな
り、Bでは、鋳造速度を8.5m/minまで大きく下げて対応
した例である。
(2) Adjustment method The above items ,,, and were cases in which the shell washing ratio did not reach 0.1, and therefore do not require adjustment. On the other hand, A, A, A, A, and A are the cases where the shell washing rate was 0.1 or more, respectively. Therefore, after performing the following adjustments, B, B, and
Shown in B, B and B. The specific adjustment method is
In the case of, 2 nozzles of A are used in parallel in B, and in the case of, the discharge port width of the nozzle is changed from 300 mm of A to 600 mm,
Similarly, in the case of and, the nozzle outlet width was replaced with a doubled one, and in case of A, the superheat of molten steel was expected to be 10 ° C, but in case of A, it was 20 ° C, so φ> 0.1. , B are examples in which the casting speed is greatly reduced to 8.5 m / min.

尚、の場合、Aでもφ≦0.1を達成していたが、Bで
溶鋼の過熱度が8℃まで下がったのでその分を鋳造速度
を高速化した例である。
In the case of A, φ ≦ 0.1 was achieved, but in B, the degree of superheat of the molten steel was lowered to 8 ° C. Therefore, this is an example in which the casting speed was increased.

[発明の効果] 本発明は、鋳造速度と、モールドのノズルの単面積比の
少なくとも何れか一方を特性式に基づいて調整し、高速
連続鋳造において縦割れの原因となっているシェル洗い
率の縦割れが発生しない0.1以下に制御するので、高速
連続鋳造における縦割れの発生が極めて容易に防止で
き、縦割れに起因するブレークアウトを皆無にできるの
で、当業分野にもたらす生産性の向上、生産費の低減効
果は大きい。
EFFECTS OF THE INVENTION The present invention adjusts at least one of the casting rate and the single area ratio of the mold nozzle based on a characteristic formula to determine the shell washing rate that causes vertical cracking in high-speed continuous casting. Since it is controlled to 0.1 or less where vertical cracking does not occur, the occurrence of vertical cracks in high-speed continuous casting can be very easily prevented, and breakouts due to vertical cracks can be eliminated altogether. The effect of reducing production costs is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の計算値と実測値の関係を示す図であ
る。第2図は本発明の実施例における調整状況を示す図
である。
FIG. 1 is a diagram showing the relationship between the calculated value and the actually measured value according to the present invention. FIG. 2 is a diagram showing an adjustment situation in the embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】後記するシェル洗い率φが0.1以下になる
ように鋳造速度Vと、モールド断面積と注入ノズルの吐
出口面積との比率Sの少なくとも何れか一方を調整して
溶鋼を鋳型に注入することを特徴とする連続鋳造の注入
方法。 φ=f(ΔT,V,S) 但し、 シェル洗い率φ=(δmax−δmin)/δmax δmax:同一幅断面内での最大シェル厚み δmin:同一幅断面内での最小シェル厚み V:鋳造速度(m/hr) S:ノズルの吐出口に対するモールドの断面積比 ΔT:溶鋼の過熱温度(deg)
1. Molten steel is used as a mold by adjusting at least one of a casting speed V and a ratio S between a mold cross-sectional area and a discharge port area of an injection nozzle so that a shell washing ratio φ described below is 0.1 or less. A casting method for continuous casting, characterized by pouring. φ = f (ΔT, V, S) However, shell washing rate φ = (δ max −δ min ) / δ max δ max : maximum shell thickness within the same width section δ min : minimum shell within the same width section Thickness V: Casting speed (m / hr) S: Cross-sectional area ratio of mold to nozzle outlet ΔT: Overheating temperature of molten steel (deg)
【請求項2】前記シェル洗い率φが次式であることを特
徴とする請求項1に記載の連続鋳造の注入方法。 φ=A・ΔT・V0.473・S0.8 但し、 A:定数項
2. The casting method for continuous casting according to claim 1, wherein the shell washing ratio φ is represented by the following equation. φ = A ・ ΔT ・ V 0.473・ S 0.8 where A: constant term
JP1252070A 1989-09-29 1989-09-29 Continuous casting injection method Expired - Fee Related JPH0729192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252070A JPH0729192B2 (en) 1989-09-29 1989-09-29 Continuous casting injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252070A JPH0729192B2 (en) 1989-09-29 1989-09-29 Continuous casting injection method

Publications (2)

Publication Number Publication Date
JPH03114638A JPH03114638A (en) 1991-05-15
JPH0729192B2 true JPH0729192B2 (en) 1995-04-05

Family

ID=17232133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252070A Expired - Fee Related JPH0729192B2 (en) 1989-09-29 1989-09-29 Continuous casting injection method

Country Status (1)

Country Link
JP (1) JPH0729192B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2158278T3 (en) * 1995-02-09 2001-09-01 Kawasaki Steel Co METHOD FOR CONTINUOUS STAIN OF STAINLESS STEEL STAINLESS STEEL.
US8408341B2 (en) 2007-07-12 2013-04-02 Odyne Systems, Llc Hybrid vehicle drive system and method and idle reduction system and method
US11225240B2 (en) 2011-12-02 2022-01-18 Power Technology Holdings, Llc Hybrid vehicle drive system and method for fuel reduction during idle

Also Published As

Publication number Publication date
JPH03114638A (en) 1991-05-15

Similar Documents

Publication Publication Date Title
CN112743053B (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
JPH0729192B2 (en) Continuous casting injection method
JP3619377B2 (en) Billet continuous casting method and apparatus
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPS623852A (en) Beam blank continuous casting method
JPH01210157A (en) Method for preventing surface longitudinal crack on continuous cast slab
JP4026792B2 (en) Billet continuous casting method
EP0594951A1 (en) Tundish outlet edge seal and riser for continuous casting apparatus and method
JP2593386B2 (en) Continuous casting method
JP3101069B2 (en) Continuous casting method
JPS635857A (en) Continuous casting method for steel containing high silicon
JPS635859A (en) Continuous casting method for high silicon steel
JPH09234551A (en) Continuous casting method for preventing segregation and internal crack
JPH057107B2 (en)
JPH06106302A (en) Method for continuously casting martenstic stainless steel
JPS6138738A (en) Horizontal continuous casting method of metallic casting material
JP3329305B2 (en) Continuous casting method of round billet slab
JPH0760424A (en) Continuous casting method
JPH04279264A (en) Continuous casting method
JPS6127148B2 (en)
JPS62156056A (en) Continuous casting method for low alloy steel
JPH0947852A (en) Continuous casting method and immersion nozzle
JPH02133155A (en) Method for preventing longitudinal crack of continuously cast slab
JP2640399B2 (en) Continuous casting method
JP3398608B2 (en) Continuous casting method and mold for continuous casting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees