JPH06106302A - Method for continuously casting martenstic stainless steel - Google Patents

Method for continuously casting martenstic stainless steel

Info

Publication number
JPH06106302A
JPH06106302A JP25822692A JP25822692A JPH06106302A JP H06106302 A JPH06106302 A JP H06106302A JP 25822692 A JP25822692 A JP 25822692A JP 25822692 A JP25822692 A JP 25822692A JP H06106302 A JPH06106302 A JP H06106302A
Authority
JP
Japan
Prior art keywords
mold
powder
cycles
casting
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25822692A
Other languages
Japanese (ja)
Inventor
Yuji Tanaka
勇次 田中
Hiroshi Kato
博 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25822692A priority Critical patent/JPH06106302A/en
Publication of JPH06106302A publication Critical patent/JPH06106302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the surface defect of a cast slab at an initial casting stage of continuous casting of a martenstic stainless steel. CONSTITUTION:On the molten steel surface in a mold, powder having 1.0-2.5 poise of viscosity at 1300 deg.C of molten state and 1130-1180 deg.C solidified temp. is added and the number of oscillating cycles Cy of the mold is set so that powder consumption PLC shown in the following expression 0.02g/cm the number of cycles to execute the continuous casting. PLC=Pch/(LM.Cy). Wherein, Pch: the powder consumption per one charge (g/charge), LM: outer peripheral length at meniscus part on the molten steel surface in the mold (cm), Cy: the number of oscillating cycles of the mold (cycle/min).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、パウダーの物性およ
び鋳型オシレーション条件を適正化することによって、
マルテンサイト系ステンレス鋼の鋳片に発生する縦割れ
やカブレ欠陥を防止して、表面手入れが省略できるスラ
ブを連続鋳造する方法に関する。
BACKGROUND OF THE INVENTION The present invention is directed to optimizing the physical properties of powder and the conditions of mold oscillation.
The present invention relates to a method for continuously casting a slab in which surface maintenance can be omitted by preventing vertical cracks and fogging defects that occur in a slab of martensitic stainless steel.

【0002】[0002]

【従来の技術】溶鋼の連続鋳造においては、鋳型と鋳片
との間の摩擦を軽減し、焼付きを防止して安定した鋳造
状態を確保するため、潤滑剤(パウダー)の鋳型内添加
と鋳型に上下動を与えるオシレーションの適用が行われ
ている。しかし、鋳込み初期においては、鋳型内の溶鋼
表面に添加したパウダーの溶融は、非定常に進行する。
2. Description of the Related Art In continuous casting of molten steel, in order to reduce friction between a mold and a slab, prevent seizure and secure a stable casting state, it is necessary to add a lubricant (powder) in the mold. Oscillation is applied to move the mold up and down. However, in the early stage of casting, the melting of the powder added to the surface of the molten steel in the mold proceeds unsteadily.

【0003】その間鋳型と鋳片との間に流入して形成さ
れるパウダーフィルムが不均一になり、鋳型への伝熱抵
抗不均一による凝固不均一が生じやすい。このような、
凝固不均一が生ずると、鋳型内において初期の凝固シェ
ル厚みが不均一になり、応力集中に起因する微小割れを
発生し、引き続いての二次冷却でこの割れが拡大されて
鋳片表面に縦割れを発生しやすい。
During that time, the powder film formed between the mold and the cast piece becomes non-uniform, and non-uniform solidification is likely to occur due to non-uniform heat transfer resistance to the mold. like this,
When solidification is non-uniform, the initial solidified shell thickness becomes non-uniform in the mold, causing microcracks due to stress concentration. Easy to crack.

【0004】一方、SUS 420J1 、同 420J2鋼に代表され
るマルテンサイト系ステンレス鋼は、図1の13%Cr−C
系状態図に示すように、凝固過程において包晶反応を伴
うため変態による凝固シェル変形を起こしやすい。特に
包晶域の中心組成の SUS 420J2鋼は、低温域まで液相L
が存在することから、初期凝固シェル強度が低く、凝固
不均一が生じた場合、上述縦割れやブレークアウト跡で
あるカブレ欠陥が発生しやすい。このため、鋳込み条件
が非定常で凝固不均一を生じやすい鋳込開始から、鋳込
長約10mまでの鋳片表面に縦割れやカブレ欠陥が多発す
る傾向にある。
On the other hand, martensitic stainless steel represented by SUS 420J1 and 420J2 steel is 13% Cr-C in FIG.
As shown in the system phase diagram, solidification shell deformation due to transformation is likely to occur due to peritectic reaction in the solidification process. In particular, SUS 420J2 steel, which has a central composition in the peritectic region, has a liquid phase L up to the low temperature region.
Therefore, when the initial solidified shell strength is low and uneven solidification occurs, the above-mentioned vertical cracks and rash defects such as breakout marks are likely to occur. Therefore, from the start of casting, where the casting conditions are unsteady and solidification unevenness is likely to occur, vertical cracks and fog defects tend to occur frequently on the surface of the cast piece up to a casting length of about 10 m.

【0005】したがって、従来のマルテンサイト系ステ
ンレス溶鋼の連続鋳造では、鋳込み初期の鋳片は全量、
徐冷後プレーナー手入をする必要があり、歩留の低下と
製造コストの上昇が避けられなかった。また鋳片を冷却
せずに圧延ラインの加熱炉に直送して熱間装入する方法
が適用できないため、生産能率を上げることができず、
加熱炉燃料原単位を低げることもできなかった。
Therefore, in the conventional continuous casting of molten martensitic stainless steel, all the slabs in the initial stage of casting are
It was necessary to maintain the planer after gradual cooling, which inevitably resulted in a decrease in yield and an increase in manufacturing cost. Moreover, since the method of directly feeding the slab to the heating furnace of the rolling line without cooling it cannot be applied, the production efficiency cannot be increased,
It was not possible to reduce the fuel consumption rate of the heating furnace.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、マル
テンサイト系ステンレス鋼の鋳込み初期の鋳片表面に多
発する縦割れおよびカブレ欠陥を防止して、鋳片表面手
入れの省略を可能にし、歩留の向上、製造コストの削減
を図ることができる連続鋳造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to prevent frequent vertical cracking and fog defects on the surface of a cast slab in the early stage of casting of martensitic stainless steel, thereby making it possible to omit slab surface maintenance. An object of the present invention is to provide a continuous casting method capable of improving the yield and reducing the manufacturing cost.

【0007】[0007]

【課題を解決するための手段】本発明者らは、マルテン
サイト系ステンレス溶鋼の連続鋳造の試験操業を実施
し、 (a)鋳型のオシレーションサイクル数の高、低にか
かわらず、低粘度モールドパウダーの高凝固点化によ
り、縦割れを防止できること、(b) 高凝固点パウダーを
使用するとともに鋳型のオシレーションサイクル数を低
下させてパウダー消費量を所定値以上とすることによ
り、縦割れ、カブレ欠陥を同時に防止できること、を知
った。
[Means for Solving the Problems] The inventors of the present invention conducted a test operation of continuous casting of martensitic stainless molten steel, and (a) regardless of whether the number of oscillation cycles of the mold was high or low, a low viscosity mold. Vertical cracking can be prevented by increasing the freezing point of the powder. (B) Vertical cracking and fog defects can be prevented by using a powder with a high freezing point and reducing the number of oscillation cycles of the mold so that the powder consumption amount exceeds a predetermined value. I learned that you can prevent both at the same time.

【0008】そこで、上記のモールドパウダーの凝固温
度、鋳型オシレーションサイクル数およびパウダー消費
量の適正値を検討し、本発明を完成した。
Therefore, the solidification temperature of the mold powder, the number of mold oscillation cycles and the appropriate values of the powder consumption were examined to complete the present invention.

【0009】本発明の要旨は『鋳型内の溶鋼表面に、13
00℃の溶融状態において 1.0〜2.5ポアズの粘度を有す
るとともに、凝固温度が1130〜1180℃のパウダーを添加
し、下記式で表わされるパウダー消費量PLCが0.02g/
cm・サイクル数を超えるように、鋳型のオシレーションサイ
クル数Cy を設定することを特徴とするマルテンサイト
系ステンレス溶鋼の連続鋳造方法』にある。
The gist of the present invention is that "13
A powder having a viscosity of 1.0 to 2.5 poise in a molten state of 00 ° C. and a solidification temperature of 1130 to 1180 ° C. is added, and a powder consumption amount P LC represented by the following formula is 0.02 g /
The continuous casting method for molten martensitic stainless steel is characterized in that the number of oscillation cycles C y of the mold is set so as to exceed the cm · cycle number.

【0010】 PLC=PCh/(LM ・Cy )・・・・・ ただし、PLC:パウダー消費量 (g/cm・サイクル数) PCh:1チャージのパウダー消費量(g/チャーシ゛) LM :鋳型内の溶鋼表面メニスカス部外周長さ(cm) Cy :鋳型のオシレーションサイクル数(サイクル/min)、
である。
P LC = P Ch / (L M · C y ), where P LC : powder consumption (g / cm · cycle number) P Ch : powder consumption per charge (g / charge) ) L M: the molten steel surface meniscus portion outer peripheral length of the mold (cm) C y: oscillation number of cycles of the mold (cycle / min),
Is.

【0011】上記の本発明方法の実施に際しては、上記
パウダーの凝固温度に応じて、鋳型のオシレーションサ
イクル数Cy を下記式で表される (Cy ) U.L.の値以
下に設定することが望ましい。
In carrying out the above method of the present invention, the number of oscillation cycles C y of the mold may be set to be equal to or less than the value of (C y ) UL represented by the following formula, depending on the solidification temperature of the powder. desirable.

【0012】 (Cy ) U.L.= 595− 0.421・TS ・・・ ただし、 (Cy ) U.L.:鋳型オシレーションサイクル数
の上限値(サイクル/min) TS :パウダーの凝固温度(℃) である。
(C y ) UL = 595−0.421 · T S (where, (C y ) UL is the upper limit of the number of mold oscillation cycles (cycles / min) T S is the solidification temperature (° C.) of the powder) is there.

【0013】[0013]

【作用】図2は、SUS 420J2 相当鋼の連続鋳造時におけ
る、パウダー凝固温度および鋳型オシレーションサイク
ル数とパウダー消費量および鋳込み初期鋳片表面の欠陥
発生程度との関係を示すもので、 (a)図は縦割れ、(b)
図はカブレ欠陥について示す。図中に示すTS は使用し
たパウダーの凝固温度である。各プロットの黒ぬり、半
黒ぬり、及び白抜きは、欠陥発生程度がそれぞれ、大、
中、及び欠陥なしを示す。欠陥発生程度は、鋳込み開始
からの欠陥発生鋳片長さの最大値が10m以上の場合を
大、1 〜10mの場合を中とした。使用したパウダーは全
て1300℃での粘度が1.0 〜2.5 ポアズの低粘度のパウダ
ーである。
[Operation] FIG. 2 shows the relationship between the powder solidification temperature and the number of mold oscillation cycles, the powder consumption amount, and the degree of occurrence of defects on the surface of the initial cast slab during continuous casting of SUS 420J2 equivalent steel. ) Figure shows vertical crack, (b)
The figure shows a blurring defect. T S shown in the figure is the solidification temperature of the powder used. Black plots, semi-black plots, and white spots in each plot indicate that the degree of defect occurrence is large,
Medium and no defects are shown. Regarding the degree of defect occurrence, the case where the maximum value of the defect-occurring slab length from the start of casting was 10 m or more was large, and the case of 1 to 10 m was medium. The powders used are all low-viscosity powders with viscosities of 1.0 to 2.5 poise at 1300 ° C.

【0014】以下、図2を用いて、本発明方法を具体的
に説明する。
The method of the present invention will be specifically described below with reference to FIG.

【0015】本発明方法において、1300℃における粘度
が 1.0〜2.5 ポアズで、凝固温度が1130〜1180℃の物性
を有するパウダーを使用し、パウダー消費量が0.02g/cm
・サイクル数を超えるように鋳型のオシレーションサイクル
数を設定する理由は次のとおりである。
In the method of the present invention, a powder having a physical property of a viscosity at 1300 ° C. of 1.0 to 2.5 poise and a solidification temperature of 1130 to 1180 ° C. and a powder consumption of 0.02 g / cm 3 is used.
The reason for setting the number of mold oscillation cycles so as to exceed the number of cycles is as follows.

【0016】図2(a) に示すように、鋳込み初期の鋳片
表面に発生する縦割れは、鋳型のオシレーションサイク
ル数および、パウダー消費量とは無関係に、パウダーの
凝固温度を1130〜1180℃の範囲に高めることによって防
止できる。これは、鋳込み初期のパウダー溶融が不安定
な状態下で、1300℃で 1.0〜2.5 ポアズの低粘度パウダ
ーを使用しているため、鋳型内の溶鋼メニカス部から、
鋳型−凝固シェル間への溶融パウダーの流入が円滑に行
われ、しかもパウダーの凝固温度を1130〜1180℃の
範囲に高めているため、鋳型−凝固シェル間に、安定し
たパウダーフィルムが形成され、モールド冷却が均一緩
冷却化されたことによると考えられる。
As shown in FIG. 2 (a), the vertical cracks generated on the surface of the slab in the initial stage of casting have a powder solidification temperature of 1130 to 1180 regardless of the number of oscillation cycles of the mold and the powder consumption. It can be prevented by increasing the temperature in the range of ° C. This is because the low-viscosity powder of 1.0 to 2.5 poise at 1300 ° C is used under the condition that the powder melting in the initial stage of casting is unstable, so from the molten steel meniscus part in the mold,
The molten powder flows smoothly between the mold and the solidifying shell, and since the solidifying temperature of the powder is increased to the range of 1130 to 1180 ° C, a stable powder film is formed between the mold and the solidifying shell, It is considered that this is because the mold was cooled uniformly and slowly.

【0017】一方、図2(b) に示すように、カブレ
欠陥はパウダーの凝固温度を1130〜1180℃に高めるとと
もに、鋳型のオシレーションサイル数を低下させて、パ
ウダーの鋳型−凝固シェール間への流入を促進し、パウ
ダー消費量を 0.020g/cm・サイクル数を超えるように、鋳型
オシレーションサイクル数を設定することによって防止
できる。これは、パウダー消費量の増加によって、鋳型
−凝固シェル間に形成されるパウダーフィルムが厚くな
り、鋳型への伝熱抵抗が増加して、モールド冷却がさら
に均一緩冷却化されたことによると考えられる。
On the other hand, as shown in FIG. 2 (b), the bleeding defect raises the solidification temperature of the powder to 1130 to 1180 ° C. and reduces the number of oscillation sills of the mold, so that the powder moves between the mold and the solidification shale of the powder. This can be prevented by setting the number of mold oscillation cycles so as to promote the influx of the powder and the powder consumption to exceed 0.020 g / cm · cycle number. It is considered that this is because the powder film formed between the mold and the solidified shell became thicker due to the increase in the powder consumption, the heat transfer resistance to the mold increased, and the mold cooling was further uniformly cooled. To be

【0018】なお、パウダーの凝固温度が1180℃を超え
る場合は、パウダーの溶融に時間がかかり、溶融パウダ
ーの粘度が高く、鋳型−凝固シェル間への流入が阻害さ
れるので、1180℃を上限とした。また、凝固温度が1130
〜1180℃の範囲のパウダーを使用したとき、そのパウダ
ーの1300℃における粘度が 2.5ポアズを超えるようだ
と、鋳型−凝固シェル間への流入が阻害されるので、2.
5 ポアズを上限とした。
When the solidification temperature of the powder exceeds 1180 ° C., it takes time to melt the powder, the viscosity of the molten powder is high, and the flow between the mold and the solidifying shell is hindered. And In addition, the solidification temperature is 1130
When using a powder in the range of ~ 1180 ° C, if the viscosity of the powder at 1300 ° C seems to exceed 2.5 poise, the flow into the mold-solidifying shell is hindered, so 2.
5 Poise was set as the upper limit.

【0019】次に、本発明方法において、鋳型のオシレ
ーションサイクル数をパウダーの凝固温度に応じて前記
式で表される上限値以下に調整するのが望ましい理由
は、下記のとおりである。
Next, in the method of the present invention, the reason why it is desirable to adjust the number of mold oscillation cycles to not more than the upper limit value represented by the above formula according to the solidification temperature of the powder is as follows.

【0020】図2に示すように、パウダー消費量P
LC(g/cm・サイクル数)は、パウダー凝固温度TS (℃)お
よび鋳型のオシレーションサイクル数Cy (サイクル/min)
と一次の逆相関を示し、下記の式で表される。
As shown in FIG. 2, powder consumption P
LC (g / cm · cycle number) is powder coagulation temperature T S (° C) and mold oscillation cycle number C y (cycle / min)
And the first-order inverse correlation are shown by the following equation.

【0021】 PLC=(−17.8・Cy −7.5 ・TS ) ×10-5+0.126 ・・・ 式から、パウダー消費量PLCが 0.020g/cm・サイクル数を
超える鋳型オシレーションサイクル数の上限値(Cy
U.L.は、下記式で表されることになる。
P LC = (− 17.8 · C y −7.5 · T S ) × 10 −5 +0.126 ・ ・ ・ From the formula, the powder consumption P LC is 0.020 g / cm · a mold oscillation cycle exceeding the number of cycles. Upper limit of number (C y )
UL will be represented by the following formula.

【0022】 (Cy U.L.≦ 595− 0.421・TS ・・・・ 以下、実施例によって、本発明の効果を具体的に説明す
る。
(C y ) UL ≦ 595−0.421 · T S ... The effects of the present invention will be specifically described below with reference to examples.

【0023】[0023]

【実施例】表1に示す組成のSUS 420J2 相当鋼を連続鋳
造し、鋳込み開始からの鋳片表面の縦割れ、カブレ欠陥
の発生状況を目視観察し、パウダー消費量を調査した。
[Example] A steel equivalent to SUS 420J2 having the composition shown in Table 1 was continuously cast, and the state of occurrence of vertical cracks and fog defects on the surface of the slab from the start of casting was visually observed to investigate the powder consumption.

【0024】使用した連続鋳造機は垂直式であり、鋳型
のオシレーション方式はサインカーブ方式、鋳型寸法は
長辺幅1020mm×短辺幅 200mm×長さ 700mmである。
The continuous casting machine used is a vertical type, the mold oscillation method is a sine curve method, and the mold dimensions are 1020 mm long side width × 200 mm short side width × 700 mm length.

【0025】鋳込み条件は次のとおりであった。The casting conditions were as follows.

【0026】鋳造温度: 1502 〜 1527 ℃〔凝固点 (14
77℃) 以上加熱温度25〜50℃〕 鋳造速度:鋳込み開始から3分後まで・・・300 mm/min 3分後から9分後まで・・・300 mm/minから600 mm/min
に上昇 9分後以降・・・600 mm/min モールドパウダー:表2に記号Aで示す化学組成を有
し、1300℃における粘度が1.48ポアズ、凝固温度が1151
℃のパウダー 鋳型のオシレーションサイクル数:85サイクル/min(前記
式で算出した上限値は110サイクル/min である。) 上記の本発明例の外に、比較例として表3に示す1、
2、3および4を実施した。これら比較例では、表2に
記号BおよびCで示す化学組成を有し、凝固温度が本発
明で定める下限値より低いパウダーを使用し、鋳型のオ
シレーションサイクル数は、比較例1と3では 130サイクル
/min、比較例2と4では85サイクル/minで連続鋳造を行っ
た。
Casting temperature: 1502 to 1527 ° C [freezing point (14
77 ℃) or higher heating temperature 25 to 50 ℃] Casting speed: From the start of casting to 3 minutes after ... 300 mm / min From 3 minutes to 9 minutes after ... 300 mm / min to 600 mm / min
After 9 minutes ... 600 mm / min Mold powder: having the chemical composition shown by symbol A in Table 2, viscosity at 1300 ° C. is 1.48 poise, solidification temperature is 1151
Oscillation cycle number of powder mold at 85 ° C .: 85 cycles / min (the upper limit value calculated by the above formula is 110 cycles / min.) In addition to the above-mentioned examples of the present invention, 1, shown in Table 3 as a comparative example,
2, 3 and 4 were carried out. In these comparative examples, powders having the chemical compositions shown by the symbols B and C in Table 2 and having a solidification temperature lower than the lower limit value defined in the present invention were used. 130 cycles
/ min, and in Comparative Examples 2 and 4, continuous casting was performed at 85 cycles / min.

【0027】表3に本発明例と比較例のパウダー消費
量、および鋳込み開始からの欠陥発生鋳片長さのチャー
ジごとの最大値を示す。
Table 3 shows the powder consumptions of the present invention example and the comparative example, and the maximum value for each charge of the length of the defective slab from the start of casting.

【0028】表3に示すように、鋳型のオシレーション
サイクル数が 130サイクル/minの場合はパウダーの凝固温度
が高くなる比較例1、3、5の順に鋳込み初期鋳中に発
生する縦割れは減少し、比較例5では完全に防止され
た。しかし、比較例5ではパウダー消費量が 0.020g/cm
・サイクル数以下となり、比較例1、3に比べて、カブレ欠
陥の発生程度が大となった。すなわちパウダーの高凝固
点化により縦割れ疵の発生は防止できるが、パウダー消
費量の低下によりカブレ欠陥の発生が多くなる。
As shown in Table 3, when the number of oscillation cycles of the mold is 130 cycles / min, the solidification temperature of the powder becomes high. It decreased and was completely prevented in Comparative Example 5. However, in Comparative Example 5, the powder consumption is 0.020 g / cm
-The number of cycles was less than or equal to the number of cycles, and the degree of occurrence of a blurring defect was large as compared with Comparative Examples 1 and 3. That is, although the vertical cracking flaw can be prevented by increasing the freezing point of the powder, the occurrence of a fog defect increases due to the reduction of the powder consumption.

【0029】鋳型のオシレーションサイクル数が85サイクル
/minの場合は、パウダーの凝固温度が高くなる比較例
2、4、本発明例の順に縦割れが減少し、本発明例では
完全に防止された。さらに、本発明例では、パウダー消
費量が 0.025g/cm・サイクル数と多くなり、比較例2と4で
は防止できないカブレ欠陥の発生を完全に防止すること
ができた。
The number of mold oscillation cycles is 85
In the case of / min, the vertical cracks decreased in the order of Comparative Examples 2 and 4 in which the powder coagulation temperature was high, and the present invention example, which was completely prevented in the present invention example. Further, in the example of the present invention, the powder consumption amount increased to 0.025 g / cm · cycle number, and it was possible to completely prevent the occurrence of the fog defect, which cannot be prevented in Comparative Examples 2 and 4.

【0030】このように本発明例において縦割れおよび
カブレ欠陥の発生を同時に防止できたのは、パウダーの
低粘度化、高凝固温度化と鋳型オシレーションサイクル
数の低下により、鋳込み初期の鋳型・鋳片表面間へのパ
ウダーの均一流入が促され、パウダーフィルムの安定形
成が可能となり、鋳片の均一緩冷却が達成されたことに
よる。
As described above, in the examples of the present invention, it was possible to prevent the generation of vertical cracks and fogging defects at the same time because the viscosity of the powder was lowered, the solidification temperature was increased, and the number of mold oscillation cycles was decreased. This is because the uniform inflow of powder between the surfaces of the slabs was promoted, the stable formation of powder film was possible, and the uniform gradual cooling of the slabs was achieved.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】本発明方法によれば、マルテンサイト系
ステンレス溶鋼の連続鋳造において鋳込み初期に鋳片表
面に多発する縦割れおよびカブレ欠陥を完全に防止する
ことができる。従って、鋳片表面手入れを省略すること
ができ、歩留の向上、製造コストの削減を図ることがで
きる。また熱間圧延工程の加熱炉に熱いままの鋳片を直
送する、いわゆる熱間装入が可能となり、生産能率の向
上、加熱炉燃料原単位の低減を達成することができる。
According to the method of the present invention, in continuous casting of martensitic stainless molten steel, it is possible to completely prevent vertical cracks and fog defects frequently occurring on the surface of the slab in the initial stage of casting. Therefore, it is possible to omit the surface treatment of the slab, improve the yield, and reduce the manufacturing cost. Further, so-called hot charging in which hot slabs are sent directly to the heating furnace in the hot rolling step can be carried out, so that the production efficiency can be improved and the fuel consumption rate of the heating furnace can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】13%Cr−C系鋼の状態図である。FIG. 1 is a phase diagram of 13% Cr-C steel.

【図2】SUS 420J2 相当鋼の連続鋳造時における、パウ
ダー凝固温度および鋳型オシレーションサイクル数と、
パウダー消費量および鋳込み初期鋳片表面の欠陥発生程
度との関係を示し、(a) 図は縦割れ、(b) 図はカブレ欠
陥の場合を示す。
[Figure 2] Powder solidification temperature and number of mold oscillation cycles during continuous casting of SUS 420J2 equivalent steel,
The relationship between the amount of powder consumed and the degree of occurrence of defects on the surface of the initial cast slab is shown. Fig. (A) shows vertical cracks, and (b) shows a case of fog defects.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鋳型内の溶鋼表面に、1300℃の溶融状態に
おいて 1.0〜2.5 ポアズの粘度を有するとともに凝固温
度が1130〜1180℃のパウダーを添加し、下記式で表さ
れるパウダー消費量PLCが0.02g/cm・サイクル数を超えるよ
うに、鋳型のオシレーションサイクル数Cy を設定する
ことを特徴とするマルテンサイト系ステンレス鋼の連続
鋳造方法。 PLC=PCh/(LM ・Cy )・・・・ ただし、PLC:パウダー消費量 (g/cm・サイクル数) PCh:1チャージのパウダー消費量(g/チャーシ゛) LM :鋳型内の溶鋼表面メニカス部外周長さ(cm) Cy :鋳型のオシレーションサイクル数(サイクル/min)
1. A powder consumption amount P represented by the following formula, to which powder having a viscosity of 1.0 to 2.5 poise in a molten state of 1300 ° C. and a solidification temperature of 1130 to 1180 ° C. is added to a molten steel surface in a mold. A continuous casting method for martensitic stainless steel, characterized in that the number of oscillation cycles C y of the mold is set so that LC exceeds 0.02 g / cm · cycle number. P LC = P Ch / (L M · C y ) ・ ・ ・ ・ However, P LC : Powder consumption (g / cm · cycle number) P Ch : 1 Charge powder consumption (g / charge) L M : Perimeter of molten steel surface meniscus in mold (cm) C y : Number of mold oscillation cycles (cycles / min)
【請求項2】鋳型のオシレーションサイクル数Cy を下
記式で表される上限値 (Cy ) U.L.以下に設定するこ
とを特徴とする請求項1記載のマルテンサイト系ステン
レス鋼の連続鋳造方法。 (Cy ) U.L.= 595− 0.421・TS ・・・・ ただし、 (Cy ) U.L.:鋳型オシレーションサイクル数
の上限値(サイクル/min) TS :パウダーの凝固温度(℃)
2. The continuous casting method for martensitic stainless steel according to claim 1, wherein the number of oscillation cycles C y of the mold is set to be equal to or less than an upper limit value (C y ) UL represented by the following formula. . (C y ) UL = 595-0.421 · T S ··· However, (C y ) UL : Upper limit of the number of mold oscillation cycles (cycles / min) T S : Freezing temperature of powder (° C)
JP25822692A 1992-09-28 1992-09-28 Method for continuously casting martenstic stainless steel Pending JPH06106302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25822692A JPH06106302A (en) 1992-09-28 1992-09-28 Method for continuously casting martenstic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25822692A JPH06106302A (en) 1992-09-28 1992-09-28 Method for continuously casting martenstic stainless steel

Publications (1)

Publication Number Publication Date
JPH06106302A true JPH06106302A (en) 1994-04-19

Family

ID=17317273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25822692A Pending JPH06106302A (en) 1992-09-28 1992-09-28 Method for continuously casting martenstic stainless steel

Country Status (1)

Country Link
JP (1) JPH06106302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450611B1 (en) * 1999-07-29 2004-09-30 주식회사 포스코 A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
JP2012206160A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450611B1 (en) * 1999-07-29 2004-09-30 주식회사 포스코 A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
JP2012206160A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method

Similar Documents

Publication Publication Date Title
CN104399929A (en) Method for reducing longitudinal division of weather-proof steel continuously cast slab
CN112743053B (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
JPH06106302A (en) Method for continuously casting martenstic stainless steel
JPS63112058A (en) Continuous casting method
KR100450611B1 (en) A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
CN113649538B (en) Automatic slag line changing system of slab caster based on molten steel temperature control
JP4010929B2 (en) Mold additive for continuous casting of steel
CN100457322C (en) Method for improving ingot surface quality
CN111375736B (en) Casting method of martensite precipitation hardening stainless steel
CN105420548B (en) A kind of lead-calcium alloy production method
KR102629377B1 (en) Mold powder and continuous casting method for continuous casting of Al-containing apostatic steel
KR101371959B1 (en) Mold flux for casting TWIP with high Al content and method for producing TWIP using the same
JP2000102846A (en) Mold powder for continuous casting
CN106702261B (en) Rare earth-containing welding transition steel for high-speed rail and preparation method thereof
JPH07185755A (en) Method for continuously casting medium carbon steel
JP2019515797A (en) Mold flux and casting method using the same
CN102489681A (en) Centrifugally cast cross-wedge rolling die and manufacturing method thereof
JPH11179507A (en) Method for oscillating mold for continuous casting
JPH08309483A (en) Continuous casting method for stainless steel containing boron
JPH067907A (en) Production of continuously cast slab excellent in surface characteristic
CN113290212A (en) Method for forming bottom of casting ingot in smelting process of vacuum induction furnace
JPH0729192B2 (en) Continuous casting injection method
JP2000301320A (en) Method for dissolving clogging of porous plug in ladle refining furnace
JP4992459B2 (en) Mold flux for continuous casting of steel and continuous casting method using the mold flux
JPS5614064A (en) Continuous casting method