JPH09234551A - Continuous casting method for preventing segregation and internal crack - Google Patents

Continuous casting method for preventing segregation and internal crack

Info

Publication number
JPH09234551A
JPH09234551A JP6752896A JP6752896A JPH09234551A JP H09234551 A JPH09234551 A JP H09234551A JP 6752896 A JP6752896 A JP 6752896A JP 6752896 A JP6752896 A JP 6752896A JP H09234551 A JPH09234551 A JP H09234551A
Authority
JP
Japan
Prior art keywords
roll
rolling
reduction
slab
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6752896A
Other languages
Japanese (ja)
Other versions
JP3294987B2 (en
Inventor
Mitsuo Uchimura
光雄 内村
Shigenori Tanaka
重典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06752896A priority Critical patent/JP3294987B2/en
Publication of JPH09234551A publication Critical patent/JPH09234551A/en
Application granted granted Critical
Publication of JP3294987B2 publication Critical patent/JP3294987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply produce a cast slab having the similar shape as a product shape without internal crack and segregation defect by deciding rolling reduction rate in each roll pair so as to become in a specific range, in a continuous casting of molten metal drawing while executing the rolling reduction to the cast slab. SOLUTION: The rolling reduction rate Δh of each rolling roll pair 3, 3 decided so as to be in the range of the formulas I, II, III, IV and V. εc>ε=[β(R +D)-Δh/2)/cosβ-1d]/1d×100... (I). Wherein, εc is crack limit average rolling reduction strain in development of the internal crack (%), R is radius of the rolling reduction roll (mm), D is shell thickness of solid phase ratio 1 (mm), 1d is contacting length (mm), Δh is rolling reduction rate (mm), ΔT is super heat in the mold ( deg.C), (f) is the solid phase ratio at the molten metal temp. in the mold and β is angle (radian) forming a line connecting the position of shell thickness D at the position of the roll contacting with the cast slab and the roll center and the perpendicular line in the roll center.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、モールド直下から
圧下する機内圧下の連続鋳造法において、内部割れおよ
び中心偏析の発生を防止して、製品にできるだけ近い形
状の鋳片を製造する連続鋳造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method in which a pressure is reduced from directly below a mold under an in-machine pressure to prevent the occurrence of internal cracks and center segregation and to produce a slab having a shape as close as possible to a product. Regarding

【0002】[0002]

【従来の技術】近年、海洋構造物,貯槽,石油およびガ
ス運搬用鋼管,高張力線材などの材質特性に対する要求
が厳しさを増すと同時に、これらをより安価に製造する
方法の確立が重要課題になっている。
2. Description of the Related Art In recent years, demands for material characteristics of offshore structures, storage tanks, steel pipes for transporting oil and gas, high-strength wire rods, etc. have become more severe, and at the same time, establishment of a method for manufacturing these at lower cost is an important issue. It has become.

【0003】これらを実現するための鋳片の品質につい
て先ず検討すると、鋳片は断面内において均質であるこ
とが理想であるが、しかしながら鋳片には介在物,偏
析,ポロシティーなどが発生し、鋼材の特性に影響を及
ぼす。これらの欠陥のうち偏析は、溶鋼に含有している
硫黄,燐,マンガン等の不純物元素が鋳造工程において
部分的に濃化して発生する。
When the quality of the slab for realizing these is examined first, it is ideal that the slab is homogeneous in the cross section, however, inclusions, segregation, porosity, etc. occur in the slab. Affect the properties of steel materials. Among these defects, segregation occurs when impurity elements such as sulfur, phosphorus and manganese contained in the molten steel are partially concentrated in the casting process.

【0004】このような偏析の1つの原因は、鋳造中に
発生する割れであり、割れはロールのミスアライメント
やバルジング,矯正曲げ,垂直曲げの曲げ戻し、あるい
は近年発展している軽圧下による固液界面に発生する圧
下歪により発生し、その際、デンドライト樹間等に濃化
している硫黄,燐,マンガン等の不純物元素を割れ内に
吸引して偏析を形成し、内部割れになる。
One of the causes of such segregation is cracking that occurs during casting, and the cracking is caused by roll misalignment, bulging, straightening bending, vertical bending back, or solidification caused by the recent light pressure reduction. It is caused by the rolling strain generated at the liquid interface, and at that time, impurity elements such as sulfur, phosphorus, and manganese concentrated in the spaces between dendrite trees are sucked into the cracks to form segregation, which causes internal cracks.

【0005】これら内部割れの防止方策としては、固液
界面に発生する歪をできるだけ小さくすることが有効
で、ロールのミスアライメントの防止や鋳造速度の制
限、あるいは圧下量の制限等で対処している。
As a measure for preventing these internal cracks, it is effective to minimize the strain generated at the solid-liquid interface, and it is necessary to prevent roll misalignment, limit the casting speed, or limit the amount of reduction. There is.

【0006】また、もう一つの鋳片の均質性を損なう重
大な偏析は中心偏析で、連続鋳造により得られる鋳片の
中心部には、不純物元素等が濃化した中心偏析やV偏析
が観察される。
Further, another important segregation that impairs the homogeneity of the slab is center segregation. At the center of the slab obtained by continuous casting, center segregation and V segregation in which impurity elements are concentrated are observed. To be done.

【0007】これは、本発明者らが先に〔“材料とプロ
セス”vol.2(1989),1269〕にて報告し
たごとく、凝固末期に鋳片中心部に発生するブリッジン
グや固液界面の凹凸等により、中心部の通液抵抗が部分
的に増大して、周囲のデンドライト樹間の濃化溶鋼が、
凝固収縮吸引力によって吸引され中心部に集積すること
による。
[0007] This has been described by the present inventors first in [Materials and Processes] vol. 2 (1989), 1269], bridging that occurs at the center of the slab at the end of solidification and unevenness of the solid-liquid interface, etc., partially increases the liquid passage resistance at the center and Thick molten steel between dendrite trees,
By coagulation contraction suction force, it is sucked and accumulated in the central part.

【0008】この鋳片中心部の通液抵抗が増大する理由
は、ブリッジングや固液界面の凹凸により中心部の固相
率が局部的に増大し、この固相率の大きい中心部のデン
ドライト等の樹間の融点の低い濃化溶鋼が下方の凝固収
縮により吸引され、この低融点濃化溶鋼が抜けたデンド
ライト等の樹間へ、上部の不純物等の溶質が濃化してい
ない上方の融点の高い溶鋼が侵入して、局部的に凝固す
ることによる。
The reason why the liquid passing resistance at the center of the cast slab increases is that the solid fraction of the central portion locally increases due to bridging and unevenness of the solid-liquid interface, and the dendrite of the central portion having a large solid fraction is increased. Molten molten steel with a low melting point such as wood is sucked by downward solidification shrinkage, and the solute such as dendrite in the upper part where the solute such as dendrite, from which this low melting point concentrated molten steel has escaped, is not concentrated This is because molten steel with a high temperature enters and locally solidifies.

【0009】中心偏析やV偏析の防止対策としては、電
磁攪拌により樹間流動が発生しにくい等軸晶等に凝固組
織を制御する方法や、また濃化溶鋼等の流動原因となる
凝固収縮を、鋳片の表面を圧下する軽圧下により補償す
る方法などが近年発展している。
As a measure for preventing center segregation and V segregation, there is a method of controlling the solidification structure into equiaxed crystals or the like in which tree flow is unlikely to occur due to electromagnetic stirring, and solidification shrinkage which causes flow of concentrated molten steel or the like. In recent years, a method of compensating the surface of a slab by lightly reducing the surface has been developed.

【0010】一方さらなる省工程の方策を考えると、鋳
造速度の増大や圧延工程を省略する方法が考えられる。
圧延工程を省略するためには、良く知られているごと
く、製品形状に近い形を鋳造段階で実現する双ロール法
等の方法と、凝固工程で圧下する機内圧下の方法が提案
されている。
On the other hand, in consideration of a further process saving method, it is conceivable to increase the casting speed or omit the rolling process.
As well known, in order to omit the rolling step, a method such as a twin roll method for realizing a shape close to a product shape at the casting stage and an in-machine reduction method for rolling in the solidification step have been proposed.

【0011】以上のプロセスにおいて、いずれも内部割
れ防止対策とV偏析や中心偏析等の偏析防止対策の確立
が不可欠であり、特に連鋳機内圧下においては内部割れ
及び偏析の発生を防止して、圧下量をできるだけ大きく
する技術の確立が重要課題である。
In all of the above processes, it is indispensable to establish measures for preventing internal cracks and segregation such as V segregation and center segregation. Especially under internal pressure of a continuous casting machine, internal cracks and segregation are prevented from occurring. The establishment of technology to maximize the amount of reduction is an important issue.

【0012】[0012]

【発明が解決しようとする課題】ところでV偏析や中心
偏析等の偏析を防止するためには、濃化溶鋼が集積しな
いよう圧下する必要があり、また内部割れの発生を防止
するには、圧下により発生する固液界面の歪を材料が持
っている限界歪以下に制御する必要がある。従来、固液
界面の圧下歪算出式として、杉谷らが〔鉄と鋼,68
(1982),A149〕にて報告している(4)式の
型が良く知られている。
By the way, in order to prevent segregation such as V segregation and center segregation, it is necessary to reduce the concentrated molten steel so that it does not accumulate. It is necessary to control the strain at the solid-liquid interface caused by the stress below the critical strain possessed by the material. Conventionally, Sugiya et al. [Iron and Steel, 68
(1982), A149], the type of formula (4) is well known.

【0013】[0013]

【数4】 ε=1.15×3d×δ×100/12 ………… (4) ただし ε:圧下歪 ,d:シェル厚 ,δ:圧下量 ,1:ロ
ールピッチ
## EQU4 ## ε = 1.15 × 3d × δ × 100/1 2 (4) where ε: rolling strain, d: shell thickness, δ: rolling amount, 1: roll pitch

【0014】(4)式に基づくと、ロール圧下の圧下歪
はロールピッチが短いほど圧下量が大きいほど大きくな
り、圧下歪を小さくするためには圧下時のシェル厚およ
びロールピッチを大きく、圧下量は小さくすれば良いと
いう結論になり、ロールピッチの項が実態に合わない。
According to the equation (4), the rolling strain under roll rolling increases as the roll pitch decreases and the rolling amount increases. In order to reduce the rolling strain, the shell thickness and the roll pitch during rolling are increased to reduce the rolling strain. The conclusion is that the amount should be small, and the term of roll pitch does not match the actual situation.

【0015】前記(3)式では内部割れを発生させず、
限られた圧下帯長さで多本数ロールによりできるだけ大
きな圧下量を確保する方法の検討ができない。従って、
偏析および内部割れを発生させず、製品にできるだけ近
い形状まで圧下する圧下方法の確立が必要である。
In the above equation (3), internal cracking does not occur,
It is not possible to study how to secure as large a reduction amount as possible by using a large number of rolls with a limited reduction zone length. Therefore,
It is necessary to establish a reduction method that reduces the segregation and internal cracks to a shape as close as possible to the product.

【0016】本発明は、上記課題を解決するために成さ
れたもので、偏析と内部割れを防止する連続鋳造法を提
供する。
The present invention has been made to solve the above problems, and provides a continuous casting method for preventing segregation and internal cracking.

【0017】[0017]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。
The gist of the present invention is as follows.

【0018】本発明は、鋳片を圧下しつつ引き抜く溶融
金属の連続鋳造法において、各ロールの圧下量Δhを
(5)(6)(7)式の範囲となるよう決定することを
特徴とする偏析と内部割れを防止する連続鋳造法であ
る。
The present invention is characterized in that, in a continuous casting method for molten metal in which a cast slab is drawn out while being pressed down, the rolling down amount Δh of each roll is determined so as to fall within the range of formulas (5), (6) and (7). This is a continuous casting method that prevents segregation and internal cracking.

【0019】[0019]

【数5】 ただし β =tan-1〔ld/(R+D−Δh/2)〕 ld=(R・Δh)0.5 (Equation 5) However, β = tan −1 [ld / (R + D−Δh / 2)] ld = (R · Δh) 0.5

【0020】[0020]

【数6】 εc=5.09+23.8・f ΔT≦0℃ ………… (6)[Equation 6] εc = 5.09 + 23.8 · f ΔT ≦ 0 ° C. (6)

【0021】[0021]

【数7】 εc=4.55−0.76・ΔT ΔT>0℃ ………… (7)[Equation 7] εc = 4.55−0.76 · ΔT ΔT> 0 ° C. (7)

【0022】上式において、 εc : 内部割れ発生の割れ限界平均圧下歪 (%), R : 圧下ロールの半径 (mm), D : 固相率1のシェル厚 (mm), ld: 接触長 (mm), Δh: 圧下量 (mm), ΔT: モールド内スーパーヒート(℃), f : モールド内溶湯温度固相率表示 , β : ロールと鋳片が接触した位置のシェル厚Dの位
置とロール中心を結んだ線とロール中心の垂線とのなす
角度 (ラジアン) である。
In the above equation, εc: Cracking limit average rolling reduction (%) of internal cracking, R: Rolling roll radius (mm), D: Shell thickness with solid phase ratio of 1 (mm), ld: Contact length ( mm), Δh: Reduction amount (mm), ΔT: Superheat in mold (° C), f: Display of melt temperature solid phase ratio in mold, β: Position of shell thickness D at position where roll and slab contact and roll It is the angle (in radians) formed by the line connecting the centers and the perpendicular to the center of the roll.

【0023】上記偏析と内部割れを防止する連続鋳造法
において、各圧下ロールの直径を50mm〜350mm
とした2本以上の多本数ロールからなる圧下ロールの組
を作り、各ロールの圧下量を(5)(6)(7)式の範
囲となるよう決定し、鋳片の中心固相率が0.3〜0.
6まで圧下することにより、圧下に起因した内部割れと
偏析の発生を防止して製品形状に近い鋳片を製造するこ
とを特徴とする連続鋳造法である。
In the continuous casting method for preventing the above segregation and internal cracking, the diameter of each rolling roll is 50 mm to 350 mm.
A group of reduction rolls composed of two or more rolls was prepared, and the reduction amount of each roll was determined so as to fall within the range of formulas (5), (6) and (7), and the central solid fraction of the slab was determined. 0.3-0.
It is a continuous casting method characterized by producing internal slabs having a shape close to the product shape by preventing internal cracking and segregation due to rolling by rolling down to 6.

【0024】[0024]

【発明の実施の形態】以下実施の形態により、本発明を
さらに詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the following embodiments.

【0025】本発明者らは、圧下における鋳片の圧下挙
動と内部割れの発生挙動を研究した結果に基づき、鋳片
の圧下力と圧下量の間に下記(8)式の関係が成立して
いることを、すでに〔(鉄と鋼(1987),p.20
7)〕にて報告した。
The inventors of the present invention have studied the rolling behavior and internal cracking behavior of the slab under rolling, and the following formula (8) is established between the rolling force and the rolling amount of the slab. Have already been described [(Iron and Steel (1987), p. 20.
7)].

【0026】[0026]

【数8】 P=k(R・Δh)0.5 ………………… (8) ただし P=圧下反力, k:変形抵抗, R:圧下ロール半
径, Δh:圧下量
[Equation 8] P = k (R · Δh) 0.5 (8) However, P = reaction force, k: deformation resistance, R: reduction roll radius, Δh: reduction amount

【0027】上記(8)式の関係が成立するのは、鋳片
の圧下挙動とロールとの間に、図1の未凝固圧下挙動に
基づく鋳片の変形挙動を示す図面における圧延の関係が
概略成立していることを意味する。図1において、3は
圧延ロール,12は鋳片,Rはロール半径,Dはシェル
厚,Δhは圧下量,ldは接触長さである。
The relationship of the above equation (8) is established by the fact that the rolling relationship in the drawing showing the deformation behavior of the slab based on the unsolidified rolling behavior of FIG. 1 is between the rolling behavior of the slab and the roll. It means that it is generally established. In FIG. 1, 3 is a rolling roll, 12 is a slab, R is a roll radius, D is a shell thickness, Δh is a reduction amount, and ld is a contact length.

【0028】本発明者は、これらの結果に基づき軽圧下
における鋳片の内部割れの発生防止条件についてさらに
研究を進めた。図2はプラスチシンを用いた各厚さ位置
の圧下による最大歪の圧下実験の結果を示し、プラスチ
シンの表層からの距離がDの位置に発生する歪と、ロー
ルがプラスチシンと接触し始める位置からの距離との関
係を示すものである。
Based on these results, the present inventor further researched the conditions for preventing the occurrence of internal cracks in a cast piece under a light pressure. Figure 2 shows the results of the maximum strain reduction experiment by the reduction of each thickness position using plastisine. Strain that occurs at the position where the distance of the plastisine from the surface layer is D and the position where the roll starts to contact with plastisine. It shows the relationship with the distance.

【0029】厚さ方向各位置の発生歪は最大値があり、
その最大値の発生位置は表層ほどロールとプラスチシン
(鋳片)の接触開始位置に近く、鋳片の厚み中心部ほど
ロールの軸心直下に近くなる。実際に内部割れに結びつ
く歪は、このように発生した最大歪と考えられる。
The generated strain at each position in the thickness direction has a maximum value,
The position where the maximum value is generated is closer to the contact start position between the roll and the plasticine (cast slab) in the surface layer, and is closer to directly below the axial center of the roll in the thickness center of the slab. The strain that actually leads to internal cracking is considered to be the maximum strain thus generated.

【0030】本発明者は、かかる歪をロール径等の設備
条件との関係で簡単に表現できる簡便な指標について研
究した結果、鋳片のシェル厚Dに発生する最大歪は、図
3の圧下による各厚さ位置の測定最大歪と幾何形状に基
づく平均歪の関係に示すごとく、下記(9)式に示すシ
ェル厚Dの平均歪εと良好な相関があることを知見して
本発明を成し遂げた。
The present inventor has studied a simple index which can easily express such strain in relation to equipment conditions such as roll diameter. As a result, the maximum strain generated in the shell thickness D of the cast slab is shown in FIG. According to the present invention, it was found that there is a good correlation with the average strain ε of the shell thickness D shown in the following equation (9), as shown in the relationship between the maximum strain measured at each thickness position and the average strain based on the geometrical shape. Accomplished

【0031】[0031]

【数9】 ここで β =tan-1〔ld/(R+D−Δh/2)〕 ld=(R・Δh)0.5 [Equation 9] Where β = tan −1 [ld / (R + D−Δh / 2)] ld = (R · Δh) 0.5

【0032】上記(9)式において、ε:平均圧下歪
(%),R:圧下ロールの半径(mm),D:固相率1
のシェル厚(mm),ld:接触長(mm),Δh:圧
下量(mm),β:ロールと鋳片が接触した位置のシェ
ル厚Dの位置とロール中心を結んだ線とロール中心の垂
線とのなす角度(ラジアン)である。
In the above equation (9), ε: average rolling reduction (%), R: radius of the rolling roll (mm), D: solid fraction 1
Shell thickness (mm), ld: contact length (mm), Δh: reduction amount (mm), β: position of shell thickness D at the position where the roll and the slab come into contact with the line connecting the roll center and the roll center It is the angle (radian) formed by the perpendicular.

【0033】図3中には、炭素鋼について一点矯正曲げ
で割れが発生する限界歪と、軽圧下において、圧下割れ
が発生した時の(9)式で計算した平均圧下歪εの関係
もプロットしている。プラスチシンの結果も含め表層か
らの距離Dに発生する実際の歪と、(9)式で計算した
シェル厚Dにおける平均圧下歪εとの間には良好な相関
が認められる。
FIG. 3 also plots the relationship between the critical strain at which cracking occurs in single-point straightening bending of carbon steel and the average rolling strain ε calculated by equation (9) when rolling reduction occurs at light pressure. doing. A good correlation is observed between the actual strain generated at the distance D from the surface layer including the result of plasticin and the average rolling strain ε at the shell thickness D calculated by the equation (9).

【0034】従って、(9)式により内部割れの防止が
可能な各ロールの圧下量を、圧下ロール径等の設備条件
との関係で算出することができる。図4は、鋳片単位長
さ当たりに挿入可能なロール本数とロール径の関係を示
す図面である。ロール径が小さいほど、単位長さに挿入
可能なロール本数を増やすことができる。
Therefore, the amount of reduction of each roll capable of preventing internal cracking can be calculated by the equation (9) in relation to the equipment conditions such as the diameter of the reduction roll. FIG. 4 is a drawing showing the relationship between the number of rolls that can be inserted per unit length of cast slab and the roll diameter. The smaller the roll diameter, the larger the number of rolls that can be inserted into the unit length.

【0035】図5は、図6に示す実験装置のモールド1
の直下水でスプレー2により鋳片を冷却した後、直径2
00mmの圧下ロール3を配置して、測定した割れ限界
圧下量とモールド1の中の溶湯4のスーパーヒートの関
係を示す図面である。
FIG. 5 shows the mold 1 of the experimental apparatus shown in FIG.
After cooling the slab with spray 2 directly under the water,
It is a figure which shows the relationship between the measured cracking limit reduction amount and the superheat of the molten metal 4 in the mold 1 which arrange | positioned the reduction roll 3 of 00 mm.

【0036】また図7は、図5に示す限界圧下量やロー
ル径等を用いて、前記(5)式で計算した割れ限界平均
圧下歪εcと、モールド内スーパーヒートの関係を示し
た図面である。モールド内のスーパーヒートは小さいほ
ど割れは発生しにくく、1ロール当たりの圧下量を増大
することが可能で、割れ限界平均圧下歪εcが大きくな
る。
FIG. 7 is a drawing showing the relationship between the crack limit average rolling reduction εc calculated by the above equation (5) using the rolling reduction amount and roll diameter shown in FIG. 5 and the superheat in the mold. is there. As the superheat in the mold is smaller, cracks are less likely to occur, the amount of reduction per roll can be increased, and the cracking limit average rolling reduction εc increases.

【0037】特にモールド内の溶湯温度を、液相線温度
より低くしたスーパーヒートが0℃以下の半凝固鋳造の
場合、割れを発生させない1ロール当たりの割れ限界圧
下量は、大幅に増大することが可能で、少ないロール本
数で、鋳片の形状が制御できる。
In particular, in the case of semi-solid casting in which the superheat in which the temperature of the molten metal in the mold is lower than the liquidus temperature is 0 ° C. or less, the cracking limit reduction amount per roll that does not cause cracking is significantly increased. The shape of the slab can be controlled with a small number of rolls.

【0038】図8は、図9に示すごとくモールド1の直
下に2本以上からなる多本数の圧下ロール3と11を設
置して、圧下ロール間に冷却温度調整用水スプレー7を
配置して、各ロールの圧下量とロール径を、前記(5)
(6)(7)式で決定して圧下した場合の、0.1%C
鋼の偏析に及ぼす未凝固圧下の圧下終了ロール11直後
9の位置の中心固相率の影響を示す図面である。
In FIG. 8, as shown in FIG. 9, a plurality of reduction rolls 3 and 11 consisting of two or more are installed directly below the mold 1, and a cooling temperature adjusting water spray 7 is arranged between the reduction rolls. For the amount of reduction and roll diameter of each roll, refer to (5)
(6) 0.1% C when determined by the formula (7) and reduced
It is drawing which shows the influence of the central solid fraction of the position of 9 immediately after the completion | finish roll 11 of the reduction | decrease of the un-solidification reduction on the segregation of steel.

【0039】多本数ロールによる未凝固圧下の、終了ロ
ール直後の中心固相率が0.3より小さい場合、鋳片1
2には偏析が観察され、多本数ロールの最終ロールの圧
下終了時期を中心固相率で0.3より大きくすること
で、偏析を防止することができる。
If the central solid fraction immediately after the final roll under the unsolidified pressure by a large number of rolls is less than 0.3, the slab 1
Segregation is observed in No. 2, and segregation can be prevented by setting the end point of the reduction of the final roll of the multiple rolls to 0.3 or more in the central solid fraction.

【0040】このように中心偏析が改善できる理由は、
図10に模式的に示すごとく、曲線13,14で示した
固相率0.1〜0.3のシェル厚が圧下により瞬時に中
心部に移動し、濃化溶鋼の集積が激しい中心固相率0.
1〜0.4の経過時間を短縮できることによる。
The reason why the center segregation can be improved is as follows.
As schematically shown in FIG. 10, the shell thickness of solid phase ratios 0.1 to 0.3 shown by the curves 13 and 14 instantly moves to the central portion due to the reduction, and the concentrated solidified steel is intensely accumulated in the central solid phase. Rate 0.
This is because the elapsed time of 1 to 0.4 can be shortened.

【0041】なお偏析は、マクロエッチで観察して、鋳
片のシェル厚や固相率は冷却水量や鋳片厚および各物性
を用いて伝熱計算により各位置の温度を計算し、固相率
は各位置の計算温度を用いて(10)式で算出した。
The segregation is observed by macro etching, and the shell thickness and solid fraction of the slab are calculated by calculating the temperature at each position by heat transfer calculation using the cooling water amount, the slab thickness and each physical property. The rate was calculated by the equation (10) using the calculated temperature at each position.

【0042】[0042]

【数10】 固相率=(T−Tsl)/(T11−Tsl) ………… (10) ただし T : 伝熱計算により計算した各位置の
計算温度 Tsl: 溶湯の固相線温度 T11: 溶湯の液相線温度
[Equation 10] Solid fraction = (T-Tsl) / (T11-Tsl) (10) where T: Calculated temperature at each position calculated by heat transfer calculation Tsl: Solidus temperature of molten metal T11: Liquidus temperature of molten metal

【0043】[0043]

【実施例】表1は、このようにして製造した鋳片の品質
および鋳片形状である。本発明法により偏析がなく、内
部割れもない、また製品形状に近い形状の鋳片の製造が
可能である。なお鋳片のさらなる形状調整は、以上の機
内圧下後に設置した図9に示す水スプレー10で鋳片温
度を調整した後に切断するか、あるいは連続して、次工
程に供給してそのまま圧延するか、あるいは加熱炉で加
熱した後に圧延して整える。
EXAMPLES Table 1 shows the quality and shape of the slab thus produced. According to the method of the present invention, it is possible to produce a slab having no segregation, no internal cracking, and a shape close to the product shape. The shape of the slab can be further adjusted by cutting the slab after adjusting the temperature of the slab with the water spray 10 shown in FIG. 9 installed after the above-mentioned internal pressure reduction, or continuously supplying it to the next step and rolling it as it is. Alternatively, it is heated in a heating furnace and then rolled to prepare.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】以上説明したように本発明の連続鋳造法
は、鋳片を圧下しつつ引き抜く溶融金属の連続鋳造法に
おいて、各ロールの圧下量を、所定の式で定めた割れ限
界平均圧下歪以下の範囲にて圧延することにより、内部
割れや偏析欠陥がなく、かつ製品形状に近い形状の鋳片
が簡便な方法で製造でき、圧延工程の省略が可能になる
とともに、良質の鋳片を製造することができる。
As described above, according to the continuous casting method of the present invention, in the continuous casting method of molten metal in which a slab is drawn while being pressed, the rolling reduction amount of each roll is a crack limit average rolling reduction determined by a predetermined formula. By rolling in the range of strain or less, there is no internal crack or segregation defect, and a slab with a shape close to the product shape can be manufactured by a simple method, and the rolling step can be omitted, and a high quality slab can be obtained. Can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】未凝固圧下挙動に基づく鋳片の変形挙動の概略
を示す図面である。
FIG. 1 is a drawing showing an outline of deformation behavior of a slab based on unsolidified rolling behavior.

【図2】各厚さ位置の圧下による最大歪を示す図面であ
る。
FIG. 2 is a drawing showing the maximum strain due to rolling at each thickness position.

【図3】圧下による各厚さ位置の測定最大歪と幾何形状
に基づく平均歪の関係を示す図面である。
FIG. 3 is a diagram showing the relationship between the measured maximum strain at each thickness position due to rolling and the average strain based on the geometrical shape.

【図4】単位長さに挿入可能なロール本数を示す図面で
ある。
FIG. 4 is a diagram showing the number of rolls that can be inserted into a unit length.

【図5】内部割れを防止することが可能な1ロール当た
りの圧下量に及ぼすモールド内スーパーヒートの影響を
示す図面である。
FIG. 5 is a drawing showing the effect of superheat in a mold on the amount of reduction per roll capable of preventing internal cracking.

【図6】内部割れが発生する限界圧下量に及ぼすモール
ド内スーパーヒートの影響を明らかにした実験装置を示
す図面である。
FIG. 6 is a drawing showing an experimental apparatus that clarifies the influence of superheat in a mold on the critical reduction amount at which internal cracking occurs.

【図7】内部割れを防止することが可能な(5)式で計
算した割れ限界平均圧下歪εcに及ぼすモールド内スー
パーヒートの影響を示す図面である。
FIG. 7 is a drawing showing the influence of superheat in a mold on the crack limit average rolling reduction εc calculated by equation (5) capable of preventing internal cracking.

【図8】偏析に及ぼす機内圧下終了凝固時期の影響を示
す図面である。
FIG. 8 is a view showing the influence of the end solidification timing under the internal pressure on the segregation.

【図9】偏析に及ぼす多本数ロール機内圧下の影響を実
験した実験装置を示す図面である。
FIG. 9 is a drawing showing an experimental apparatus for conducting an experiment on the influence of internal pressure reduction of a multi-roll machine on segregation.

【図10】本発明法により解析が改善できる理由を示す
図面である。
FIG. 10 is a drawing showing the reason why analysis can be improved by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 モールド 2 水スプレーノズル 3 圧下ロール 4 溶湯 5 固相率1のシェル厚 6 浸漬ノズル 7 鋳片温度調整用水スプレーノズル 8 固相率fのシェル厚 9 機内圧下最終ロール直後の中心固相率 10 鋳片温度調整用の水スプレーノズル 11 最終機内圧下ロール 12 鋳片 13 固相率0.1のシェル厚 14 固相率0.3のシェル厚 DESCRIPTION OF SYMBOLS 1 Mold 2 Water spray nozzle 3 Rolling roll 4 Molten metal 5 Shell thickness of solid phase ratio 1 6 Immersion nozzle 7 Water spray nozzle for slab temperature adjustment 8 Shell thickness of solid phase ratio 9 Central solid phase ratio immediately after final roll under internal pressure 10 Water spray nozzle for adjusting slab temperature 11 Final roll in machine 12 Slab 13 Shell thickness with solid phase ratio 0.1 14 Shell thickness with solid phase ratio 0.3

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳片を圧下しつつ引き抜く溶融金属の連
続鋳造法において、各ロールの圧下量Δhを(1)
(2)(3)式の範囲となるよう決定することを特徴と
する偏析と内部割れを防止する連続鋳造法。 【数1】 ただし β =tan-1〔ld/(R+D−Δh/2)〕 ld=(R・Δh)0.5 【数2】 εc=5.09+23.8・f ΔT≦0℃ ………… (2) 【数3】 εc=4.55−0.76・ΔT ΔT>0℃ ………… (3) 上式において εc : 内部割れ発生の割れ限界平均圧下歪 (%) R : 圧下ロールの半径 (mm) D : 固相率1のシェル厚 (mm) ld: 接触長 (mm) Δh: 圧下量 (mm) ΔT: モールド内スーパーヒート(℃) f : モールド内溶湯温度固相率表示 β : ロールと鋳片が接触した位置のシェル厚Dの位
置とロール中心を結んだ線とロール中心の垂線とのなす
角度 (ラジアン)
1. In a continuous casting method for molten metal, in which a slab is drawn out while being rolled down, the rolling down amount Δh of each roll is (1)
(2) A continuous casting method for preventing segregation and internal cracking, which is determined so as to fall within the range of equations (3). [Equation 1] However, β = tan −1 [ld / (R + D−Δh / 2)] ld = (R · Δh) 0.5 [Equation 2] εc = 5.09 + 23.8 · f ΔT ≦ 0 ° C. ………… (2) [ Mathematical Expression 3 εc = 4.55−0.76 · ΔT ΔT> 0 ° C. (3) In the above equation, εc: Cracking limit average rolling reduction of internal cracking (%) R: Rolling roll radius (mm ) D: Shell thickness with solid phase ratio of 1 (mm) ld: Contact length (mm) Δh: Reduction amount (mm) ΔT: Superheat in mold (° C) f: Melt temperature solid phase ratio display in mold β: With roll Angle formed by the line connecting the shell thickness D at the position where the slab comes into contact with the roll center and the perpendicular to the roll center (radian)
【請求項2】 各圧下ロールの直径を50mm〜350
mmとした2本以上の多本数ロールからなる圧下ロール
の組を作り、各ロールの圧下量を(1)(2)(3)式
の範囲となるよう決定し、鋳片の中心固相率が0.3〜
0.6まで圧下することにより、圧下に起因した内部割
れと偏析の発生を防止して製品形状に近い鋳片を製造す
ることを特徴とする請求項1記載の偏析と内部割れを防
止する連続鋳造法。
2. The diameter of each rolling roll is 50 mm to 350.
mm, a set of reduction rolls consisting of two or more multi-rolls was made, and the reduction amount of each roll was determined to fall within the range of formulas (1), (2), and (3), and the central solid fraction of the slab was determined. Is 0.3-
The continuous process for preventing segregation and internal cracking according to claim 1, wherein the production of a cast product having a shape close to that of the product is prevented by preventing internal cracking and segregation due to the reduction by pressing down to 0.6. Casting method.
JP06752896A 1996-02-29 1996-02-29 Continuous casting to prevent segregation and internal cracking Expired - Lifetime JP3294987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06752896A JP3294987B2 (en) 1996-02-29 1996-02-29 Continuous casting to prevent segregation and internal cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06752896A JP3294987B2 (en) 1996-02-29 1996-02-29 Continuous casting to prevent segregation and internal cracking

Publications (2)

Publication Number Publication Date
JPH09234551A true JPH09234551A (en) 1997-09-09
JP3294987B2 JP3294987B2 (en) 2002-06-24

Family

ID=13347578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06752896A Expired - Lifetime JP3294987B2 (en) 1996-02-29 1996-02-29 Continuous casting to prevent segregation and internal cracking

Country Status (1)

Country Link
JP (1) JP3294987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158373A (en) * 2017-03-23 2018-10-11 株式会社デンソー Method for manufacturing piping component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018158373A (en) * 2017-03-23 2018-10-11 株式会社デンソー Method for manufacturing piping component

Also Published As

Publication number Publication date
JP3294987B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
JP4055689B2 (en) Continuous casting method
CN208171735U (en) A kind of thawing continuous casting simulation experimental rig in situ
JP2995519B2 (en) Light reduction of continuous cast strand
CN112743053A (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
US4911226A (en) Method and apparatus for continuously casting strip steel
JPH09234551A (en) Continuous casting method for preventing segregation and internal crack
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
CN115401178A (en) Screw-down process determination method for improving internal quality of gear steel
JP3994848B2 (en) Continuous casting method of steel
JPH09225612A (en) Continuous casting method
JP3619377B2 (en) Billet continuous casting method and apparatus
EP2857122B1 (en) Continuous casting method for slab
JP2561180B2 (en) Continuous casting method
JP2560935B2 (en) Semi-continuous casting method for ingots with multiple extensions
JP7364887B2 (en) Method for producing thin slabs
JP2593386B2 (en) Continuous casting method
JP2593384B2 (en) Continuous casting method
JPH01170551A (en) Mold for continuously casting steel
JPH04313453A (en) Continuous casting method
JPH0346217B2 (en)
JPH0729192B2 (en) Continuous casting injection method
JPS635859A (en) Continuous casting method for high silicon steel
JP2593385B2 (en) Continuous casting method
JP2561180C (en)
JPH11320038A (en) Method for starting continuous casting of thin cast piece

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140405

Year of fee payment: 12

EXPY Cancellation because of completion of term