JP2561180C - - Google Patents

Info

Publication number
JP2561180C
JP2561180C JP2561180C JP 2561180 C JP2561180 C JP 2561180C JP 2561180 C JP2561180 C JP 2561180C
Authority
JP
Japan
Prior art keywords
slab
segregation
reduction
solid phase
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Publication date

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】 本発明は、連続鋳造鋳片の厚み中心部に見られる不純物元素、即ち鋼鋳片の場
合には硫黄,燐,マンガン等の偏析を防止し、均質な金属を得ることのできる連
続鋳造法に関する。 【0002】 【従来の技術】 近年海洋構造物,貯槽,石油およびガス運搬用鋼管、高張力線材などの材質特
性に対する要求は厳しさを増しており、均質な鋼材を提供することが重要課題と
なっている。 【0003】 元来鋼材は、断面内において均質であるべきものであるが、鋼は一般に硫黄,
燐,マンガン等の不純物元素を含有しており、これらが鋳造過程において偏析し 、部分的に濃化するため鋼が脆弱となる。 【0004】 特に近年生産性や歩留向上および省エネルギー等の目的のために連続鋳造法が
一般に普及しているが、連続鋳造により得られる鋳片の厚み中心部近傍には、通
常顕著な成分偏析が観察される。 【0005】 この成分偏析は、最終成品の均質性を著しく損ない、製品の使用過程や線材の
線引き工程等で鋼に作用する応力により亀裂が発生するなど重大欠陥の原因にな
るため、その低減が切望されている。 【0006】 かかる成分偏析は、凝固末期の残溶鋼の凝固収縮力等により流動し、固液界面
近傍の濃化溶鋼を洗いだし、残溶鋼が累進的に濃化していくために発生すると考
えられている。従って成分偏析を防止するには、残溶鋼の流動原因を取り除くこ
とが肝要である。 【0007】 このような流動原因としては、凝固収縮に起因する流動のほか、ロール間の鋳
片バルジングやロールアライメント不整に起因する流動等があるが、これらのう
ち最も重大な原因は凝固収縮であり、偏析を防止するには、これを保証する量だ
け鋳片を圧下することが必要である。 【0008】 鋳片を圧下することにより偏析を改善する試みは従来より行われており、連続
鋳造工程において鋳片中心部温度が液相線温度から固相線温度に至るまでの間、
鋳片の凝固収縮を保証する量以上の一定割合で圧下する方法が知られている。 【0009】 しかしながら従来の連続鋳造方法は、条件によっては偏析改善効果が殆ど認め
られなかったり、場合によっては偏析がかえって悪化する等の問題があり、成分
偏析を充分に改善することは困難であった。 【0010】 本発明者等はかかる従来法の問題の発生原因について種々調査した結果、従来 法の偏析改善効果が認められなかったり、あるいは偏析がかえって悪化すること
が起こるのは、基本的に圧下すべき凝固時期とその範囲が不適正であることを突
き止めた。 【0011】 これらの知見に基づき本発明者は、先に特願昭62−275556号において
鋳片の中心部が固相率0.1ないし0.3に相当する温度となる時点から流動限
界固相率に相当する温度となる時点までの領域を、単位時間当り0.5mm/分
以上2.5mm/分未満の割合で連続的に圧下し、鋳片中心部が流動限界固相率
に相当する温度となる時点から固相線温度となるまでの領域は、実質的に圧下を
加えないようにした連続鋳造方法を提案した。なお流動限界固相率とは、溶鋼が
流動し得る上限の固相率であって、固相率は0.7程度の値である。 【0012】 さらに本発明者は数多くの実験を推進することにより、先に特願平1−120
295号において提示したごとく、濃化溶鋼が激しく鋳片の中心部に集積し、凝
固収縮流動の中心偏析に及ぼす影響が大きい凝固時期が存在し、この濃化溶鋼の
集積時期の流動を防止することが最も偏析改善効果が大きく、この偏析に及ぼす
影響が大きい凝固時期は、凝固組織によって異なることを知見した。 【0013】 これらの知見に基づき偏析をさらに改善する方法について研究した結果、凝固
末期に少なくとも1対のロールにより鋳片を圧下しつつ引き抜く溶融金属の連続
鋳造法において、鋳片断面の上半部で、等軸晶が占める鋳片厚み方向の長さ割合
で定義した上面等軸晶率(以下上面等軸晶率と略称する)が5%未満の場合、鋳
片中心部の温度が固相率0.25好ましくは0.35に相当する位置から流動限
界固相率に相当する位置までの凝固時期範囲の任意の位置、好ましくは該凝固時
期範囲内の上流側に少なくとも1対のロールを設置し、該凝固時期範囲内の全凝
固収縮量を補償する量を圧下し、また上面等軸晶率が5%以上の場合、鋳片中心
部の温度が固相率0.1好ましくは0.15に相当する位置から流動限界固相率
に相当する位置までの凝固時期範囲の任意の位置、好ましくは該凝固時期範囲内
の上流側に少なくとも1対のロールを設置し、該凝固時期範囲内の全凝固収縮量 を補償する量を圧下することを特徴とする、簡便で効率的な軽圧下法を先に提案
した。 【0014】 【発明が解決しようとする課題】 しかしこの方法により、鋳造速度を増速して生産量を確保しようとした場合、
鋳造速度の増大に伴い偏析の悪化が認められ、増速しても偏析を低位に安定させ
ることが可能な軽圧下法の開発が課題である。 【0015】 また異鋼種継目等で鋳造速度が減速,停止した場合、偏析が悪化する鋳片が認
められることより、鋳造速度が減速,停止しても偏析が悪化する鋳片の長さをで
きるだけ短くすることが可能な軽圧下法の開発が課題である。 【0016】 本発明者は、かかる問題を解決するため圧下パターンを種々変更し、最適な軽
圧下方法を研究した結果、柱状晶凝固の場合について鋳造速度を増速しても偏析
を低位に安定させることが可能で、偏析が良好となる鋳造速度範囲が広く、かつ
異鋼種継目等で鋳造速度を減速,停止した場合の偏析が悪化する鋳片長さを短く
することが可能な連続鋳造法を先に提案した。 【0017】 本発明は上記課題に鑑みさらに等軸晶凝固の場合について研究を進めた結果、
柱状晶凝固の場合より小さな圧下力で偏析が良好となる鋳造速度範囲が広く、連
続鋳造速度を増速しても偏析を低位に安定させることが可能で、かつ異鋼種継目
等で連続鋳造速度が減速,停止した場合においても、偏析が悪化する鋳片の長さ
を短くすることが可能な連続鋳造法を提供するに至った。 【0018】 【課題を解決するための手段】 本発明は下記を要旨とする。 【0019】 (1)凝固末期に少なくとも1対のロールにより鋳片を圧下しつつ引き抜く溶
融金属の連続鋳造法において、上面等軸晶率が5%以上になるよう制御し、鋳片 中心部の温度が固相率0.15に相当する位置から流動限界固相率に相当する位
置までの凝固時期範囲内の上流側に少なくとも1対のロールを設置し、全圧下量
が4〜20mmとなるように圧下し、かつ中心固相率が0.02〜0.15の鋳
片単位長さ当たりの圧下量が0.2〜3.0mm/mとなるように圧下すること
を特徴とする連続鋳造法である。 【0020】 (2)上記(1)記載の連続鋳造法において、鋳片中心部の温度が固相率0.
15から0.6の全圧下量が4〜20mmとなるように圧下し、かつ中心固相率
が0.02〜0.15の鋳片単位長さ当たりの圧下量が0.2〜3.0mm/m
となるように圧下するものである。 【0021】 【作用】 以下本発明を作用とともに詳細に説明する。 【0022】 本発明者は上記課題を解決するために、モールド電磁攪拌により鋳片の上面等
軸晶率を5%以上に制御した場合の圧下凝固時期や圧下量を種々変更した試験を
行い、偏析改善効果が良好な圧下方法を研究した結果、図1に示すように圧下領
域Aに加え連続鋳造機において、Aより上流側に位置した中心固相率がAより小
さい領域Bの鋳片を圧下することにより、図2に示すごとく鋳造速度を増大して
も偏析が良好となることを知見し本発明をなし遂げた。 【0023】 下記表1は、この場合の本発明例、従来例について中心固相率、全圧下量、圧
下勾配の条件を比較した表である。 【0024】 【表1】 領域A:中心固相率 0.15〜0.6 領域B:中心固相率 0.02〜0.15 【0025】 すなわち鋳片の上面等軸晶率を5%以上に制御して、設定鋳造速度における鋳
片の圧下凝固時期を中心固相率で0.15〜0.6の領域を領域Aとして、濃化
溶鋼が最も集積する凝固時期の流動を領域Aの全圧下量を10〜16mmとなる
よう圧下することにより防止して、領域Aの全圧下量が10〜16mmとなるよ
う圧下し、かつ鋳片の凝固時期が中心固相率で0.02〜0.15の領域Bの圧
下勾配が0.6mm/mとなるよう圧下することにより、凝固組織の不整合など
の理由で局部的に通液抵抗の小さくなる部位の発生を防止することができ(B領
域の機能)、濃化溶鋼が中心部に集積する際の濃化溶鋼流動の通路を少なくして
、広い鋳造速度範囲で偏析は悪化せず、低位に安定することを知見し本発明をな
し遂げた。 【0026】 さらに偏析が良好となる領域Aと領域Bの圧下条件について研究を進めた結果
、偏析が良好となる圧下条件は、図3に示すごとく領域Bの圧下勾配が0.2〜
3mm/mで、領域Aの全圧下量が4〜20mmの範囲にあることを知見した。
すなわち領域Bの圧下勾配を0.2〜3mm/mにすることにより、濃化溶鋼の
流動の通路であるV偏析の芽となる凝固組織の不整合な箇所の発生を防止するこ とが可能であり、領域Aの全圧下量を4〜20mmとすることによって、濃化溶
鋼の集積が激しい凝固時期の流動を防止することが可能、この2つの条件を実現
することにより、軽圧下による偏析改善効果は安定する。なお鋳片の凝固収縮に
よる流動を防止するには、凝固収縮を補償する固液界面の圧下が必要である。通
常鋳片を圧下した場合の圧下量は表面圧下量を意味する。鋳片の表面圧下量のう
ち固液界面に伝達する割合を圧下効率と定義すると、圧下効率は鋳片の大きさで
差があり、鋳片断面が小さい方が圧下効率は小さくなるため、鋳片の大きさが小
さくなっても、実際に流動を防止するに必要な表面全圧下量は小さくならず、鋳
片サイズの影響をあまり受けない。また圧下勾配は鋳片の単位長さ当たりの圧下
量で、通常ロール間隔の単位長さ当たりの絞り込み量で設定する。なお圧下量は
、ロール間隔を次第に狭めた圧下勾配による方法と、圧下力によって圧下量
を制御する方法があるが、領域Bの圧下勾配は低固相率領域の圧下で、且つこの
領域の圧下量が偏析変動のバラツキに及ぼす影響が大きいことから、前述のの
圧下勾配で設定するのが好ましく、領域Aの圧下量の制御方法はの何れでも
かまわない。 【0027】 一方軽圧下技術においては、内部ワレが発生しないように圧下することが不可
欠である。内部ワレは1ロールの圧下量が過大な場合発生し、従って領域Bの圧
下勾配と領域Aの各ロールの圧下量は、内部ワレが発生しない範囲で決定し、か
つ領域Bの圧下勾配と領域Aの全圧下量は、図3の条件を満たすよう圧下するこ
とにより、偏析が良好でかつ内部ワレのない鋳片を得ることが可能になる。 【0028】 表2に示す本発明例の圧下時期および圧下勾配、圧下量を操業上必要な最も速
い鋳造速度において設定して、偏析に及ぼす鋳造速度の影響を図4に示す。すな
わち、圧下時期は操業上必要な最も速い鋳造速度において伝熱計算で算出した鋳
片の中心固相率とモールドメニスカスからの距離の関係により決定して、表2の
ごとく、鋳片の中心部の温度が固相率で0.15より下流の全圧下量を12mm
となるよう圧下して、かつ鋳片の中心部の温度が固相率で0.02の鋳片位置か
ら鋳片中心部の固相率が0.15の鋳片位置のロール間隔の絞り込みを0.6m m/mとなるよう設定した場合の偏析に及ぼす鋳造速度の影響が図4に示される
。 【0029】 【表2】 【0030】 偏析におよぼす鋳造速度の影響は図示のようにU字型を呈しており、鋳造速度
が遅すぎても速すぎても偏析は悪化する。この理由は、鋳造速度の変動で圧下す
る鋳片の固相率が変化するためで、鋳造速度が遅くなった場合、圧下する鋳片の
中心部の固相率が高固相率側にシフトして、鋳造速度が速くなった場合、圧下す
る鋳片の中心部の固相率が低固相率側にシフトすることによる。本発明の圧下パ
ターンを生産能力上必要な最も高速側でセットしておけば、鋳造速度を減速せざ
るを得ない場合も偏析が良好となり、偏析が良好となる鋳造速度範囲が広くなる
。 【0031】 すなわち本発明例の圧下パターンを操業において必要な最も高速の場合に合わ
せてセットしておけば、転炉,2次精錬等とのマッチングのため通常より減速し
た速度で鋳造した場合も、偏析が低位に安定した鋳片が得られる。 【0032】 また異鋼種継目のごとく、鋳造速度を減速,停止せざるを得ない場合、偏析が
悪化する鋳片の長さを短くすることが可能となる。なお鋳片の凝固時期は、中心 固相率,シェル厚,未凝固厚あるいは未凝固率で定量化することが可能であるが
、ここでは偏析の発生に最も影響を及ぼすと考えられる中心部の通液抵抗の増加
と関係があると考えられる中心固相率で定量化した。 【0033】 中心固相率は、下記数1に示すごとく鋳片中心部の温度の関数として算出し、
中心部に存在する固相の割合である。鋳片中心部の温度は、冷却条件や鋳造速度
等の操業条件に基づき伝熱計算により予め計算するか、または鋳造中に冷却や鋳
造速度等の条件に基づき計算する。 【0034】 この中心固相率は、鋳造速度,冷却条件,鋳片サイズ,鋼種が決まれば凝固時
間の関数であり、同じく凝固時間の関数であるシェル厚,未凝固厚,未凝固率に
容易に換算することができる。 【0035】 【数1】 【0036】 また本発明のごとく等軸晶凝固の場合、偏析改善に必要な凝固時期が低中心固
相率で凝固時間が短い鋳片の圧下となるため、柱状晶凝固の場合より少ない圧下
力で偏析の改善が可能となる。 【0037】 本発明により生産量を確保するため鋳造速度を増大した場合においても、偏析
の悪化を防止することが可能で、また製鋼工場における転炉,2次精錬炉等のト
ラブルに起因し、鋳造速度を減速せざるを得ない場合においても、偏析が低位に
安定した鋳片を得ることが可能となる。 【0038】 また異鋼種継目作業等により鋳造速度の減速,停止が発生した場合も、偏析が 悪化する鋳片の長さを短くすることが可能となる。 【0039】 以上本発明により、従来より生産性および操業性が良好で、かつ偏析のない均
質な鋼材を得ることが可能な連続鋳造法が提供される。 【0040】 【実施例】 以下本発明を実施例により説明する。 【0041】 実施例−1 試験を実施した連続鋳造機の概略構造を図5に示し、鋳造した溶鋼組成の代表
例を下記表3に示す。なお図5において1、2は電磁攪拌装置、3は圧下帯、4
は連続鋳造機のセグメント、5は鋳造された鋳片である。 【0042】 【表3】 【0043】 鋳造速度1.0m/minにおいて、鋳片の中心固相率が0.02〜0.15
の圧下勾配を0.6mm/mとして中心固相率が0.15〜0.6の全圧下量が
12mmとなるようセットし、得られた鋳片の偏析と鋳造速度の関係を従来例と
比較し図4に示す。本発明例の方法によれば、鋳造速度の広い範囲にわたり偏析
は従来例より良好となる。 【0044】 実施例−2 試験を実施した連続鋳造機,溶鋼組成,設定圧下勾配および定常部の鋳造速度
は上記実施例1と同じである。図6に異鋼種継目のため鋳造速度を減速,停止し た非定常鋳片の偏析を本発明と従来法を比較して示す。 【0045】 本発明により、鋳造速度を減速,停止することにより軽圧下条件が不適正とな
り、偏析が悪化する鋳片の長さを短くできることが証明された。 【0046】 実施例−3 本発明を種々な鋼種に適用した場合の増速効果と減速にともなう偏析悪化鋳片
の改善効果を下記表4に示す。本発明例の場合は上流圧下範囲B(中心固相率で
0.02〜0.15)と下流圧下範囲A(中心固相率で0.15〜0.7)を圧
下、従来例では下流圧下範囲Bのみを圧下し、いずれも上面等軸晶率を5%以上
とした。 【0047】 【表4】 【0048】 いずれの鋼種においても、凝固時期が早い段階で圧下し、圧下力が小さくてす
む本発明によって偏析が良好なまま増速の実現が可能で、また鋳造速度の減速,
停止にともない発生する偏析悪化鋳片長さを短くすることが可能であることが証
明された。 【0049】 【発明の効果】 以上説明したように本発明の連続鋳造法によれば、連続鋳造鋳片の厚み中心部
に見られた硫黄、燐、マンガン等の不純物元素の偏析を防止し、柱状晶凝固の場
合より小さな圧下力においても、偏析が良好となる鋳造速度範囲が広く、また鋳
造速度を増速しても、偏析を低位に安定させることが可能であり、かつ異鋼種継
目等で連続鋳造速度が減速、停止した場合においても、偏析が悪化する鋳片の長
さを短くすることが可能となり、歩留りよく均質の連続鋳造鋳片を得ることがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impurity element found in the center of the thickness of a continuously cast slab, that is, in the case of steel slab, sulfur, phosphorus, manganese or the like. The present invention relates to a continuous casting method capable of preventing segregation and obtaining a homogeneous metal. 2. Description of the Related Art In recent years, demands for material properties of marine structures, storage tanks, steel pipes for oil and gas transportation, high-strength wires, and the like have been increasing strictly. Has become. [0003] Originally, steel materials should be homogeneous in cross section, but steel is generally sulfur,
It contains impurity elements such as phosphorus and manganese, which are segregated during the casting process and partially concentrated to make the steel brittle. In recent years, in particular, continuous casting has been widely used for the purpose of improving productivity, improving yield, saving energy, and the like. However, in the vicinity of the center of the thickness of a slab obtained by continuous casting, usually, remarkable component segregation occurs. Is observed. [0005] The segregation of components significantly impairs the homogeneity of the final product, and causes serious defects such as cracking due to stress acting on the steel during the use process of the product or the wire drawing process of the wire rod. Coveted. [0006] It is considered that such component segregation occurs because the residual molten steel flows due to the solidification shrinkage force of the residual molten steel at the end of solidification, and the concentrated molten steel near the solid-liquid interface is washed out, and the residual molten steel is progressively concentrated. ing. Therefore, in order to prevent component segregation, it is important to remove the cause of the flow of the residual molten steel. As a cause of such a flow, besides a flow caused by solidification shrinkage, a flow caused by slab bulging between rolls or a misalignment of rolls, and the like, the most serious of which is solidification shrinkage. In order to prevent segregation, it is necessary to reduce the slab by an amount that guarantees this. [0008] Attempts to improve segregation by rolling down a slab have been made in the past, and in a continuous casting process, the temperature between the slab center temperature and the solidus temperature during the time from the liquidus temperature to the solidus temperature.
There is known a method of reducing the slab at a fixed rate equal to or more than an amount that guarantees the solidification shrinkage of the slab. [0009] However, the conventional continuous casting method has a problem that the segregation improving effect is hardly recognized depending on the conditions or the segregation is rather deteriorated in some cases, and it is difficult to sufficiently improve the component segregation. Was. As a result of various investigations on the causes of the problems of the conventional method, the present inventors have found that the effect of improving the segregation of the conventional method is not recognized or that the segregation is rather deteriorated basically by the pressure. The coagulation time to be lowered and the range were found to be inappropriate. Based on these findings, the inventor of the present invention disclosed in Japanese Patent Application No. 62-275556 that the flow limit solidification was started from the time when the temperature at the center of the slab reached a temperature corresponding to a solid fraction of 0.1 to 0.3. The region until the temperature corresponding to the phase ratio is continuously reduced at a rate of 0.5 mm / min or more and less than 2.5 mm / min per unit time, and the center of the slab corresponds to the flow limit solid phase ratio. A continuous casting method has been proposed in which the region from the time when the temperature reaches the temperature to the solidus temperature to the time when the temperature reaches the solidus temperature is substantially not reduced. The flow limit solid phase ratio is the upper limit solid phase ratio at which molten steel can flow, and the solid phase ratio is a value of about 0.7. Further, the present inventor has promoted a number of experiments, and has previously obtained Japanese Patent Application No. 1-120.
As presented in No. 295, the concentrated molten steel violently accumulates in the center of the slab, and there is a solidification period that has a large effect on the center segregation of the solidification shrinkage flow, which prevents the flow of the concentrated molten steel during the accumulation period. It has been found that the segregation improvement effect is the largest, and the solidification time, which has the greatest effect on this segregation, differs depending on the solidification structure. As a result of studying a method for further improving segregation based on these findings, it has been found that, in a continuous casting method of molten metal in which the slab is drawn down by at least one pair of rolls at the end of solidification, the upper half of the slab cross section is obtained. When the upper surface equiaxed crystal ratio (hereinafter abbreviated as upper surface equiaxed crystal ratio) defined by the length ratio of the slab thickness direction occupied by the equiaxed crystal is less than 5%, the temperature of the slab central portion is changed to the solid phase. At least one pair of rolls at any position in the solidification time range from a position corresponding to the rate of 0.25, preferably 0.35 to a position corresponding to the flow limit solid phase rate, preferably upstream in the solidification time range. In order to compensate for the total solidification shrinkage within the solidification time range, when the equiaxed crystal ratio of the upper surface is 5% or more, the temperature at the center of the slab is 0.1%, preferably 0%. From the position corresponding to .15 to the flow limit solid fraction At least one pair of rolls at any position in the coagulation time range up to a certain position, preferably at the upstream side in the coagulation time range, and reducing the amount to compensate for the total coagulation shrinkage in the coagulation time range. A simple and efficient light reduction method was first proposed. [0014] However, when the casting speed is increased by this method to secure the production amount,
Deterioration of segregation is recognized with an increase in casting speed, and development of a light reduction method capable of stabilizing segregation at a low level even when the speed is increased is an issue. Further, when the casting speed is reduced or stopped at a joint of different steel grades or the like, slabs in which segregation worsens are recognized. Therefore, even when the casting speed is reduced or stopped, the length of the slabs in which segregation worsens is reduced as much as possible. The challenge is to develop a light reduction method that can be shortened. The inventor of the present invention has studied various optimum rolling reduction methods by changing the rolling pattern in order to solve such a problem. As a result, in the case of columnar solidification, even if the casting speed was increased, segregation was stabilized at a low level. A continuous casting method that enables a wide casting speed range in which segregation is favorable, and a reduction in casting length when casting speed is reduced or stopped at seams of different steel grades, etc. Proposed earlier. The present invention has been made in view of the above problems, and further studied on the case of equiaxed solidification.
The casting speed range where segregation is good with a smaller rolling force than in the case of columnar crystal solidification is wide, the segregation can be stabilized at a low level even if the continuous casting speed is increased, and the continuous casting speed with different steel grade joints etc. The present invention has provided a continuous casting method capable of shortening the length of a slab in which segregation is deteriorated even when the speed is reduced or stopped. Means for Solving the Problems The present invention has the following gist. (1) In a continuous casting method of molten metal in which the slab is drawn down by at least one pair of rolls at the end of solidification, the upper surface equiaxed crystal ratio is controlled to be 5% or more, and the center of the slab is controlled. At least one pair of rolls is installed on the upstream side within the solidification time range from the position where the temperature corresponds to the solid fraction of 0.15 to the position corresponding to the flow limit solid fraction, and the total reduction amount is 4 to 20 mm. Characterized in that the amount of reduction per unit length of the slab having a center solid phase ratio of 0.02 to 0.15 is 0.2 to 3.0 mm / m. It is a casting method. (2) In the continuous casting method described in the above (1), the temperature at the center of the slab is 0.
It is reduced so that the total reduction amount of 15 to 0.6 is 4 to 20 mm, and the reduction amount per unit length of the slab having a central solid phase ratio of 0.02 to 0.15 is 0.2 to 3.0. 0mm / m
The pressure is reduced so that Hereinafter, the present invention will be described in detail together with the operation. In order to solve the above-mentioned problems, the present inventor conducted a test in which the reduction solidification timing and the reduction amount were variously changed when the upper surface equiaxed crystal ratio was controlled to 5% or more by mold electromagnetic stirring. As a result of studying a rolling method with a good segregation improvement effect, as shown in FIG. As shown in FIG. 2, it has been found that the segregation is improved even when the casting speed is increased, and the present invention has been accomplished. Table 1 below is a table in which the conditions of the center solid phase ratio, the total reduction amount, and the reduction gradient are compared for the present invention example and the conventional example in this case. [Table 1] Region A: Central solid fraction 0.15 to 0.6 Region B: Central solid fraction 0.02 to 0.15 That is, the upper surface equiaxed crystal ratio of the slab is controlled and set to 5% or more. The region of 0.15 to 0.6 in terms of the center solid phase ratio is defined as the region A in which the rolling solidification time of the slab at the casting speed is 0.15 to 0.6. A region B in which the total reduction amount in the region A is reduced to 10 to 16 mm and the solidification time of the slab is 0.02 to 0.15 in the center solid phase ratio. By reducing the rolling gradient to 0.6 mm / m, it is possible to prevent the occurrence of a portion where the fluid resistance is locally reduced due to inconsistency of the coagulated structure or the like (function of region B). The flow path of the concentrated molten steel when the concentrated Segregation without degrading at a forming speed range, and finding that stable low underwent no present invention. As a result of further study on the rolling conditions of the regions A and B where the segregation is good, the rolling conditions under which the segregation is good are as shown in FIG.
At 3 mm / m, it was found that the total reduction amount in the region A was in the range of 4 to 20 mm.
In other words, by setting the rolling gradient in the region B to 0.2 to 3 mm / m, it is possible to prevent the occurrence of an inconsistent portion of the solidification structure that becomes the bud of V segregation, which is the flow path of the concentrated molten steel. Yes, by setting the total reduction amount of the region A to 4 to 20 mm, it is possible to prevent the flow during the solidification time when the concentration of the concentrated molten steel is intense. By realizing these two conditions, the segregation due to the light reduction is improved. The effect stabilizes. In order to prevent flow due to solidification shrinkage of the slab, it is necessary to reduce the solid-liquid interface to compensate for solidification shrinkage. Usually, the amount of reduction when the slab is reduced means the amount of surface reduction. If the ratio of the surface reduction of the slab to the solid-liquid interface is defined as the reduction efficiency, the reduction efficiency differs depending on the size of the slab, and the smaller the slab section, the lower the reduction efficiency. Even if the size of the slab is reduced, the total surface reduction required to actually prevent flow is not reduced, and is not significantly affected by the size of the slab. The rolling gradient is the amount of reduction per unit length of the slab, and is usually set by the narrowing amount per unit length of the roll interval. The amount of reduction can be determined by a method using a reduction gradient in which the roll interval is gradually narrowed or a method in which the reduction amount is controlled by a reduction force. The reduction gradient in the region B is the reduction in the low solid phase ratio region and the reduction in this region. Since the influence of the amount on the variation of the segregation fluctuation is large, it is preferable to set the above-described reduction gradient, and any method of controlling the reduction amount in the region A may be used. On the other hand, in the light reduction technology, it is essential to reduce the pressure so as not to cause internal cracks. The internal crack is generated when the amount of reduction of one roll is excessive. Therefore, the reduction gradient of the area B and the reduction amount of each roll in the area A are determined within a range in which the internal crack does not occur. By reducing the total rolling amount of A so as to satisfy the condition of FIG. 3, it becomes possible to obtain a cast piece having good segregation and no internal cracks. FIG. 4 shows the influence of the casting speed on segregation by setting the rolling timing, the rolling gradient, and the reduction amount in the example of the present invention shown in Table 2 at the highest casting speed required for operation. That is, the rolling time is determined by the relationship between the center solid phase ratio of the slab calculated by heat transfer calculation and the distance from the mold meniscus at the highest casting speed required for operation, and as shown in Table 2, the center of the slab is Temperature is 12 mm, the total reduction amount downstream of 0.15 in solid phase ratio.
And reducing the roll interval from the slab position where the temperature at the center of the slab is 0.02 in solid phase ratio to the slab position where the solid phase ratio in the center of the slab is 0.15. The effect of casting speed on segregation when set to 0.6 mm / m is shown in FIG. [Table 2] The influence of the casting speed on the segregation has a U-shape as shown in the figure, and the segregation worsens if the casting speed is too slow or too fast. The reason for this is that the solid phase ratio of the slab to be reduced changes due to fluctuations in the casting speed.If the casting speed decreases, the solid phase ratio at the center of the slab to be reduced shifts to the higher solid fraction. When the casting speed is increased, the solid phase ratio at the center of the slab to be reduced shifts to the low solid phase ratio side. If the rolling pattern of the present invention is set at the highest speed required for production capacity, segregation will be good even when the casting speed has to be reduced, and the casting speed range in which segregation will be good will be widened. That is, if the rolling pattern of the example of the present invention is set in accordance with the highest speed required in the operation, the casting is performed at a speed lower than usual for matching with the converter, secondary refining, etc. A slab with a low level of segregation is obtained. If the casting speed has to be reduced and stopped as in the case of different steel grade joints, it is possible to shorten the length of the slab where segregation worsens. The solidification time of the slab can be quantified by the center solid phase ratio, shell thickness, unsolidified thickness or unsolidified ratio. It was quantified by the central solid fraction, which is considered to be related to the increase in the flow resistance. The center solid fraction is calculated as a function of the temperature at the center of the slab as shown in the following equation 1,
It is the ratio of the solid phase present at the center. The temperature at the center of the slab is calculated in advance by heat transfer calculation based on operating conditions such as cooling conditions and casting speed, or is calculated based on conditions such as cooling and casting speed during casting. The center solid phase ratio is a function of solidification time when the casting speed, cooling conditions, slab size, and steel type are determined. Similarly, the shell thickness, unsolidified thickness, and unsolidified ratio, which are functions of solidification time, are easily determined. Can be converted to ## EQU1 ## Further, in the case of equiaxed solidification as in the present invention, the solidification time required for improving segregation is the reduction of the slab with a low center solid fraction and a short solidification time. Can improve segregation. According to the present invention, even when the casting speed is increased in order to secure the production amount, it is possible to prevent the segregation from deteriorating. Also, due to troubles in the converter, secondary refining furnace, etc. in the steelmaking plant, Even when the casting speed has to be reduced, it is possible to obtain a slab in which segregation is low and stable. In addition, even when the casting speed is reduced or stopped due to a different steel type joint operation or the like, it is possible to shorten the length of the slab where the segregation worsens. As described above, according to the present invention, there is provided a continuous casting method capable of obtaining a homogenous steel material having good productivity and operability as compared with the related art and having no segregation. The present invention will be described below with reference to examples. Example 1 FIG. 5 shows a schematic structure of a continuous casting machine on which a test was performed, and Table 3 below shows a typical example of a composition of molten steel cast. In FIG. 5, reference numerals 1 and 2 denote electromagnetic stirrers, 3 denotes a reduction zone,
Is a segment of a continuous casting machine, and 5 is a cast slab. [Table 3] When the casting speed is 1.0 m / min, the center solid phase ratio of the slab is 0.02 to 0.15.
And the central solid phase ratio was set to be 0.15 to 0.6 so that the total reduction amount was 12 mm, and the relationship between the segregation of the obtained slab and the casting speed was compared with the conventional example. A comparison is shown in FIG. According to the method of the present invention, segregation is better than the conventional example over a wide range of casting speed. Example 2 The continuous casting machine, the molten steel composition, the set pressure gradient, and the casting speed in the steady portion where the test was performed are the same as those in Example 1 described above. FIG. 6 shows the segregation of the unsteady slab in which the casting speed was reduced and stopped due to the joint of different steel types, comparing the present invention and the conventional method. According to the present invention, it has been proved that by reducing and stopping the casting speed, the condition of light reduction becomes inappropriate, and the length of the slab where segregation is deteriorated can be shortened. Example 3 Table 4 below shows the effect of increasing the speed and the effect of improving the segregation slab due to deceleration when the present invention is applied to various steel types. In the case of the example of the present invention, the upstream reduction range B (0.02 to 0.15 in center solid phase ratio) and the downstream reduction range A (0.15 to 0.7 in center solid phase ratio) are reduced. Only the rolling range B was reduced, and the equiaxed crystal ratio of the upper surface was 5% or more in all cases. [Table 4] In any of the steel types, the steel can be reduced at an early stage of solidification, and the rolling force can be reduced. According to the present invention, it is possible to increase the speed with good segregation.
It has been proved that it is possible to shorten the length of the cast slab which deteriorates due to segregation. As described above, according to the continuous casting method of the present invention, segregation of impurity elements such as sulfur, phosphorus, and manganese, which are observed at the center of the thickness of the continuous cast slab, is prevented. Even with a lower rolling force than columnar solidification, the casting speed range where segregation is good is wide, and even if the casting speed is increased, segregation can be stabilized at a low level, and different steel joints etc. Thus, even when the continuous casting speed is reduced or stopped, it is possible to shorten the length of the slab where segregation worsens, and it is possible to obtain a continuous cast slab with a good yield and uniformity.

【図面の簡単な説明】 【図1】 本発明における圧下帯上流に圧下勾配を加える考え方を示す図面である。 【図2】 本発明と従来法との偏析改善効果を比較した図面である。 【図3】 偏析効果が良好となる領域Bの圧下勾配と領域Aの全圧下量の関係を示す図面
である。 【図4】 本発明を適用した場合の偏析に及ぼす鋳造速度の影響(実施例1)を示す図面
である。 【図5】 試験に使用した連続鋳造機の概略構造を示した図面である。 【図6】 本発明の非定常部鋳片偏析改善効果例(実施例2)を示す図面である。 【符号の説明】 1,2 電磁攪拌装置 3 圧下帯 4 セグメント 5 鋳片
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a drawing showing a concept of applying a draft gradient upstream of a draft zone in the present invention. FIG. 2 is a drawing comparing the segregation improvement effects of the present invention and a conventional method. FIG. 3 is a graph showing a relationship between a reduction gradient in a region B where a segregation effect is good and a total reduction amount in a region A. FIG. 4 is a drawing showing the effect of casting speed on segregation when the present invention is applied (Example 1). FIG. 5 is a drawing showing a schematic structure of a continuous casting machine used for a test. FIG. 6 is a view showing an example (Example 2) of an effect of improving segregation of slabs in an unsteady part of the present invention. [Explanation of symbols] 1, 2 Electromagnetic stirrer 3 Reduction zone 4 Segment 5 Slab

Claims (1)

【特許請求の範囲】 【請求項1】 凝固末期に少なくとも1対のロールにより鋳片を圧下しつつ引
き抜く溶融金属の連続鋳造法において、鋳片断面の上半部で等軸晶が占める鋳片
厚み方向の長さ割合で定義した上面等軸晶率が5%以上になるよう制御し、鋳片
中心部の温度が固相率0.15に相当する位置から溶鋼が流動し得る上限の流動
限界固相率に相当する位置までの凝固時期範囲内の上流側に少なくとも1対のロ
ールを設置し、全圧下量が4〜20mmとなるように圧下し、かつ中心固相率が
0.02〜0.15の鋳片単位長さ当たりの圧下量が0.2〜3.0mm/mと
なるように圧下することを特徴とする連続鋳造法。 【請求項2】 鋳片中心部の温度が固相率0.15から0.6の全圧下量が4
〜20mmとなるように圧下し、かつ中心固相率が0.02〜0.15の鋳片単
位長さ当たりの圧下量が0.2〜3.0mm/mとなるように圧下した請求項1
記載の連続鋳造法。
Claims: 1. In a continuous casting method of molten metal in which a slab is drawn down by at least one pair of rolls at the end of solidification, a slab occupied by equiaxed crystals in an upper half portion of a slab cross section. The upper limit flow rate at which the molten steel can flow from a position where the temperature of the center of the slab corresponds to the solid phase ratio of 0.15 by controlling the upper surface equiaxed crystal ratio defined by the length ratio in the thickness direction to be 5% or more. At least one pair of rolls is installed on the upstream side within the solidification time range up to the position corresponding to the limit solid phase ratio, the roll is reduced so that the total reduction amount is 4 to 20 mm, and the central solid phase ratio is 0.02. A continuous casting method characterized in that the reduction is performed so that the reduction amount per unit length of the slab is from 0.2 to 3.0 mm / m. 2. The method according to claim 1, wherein the temperature at the center of the slab is from 0.15 to 0.6 and the total reduction amount is 4%.
2020 mm, and reduced so that the amount of reduction per unit length of the slab having a center solid phase ratio of 0.02 to 0.15 is 0.2 to 3.0 mm / m. 1
The continuous casting method described.

Family

ID=

Similar Documents

Publication Publication Date Title
JPH08132206A (en) Continuous casting method
JP2995519B2 (en) Light reduction of continuous cast strand
JPS62275556A (en) Continuous casting method
JP2561180B2 (en) Continuous casting method
JP2561180C (en)
JPH0550201A (en) Light rolling reduction method in continuous casting
JP2593367B2 (en) Continuous casting method
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP2532306B2 (en) Continuous casting method
JP4026792B2 (en) Billet continuous casting method
JPS6363561A (en) Continuous casting method
JP2949453B2 (en) Continuous casting method
JPH04313454A (en) Continuous casting method
JP2640399B2 (en) Continuous casting method
JP2593386B2 (en) Continuous casting method
JPH06262325A (en) Continuous casting method
JP7273307B2 (en) Steel continuous casting method
JP2593377B2 (en) Continuous casting method
JP2593384B2 (en) Continuous casting method
JPH0390263A (en) Continuous casting method
JP2530522B2 (en) Continuous casting method
JP2593385B2 (en) Continuous casting method
JPH06262320A (en) Continuous casting method
JP3015985B2 (en) Continuous casting method
JP2823085B2 (en) Continuous casting method