JPH03114638A - Method for pouring molten metal in continuous casting - Google Patents

Method for pouring molten metal in continuous casting

Info

Publication number
JPH03114638A
JPH03114638A JP25207089A JP25207089A JPH03114638A JP H03114638 A JPH03114638 A JP H03114638A JP 25207089 A JP25207089 A JP 25207089A JP 25207089 A JP25207089 A JP 25207089A JP H03114638 A JPH03114638 A JP H03114638A
Authority
JP
Japan
Prior art keywords
mold
casting
shell
molten steel
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25207089A
Other languages
Japanese (ja)
Other versions
JPH0729192B2 (en
Inventor
Masanori Minagawa
昌紀 皆川
Hideyuki Misumi
三隅 秀幸
Takafumi Matsuzaki
松崎 孝文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1252070A priority Critical patent/JPH0729192B2/en
Publication of JPH03114638A publication Critical patent/JPH03114638A/en
Publication of JPH0729192B2 publication Critical patent/JPH0729192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the development of longitudinal crack on a continuous cast slab by setting molten steel temp., shape of nozzle for pouring molten steel and casting velocity to the specific conditions and controlling shell washing ratio to the specific value or less at the time of continuously casting the steel slab at a high speed of the specific value or more. CONSTITUTION:At the time of continuously casting the molten steel, in the case of continuously casting at a high velocity, e.g. >=4m/min the casting velocity, the shell washing in the mold is developed with discharging flow of the molten steel poured into the mold and with this cause, uneven thickness of the shell in the width direction of the mold is developed and the longitudinal crack on the continuous cast slab is developed. This shell washing ratio phiat the time of continuous casting is shown in the equation I with functions of the casting velocity V, cross sectional film ratio S of the mold to discharging hole in the nozzle for pouring the molten steel and overheat temp. T and also since this is decided with the shell thickness of the mold as shown in the equation II, by adjusting either V or S in the equation I to make phi value <=0.1, the development of longitudinal crack to the continuous cast slab at the time of continuously casting at a high velocity is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は連続鋳造方法に係わり、特に高速連続鋳造の注
入方法であって、溶鋼温度、ノズル形状および鋳造速度
を特定条件下に適正化する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a continuous casting method, and in particular to a pouring method for high-speed continuous casting, in which molten steel temperature, nozzle shape, and casting speed are optimized under specific conditions. It is about the method.

[従来の技術] 近年4 m/min以上の速度で鋳造し、鋳造凝固過程
の抜熱量が2×106kcal/hr−m2程度のスラ
ブの高速連続鋳造方法が試みられ、あらためて鋳型で発
生する縦割れが生産性、生産費に多大の影響があること
が重視され、その防止方法の検討が重ねられている。
[Prior art] In recent years, high-speed continuous casting methods have been attempted for slabs in which the casting speed is 4 m/min or more and the amount of heat removed during the casting solidification process is approximately 2 x 106 kcal/hr-m2. It is emphasized that this has a great impact on productivity and production costs, and methods to prevent it are being studied repeatedly.

上記高速鋳造においては、モールドへ注入する溶鋼の吐
き出し流によりシェル洗いが発生し、これによりシェル
厚みの不均一が生じて縦割れが発生する。
In the above-mentioned high-speed casting, shell washing occurs due to the discharge flow of molten steel injected into the mold, which causes non-uniform shell thickness and causes vertical cracks.

この縦割れは鋳片の表面疵として以後の加工工程を経て
も残留し、製品疵として歩留を低下するばかりでなく、
連続鋳造時にブレークアウトを惹起することから、この
縦割れの防止技術の確立が強く望まれている。
These vertical cracks remain as surface flaws on the slab even after subsequent processing steps, and not only do they become product flaws and reduce yield.
Since breakouts occur during continuous casting, it is strongly desired to establish a technology to prevent vertical cracks.

通常行われているスラブの連続鋳造は、良く知られてい
る様に、水冷銅鋳型を使用し、フラックスを潤滑剤とし
て厚み200〜300 mm前後、幅1000〜200
0mm前後の鋳片を1〜2m1lTljnの速度で鋳造
し、鋳造凝固過程の抜熱量は7 X 105kcal/
hr−m2程度の連続鋳造方法を用いている。
As is well known, the conventional continuous casting of slabs uses a water-cooled copper mold and uses flux as a lubricant to cast slabs approximately 200 to 300 mm thick and 1000 to 200 mm wide.
A slab of around 0 mm is cast at a speed of 1 to 2 ml Tljn, and the amount of heat removed during the casting solidification process is 7 x 105 kcal/
A continuous casting method of about hr-m2 is used.

この連続鋳造方法においては、縦割れは代表的な表面疵
として認識されており、無欠陥鋳片を製造するに当たっ
て、その生成過程を解明し、縦割れの発生を防止するこ
とが試みられている。
In this continuous casting method, vertical cracks are recognized as a typical surface flaw, and attempts are being made to elucidate the formation process and prevent the occurrence of vertical cracks in producing defect-free slabs. .

般に縦割れの成因としては、 ■鋳型幅方向の不均一シエル厚みの発生。In general, the causes of vertical cracks are: ■ Occurrence of uneven shell thickness in the mold width direction.

■鋳造凝固過程に生ずる応力。■Stress generated during the casting solidification process.

にあることが知られている。It is known that there are

本発明は、上記した成因の■鋳型幅方向の不拘シェル厚
みの発生による縦割れを対象として、その改善を行うも
のである。
The present invention aims to improve the above-mentioned cause (1) of vertical cracking due to the occurrence of unrestricted shell thickness in the width direction of the mold.

鋳型幅方向の不均一シエル厚みによる縦割れについては
、種々の報告、提案がある。
There are various reports and proposals regarding vertical cracking due to uneven shell thickness in the mold width direction.

例えば、鉄と鋼Vo1.68.No、]3の1773頁
〜1781頁に、鋳片の縦割れにおよぼず局部的凝固お
くれの影響について次の記載がある。
For example, Tetsu to Hagane Vol. 1.68. No. 3, pages 1773 to 1781, there is the following description regarding the influence of local solidification delay, which does not extend to longitudinal cracking of slabs.

■メニスカス近傍で発生した、鋳型幅方向の温度偏差に
よる不均一シエル厚みは、鋳片の移動によっても解消せ
ず、縦割れの原因となること。
■Uneven shell thickness caused by temperature deviation in the width direction of the mold, which occurs near the meniscus, cannot be resolved by moving the slab and causes vertical cracks.

■凝固シェル厚みの不均一度が中炭素鋼で1096を超
えると縦割れが発生すること。
■If the degree of non-uniformity of the solidified shell thickness exceeds 1096 in medium carbon steel, vertical cracks will occur.

■含有炭素がO,]2C4〜0.16!にの鋳片は、縦
割れの発生が顕著であること。
■The carbon content is O,]2C4~0.16! The occurrence of vertical cracking is noticeable in the slabs.

等が記載されている。etc. are listed.

続いて、縦割れが発生を見ない時は、鋳型幅方向の温度
差は殆どなく、鋳型縦方向にも安定した温度分布が見ら
れること。これに反し、縦割れの発生を見ているときは
、鋳型庇部の温度が低く、鋳型下端に向けられて、この
傾向は次第に強くなり、縦割れ部の鋳片表面温度は、健
全部より高いことを述べている。
Next, when no vertical cracks occur, there is almost no temperature difference in the width direction of the mold, and a stable temperature distribution can also be seen in the lengthwise direction of the mold. On the other hand, when observing the occurrence of vertical cracks, the temperature at the mold eaves is low, and as it moves toward the bottom of the mold, this tendency gradually becomes stronger. It says something expensive.

しかし、4m/min以上の鋳造速度でスラブを高速鋳
造する方法においては、鋳型は、エンドレス鋼帯ベルト
で構成し、注入溶鋼の凝固、引抜き経過に同期して移動
する長辺と、エンドレスに連結されたブロックで構成さ
れ、前記長辺にメニスカス上で挟持されて該長辺と一体
的に移動する短辺から構成される連続鋳造機を用いて鋳
造する方法があり、L記した従来の連続鋳造で認められ
る縦割れ発生の成因の存在は考えられるが、その成因の
発生メカニズムは大きく異なるものと思われる。
However, in the method of high-speed casting of slabs at a casting speed of 4 m/min or more, the mold is composed of an endless steel belt, which is connected endlessly to the long side that moves in synchronization with the solidification and drawing progress of the injected molten steel. There is a method of casting using a continuous casting machine consisting of a short side that is sandwiched by the long side on a meniscus and moves integrally with the long side. Although it is possible that there is a cause for the occurrence of vertical cracks observed in casting, the mechanism of occurrence of this cause is thought to be very different.

[発明が解決しようとする課題] 本発明は、連続鋳造速度が4 m/minを超える高速
連続鋳造における縦割れの発生要因を解明し、連続鋳造
速度が4 m/minを超える高速連続鋳造において縦
割れを実質的に発生せしめない高速連続鋳造の注入方法
、具体的には溶鋼温度、ノズル形状および鋳造速度を特
定条件下に適正化する方法を確立することを課題とする
ものである。
[Problems to be Solved by the Invention] The present invention clarifies the causes of vertical cracking in high-speed continuous casting where the continuous casting speed exceeds 4 m/min, and solves the problem in high-speed continuous casting where the continuous casting speed exceeds 4 m/min. The objective of this project is to establish a high-speed continuous casting injection method that does not substantially generate vertical cracks, specifically, a method that optimizes the molten steel temperature, nozzle shape, and casting speed under specific conditions.

[課題を解決するための手段] 本発明は上記課題を達成するため、 後記するシェル洗い率φが0.1以下になるように鋳造
速度■と、モールド断面積と注入ノズルの吐出口面積と
の比率Sの少なくとも何れか一方を調整して溶鋼を鋳型
に注入することを手段とするものである。
[Means for Solving the Problems] In order to achieve the above-mentioned problems, the present invention sets the casting speed ■, the cross-sectional area of the mold, and the discharge opening area of the injection nozzle so that the shell washing rate φ, which will be described later, becomes 0.1 or less. The method is to adjust at least one of the ratios S and inject the molten steel into the mold.

シェル洗い率φ=(δ、n、、X−δman)/δ。8
8φ=f(ΔT、V、S)あるいは φ=A ・ΔT 、 Vo、473・So、8但し、 δmax :同一幅断面内での最大シェル厚みδwin
:同一幅断面内での最小シェル厚みA : 5.6 X
 10−’ (定数)■=鋳造速度(m/hr) S:ノズルの吐出口に対するモールドの断面積比 ΔT:溶鋼の過熱温度(deg) [作用] 本発明者等は、上記課題を達成するため種々の実験、検
討を重ね、鋳造速度が4 m/min以上の高速連続鋳
造方法においては、鋳造速度が大きくなると、浸漬ノズ
ルからの溶鋼の吐出流速が大きくなり、この犬きくなっ
た吐出流速でシェルが洗われ、これによってシェル厚み
の不均一が助長されて縦割れが発生することを突き市め
た。
Shell washing rate φ=(δ, n, , X−δman)/δ. 8
8φ=f(ΔT, V, S) or φ=A・ΔT, Vo, 473・So, 8However, δmax: Maximum shell thickness within the same width cross section δwin
: Minimum shell thickness within the same width cross section A: 5.6
10-' (constant) ■ = casting speed (m/hr) S: cross-sectional area ratio of the mold to the nozzle discharge port ΔT: superheating temperature of molten steel (deg) [Function] The present inventors have achieved the above object. Therefore, various experiments and studies have been conducted to find out that in high-speed continuous casting methods where the casting speed is 4 m/min or more, as the casting speed increases, the discharge flow rate of molten steel from the immersion nozzle increases, and this sharp discharge flow rate It was discovered that the shell was washed with water, which promoted unevenness in the shell thickness and caused vertical cracks.

この時前記した従来の連続鋳造方法で確認されていた知
見の「■凝固シェル厚みの不均一度が中炭素鋼で10t
を超えると縦割れが発生する。」を参考に検討を重ねた
ところ、4 m/min以上の鋳造速度で行う連続鋳造
も同様に凝固シェル厚みの不均一度が中炭素鋼で10%
を超えると縦割れが発生することを見出した。
At this time, the knowledge that had been confirmed with the conventional continuous casting method mentioned above was that ``■ The degree of non-uniformity of the solidified shell thickness was 10 tons in medium carbon steel.
If it exceeds this, vertical cracks will occur. After repeated studies with reference to ``Continuous casting at a casting speed of 4 m/min or higher, the non-uniformity of the solidified shell thickness is 10% for medium carbon steel.''
It was found that vertical cracking occurs when the

従来の知見は鋳型に人工疵を設けた実験による知見であ
る。鋳型の人工疵部の温度が低くなり、そこに対応する
鋳片の部分は逆に温度が高くなって、それによって生じ
たシェルの厚み不均一度である。
The conventional knowledge was based on experiments in which artificial flaws were created in the mold. The temperature of the artificial flaw in the mold becomes low, and the temperature of the corresponding part of the slab becomes high, resulting in non-uniformity in the thickness of the shell.

一方本発明が対象とする高速連続鋳造の実験による知見
は、浸漬ノズルからの溶鋼吐出流により生じたシェル洗
いが生成したシェルの厚み不均一度を対象としたもので
ある。
On the other hand, the findings from experiments on high-speed continuous casting that are the object of the present invention are directed to non-uniformity in the thickness of shells produced by shell washing caused by the flow of molten steel discharged from a submerged nozzle.

なお、シェル洗いによるシェル厚みの不均一度(シェル
洗い率)は、δmaX+δ、。によって決定されるが、
そのδmaX+δイ、nは鋳造中に硫黄などのトレーサ
ーを溶鋼とともに注入し、鋳造後の鋳片のある断面にお
けるトレーサーの濃度分布を測定することによってその
断面のシェル厚を測定することで求められる。
Incidentally, the degree of non-uniformity of shell thickness due to shell washing (shell washing rate) is δmaX+δ. is determined by,
The δma

しかるに両者は共に、凝固シェル厚みの不均一度が10
*を超えると縦割れが発生ずることは、発生のメカニズ
ムが異なっていも、結局は縦割れを形成する本質的な要
因がシェルの厚み不均一度であり、両者は同し現象によ
ることを見出した。
However, in both cases, the nonuniformity of the solidified shell thickness is 10
*The fact that vertical cracks occur when the cracks occur is due to the fact that even though the mechanism of occurrence is different, the essential factor for the formation of vertical cracks is the non-uniformity of the shell thickness, and that both are caused by the same phenomenon. Ta.

そこで本発明者等は、高速連続鋳造において、シェル厚
み不均一の発生原因である溶鋼吐出流によるシェル洗い
を防止するため、更に実験、検討を続け、その結果を集
約して次の式を得た。
Therefore, in order to prevent shell washing by the molten steel discharge flow, which is the cause of uneven shell thickness in high-speed continuous casting, the present inventors continued experiments and studies, summarized the results, and obtained the following formula. Ta.

シェル洗い率φ=(δ□ax−δ。1o)/δmayφ
=A ・ ΔT−V’・473・SO・8但し、 δ。aX二同一幅断面内での最大シェル厚みδ1.。:
同一幅断面内での最小シェル厚みA : 5.6 X 
10−’ (定数)V:鋳造速度(m/hr) S:ノズルの吐出口に対するモールドの断面積比 へT:溶鋼の過熱温度(deg) この式はシェル洗い率が、ΔTと■とSの関数であるこ
とを表わしている。この式による計算値と実測値を第1
図に示しており、両者がよく一致していることを示して
いる。
Shell washing rate φ=(δ□ax−δ.1o)/δmayφ
=A・ΔT-V'・473・SO・8However, δ. Maximum shell thickness δ1 within the same width cross section of aX2. . :
Minimum shell thickness A within the same width cross section: 5.6
10-' (Constant) V: Casting speed (m/hr) S: Ratio of cross-sectional area of mold to nozzle discharge port T: Superheating temperature of molten steel (deg) This indicates that it is a function of . The calculated value using this formula and the actual measured value are
The results are shown in the figure, showing that the two are in good agreement.

本発明は上記知見を基になされたものである。The present invention is based on the above findings.

すなわち、連続鋳造に先立ち、使用予定のノズルの吐出
口面積よりSlを計算し、狙いとする溶鋼の過熱温度Δ
T1および鋳造速度■1を求め、それらより、シェル洗
い率φ1を計算し、そのφ1が適正領域つまり0.1に
近くて小さいならば、その条件を適正とする。もしφ1
が0.1より大きければ、ノズル形状を変更してSlを
修正するかおよび/または鋳造速度を修正して、φ1が
0.1.に近くて小さい値とし、その修正条件に変更し
、もしφ1が0.1よりずっと小さければ、同様にノズ
ル形状および/または鋳造速度を修正してφ1を適正領
域に入るように条件を変更して連続鋳造の注入作業を開
始するようにする。
That is, before continuous casting, calculate Sl from the discharge opening area of the nozzle planned to be used, and determine the target superheating temperature Δ of the molten steel.
T1 and casting speed ■1 are determined, and shell cleaning rate φ1 is calculated from them. If φ1 is small and close to the appropriate range, that is, 0.1, the conditions are determined to be appropriate. If φ1
is larger than 0.1, the nozzle shape is changed to correct Sl and/or the casting speed is adjusted so that φ1 is 0.1. If φ1 is much smaller than 0.1, similarly modify the nozzle shape and/or casting speed to bring φ1 into the appropriate range. Then, pouring work for continuous casting will start.

加えて、連続鋳造を開始した後は、ノズルの吐出口面積
S1は一定であるがΔT1は実測できるので、その実測
ΔT1ではφ、が0.1より大きくなる場合には、鋳造
速度■をφ1が適正領域に入るように調整して、φ1が
連続鋳造中、常に適正領域に確保できるようにするのが
望ましい。一般に、ΔT1は連続鋳造時間がたつ程低下
してゆくので、鋳造速度■は増加してゆくことができる
In addition, after starting continuous casting, the discharge opening area S1 of the nozzle is constant, but ΔT1 can be measured, so if φ becomes larger than 0.1 with the actual measurement ΔT1, the casting speed ■ is changed to φ1. It is desirable to adjust so that φ1 falls within an appropriate range, so that φ1 can always be maintained within an appropriate range during continuous casting. In general, ΔT1 decreases as the continuous casting time increases, so the casting speed (2) can be increased.

[実施例] (1)連続条件 ■鋳型断面寸法(mmx mm) :600x 50゜
1200x 50の2種 ■ノズル吐出口寸法(mmX mm) :200X I
Q。
[Example] (1) Continuous conditions ■ Mold cross-sectional dimensions (mm x mm): 600 x 50 ° 1200 x 50 ■ Nozzle discharge opening dimensions ( mm x mm): 200 x I
Q.

 0 300X 10゜ 400X 10の3種 ■鋳造速度(m/m1n) : 10.20の2種■シ
ェル洗い率:第2図に示す。
0 300X 10° 400X 10 3 types Casting speed (m/m1n): 10.20 2 types Shell cleaning rate: Shown in Figure 2.

(2)調整方法 ■ 調整無 ■A調整前 ■B調整後 ■ 調整無 ■A調整無 ■B調整後 ■ 調整無 ■ 調整無 ■A調整前 0口調整後 ■へ調整前 ■B調整後 ■A調整航 00 00 00 00 00 00 00 00 200 200 200 200 200 00 00 200+ 200 00 00 00 00 00 00 00 00 00 00 1 ■B調整後 !200  800   10   10
@lA調整前 1200  800   20.   
20[相]B調整後 1200  800   8.5
  19前記■、■、■、■および■は、シェル洗い率
が0.1に達しない場合でありだので、調整を必要とし
ないものである。一方、■A、■八、■八、■八および
@lAは、それぞれシェル洗い率が0.1以上になった
場合であるのて、それぞれ次のような調整を行った後を
■B、■B、■B、■Bおよび[相]Bに示ず。具体的
な調整方法は、■の場合はAのノズルをBでは2本並列
使用し、■の場合、ノズルの吐出口幅をへの300 m
mから600.mmに変更し、■、■の場合も同様にノ
ズルの吐出口幅を2倍に拡大したものに置換し、[相]
の場合、溶鋼の過熱度を10℃と予想したのにAの場合
20℃と大きかったのでφ〉0.1となり、Bては、鋳
造速度を8.5n+/minまで大きく下げて対応した
例である。
(2) Adjustment method ■ No adjustment ■ Before A adjustment ■ After B adjustment ■ No adjustment ■ No A adjustment ■ After B adjustment ■ No adjustment ■ No adjustment ■ Before A adjustment After 0 adjustment ■ Before adjustment ■ After B adjustment ■ A adjustment flight 00 00 00 00 00 00 00 00 200 200 200 200 200 00 00 200+ 200 00 00 00 00 00 00 00 00 00 00 1 ■After B adjustment! 200 800 10 10
@ Before adjustment 1200 800 20.
20 [Phase] After B adjustment 1200 800 8.5
19 Items (1), (2), (2), (2), and (2) above are valid when the shell washing rate does not reach 0.1, and therefore do not require adjustment. On the other hand, ■A, ■8, ■8, ■8, and @lA are cases where the shell washing rate is 0.1 or more, so after the following adjustments are made, ■B, ■B, ■B, ■B and [phase] Not shown in B. The specific adjustment method is to use two nozzles of A in parallel in case of ■, and to adjust the nozzle discharge opening width to 300 m in case of ■.
600.m from mm, and in the case of ■ and ■, similarly replace the nozzle discharge opening width with one that is twice as wide, and [phase]
In case of , the degree of superheating of the molten steel was expected to be 10℃, but in case of A, it was as high as 20℃, so φ>0.1.In case of B, the casting speed was significantly lowered to 8.5n+/min. It is.

尚、■の場合、Aでもφ≦0.1を達成していたが、B
で溶鋼の過熱度が8℃まで下がったのでその分を鋳造速
度を高速化した例である。
In the case of ■, A also achieved φ≦0.1, but B
In this example, the degree of superheating of the molten steel decreased to 8°C, so the casting speed was increased accordingly.

 2 [発明の効果] 本発明は、鋳造速度と、モールドとノズルの断面積比の
少なくとも何れか一方を特性式に基づいて調整し、高速
連続鋳造において縦割れの原因となフているシェル洗い
率の縦割れが発生しない0.1以下に制御するので、高
速連続鋳造における縦割れの発生が極めて容易に防止で
き、縦割れに起因するブレークアウトを皆無にできるの
で、当業分野にもたらす生産性の向上、生産費の低減効
果は大きい。
2 [Effects of the Invention] The present invention adjusts at least one of the casting speed and the cross-sectional area ratio of the mold and the nozzle based on a characteristic formula, and eliminates shell cleaning, which is a cause of vertical cracking in high-speed continuous casting. Since the ratio is controlled to 0.1 or less, which prevents vertical cracks from occurring, the occurrence of vertical cracks in high-speed continuous casting can be extremely easily prevented, and breakouts caused by vertical cracks can be completely eliminated, thereby improving production in this industry. The effects of improving performance and reducing production costs are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の計算値と実測値の関係を示す図である
。第2図は本発明の実施例における調整状況を示す図で
ある。
FIG. 1 is a diagram showing the relationship between calculated values and actually measured values according to the present invention. FIG. 2 is a diagram showing the adjustment situation in the embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、後記するシェル洗い率φが0.1以下になるように
鋳造速度Vと、モールド断面積と注入ノズルの吐出口面
積との比率Sの少なくとも何れか一方を調整して溶鋼を
鋳型に注入することを特徴とする連続鋳造の注入方法。 φ=f(ΔT、V、S) 但し、 シェル洗い率φ=(δ_m_a_x−δ_m_i_n)
/δ_m_a_xδ_m_a_x:同一幅断面内での最
大シェル厚みδ_m_i_n:同一幅断面内での最小シ
ェル厚みV:鋳造速度(m/hr) S:ノズルの吐出口に対するモールドの断面積比 ΔT:溶鋼の過熱温度(deg) 2、前記シェル洗い率φが次式であることを特徴とする
請求項1に記載の連続鋳造の注入方法。 φ=A・ΔT・V^0^.^4^7^3・S^0^.^
8但し、 A:定数項
[Claims] 1. Adjust at least one of the casting speed V and the ratio S of the mold cross-sectional area and the discharge port area of the injection nozzle so that the shell cleaning rate φ, which will be described later, is 0.1 or less. A continuous casting injection method characterized by injecting molten steel into a mold. φ=f(ΔT, V, S) However, shell washing rate φ=(δ_m_a_x−δ_m_i_n)
/δ_m_a_xδ_m_a_x: Maximum shell thickness within the same width cross section δ_m_i_n: Minimum shell thickness within the same width cross section V: Casting speed (m/hr) S: Cross-sectional area ratio of the mold to the nozzle discharge port ΔT: Superheating temperature of molten steel (deg) 2. The injection method for continuous casting according to claim 1, wherein the shell washing rate φ is expressed by the following formula. φ=A・ΔT・V^0^. ^4^7^3・S^0^. ^
8 However, A: constant term
JP1252070A 1989-09-29 1989-09-29 Continuous casting injection method Expired - Fee Related JPH0729192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252070A JPH0729192B2 (en) 1989-09-29 1989-09-29 Continuous casting injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252070A JPH0729192B2 (en) 1989-09-29 1989-09-29 Continuous casting injection method

Publications (2)

Publication Number Publication Date
JPH03114638A true JPH03114638A (en) 1991-05-15
JPH0729192B2 JPH0729192B2 (en) 1995-04-05

Family

ID=17232133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252070A Expired - Fee Related JPH0729192B2 (en) 1989-09-29 1989-09-29 Continuous casting injection method

Country Status (1)

Country Link
JP (1) JPH0729192B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024452A1 (en) * 1995-02-09 1996-08-15 Kawasaki Steel Corporation Continuous casting method for austenitic stainless steel
US11077842B2 (en) 2007-07-12 2021-08-03 Power Technology Holdings Llc Hybrid vehicle drive system and method and idle reduction system and method
US11225240B2 (en) 2011-12-02 2022-01-18 Power Technology Holdings, Llc Hybrid vehicle drive system and method for fuel reduction during idle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024452A1 (en) * 1995-02-09 1996-08-15 Kawasaki Steel Corporation Continuous casting method for austenitic stainless steel
US5775404A (en) * 1995-02-09 1998-07-07 Kawasaki Steel Corporation Method of continuously casting austenitic stainless steel
AU694312B2 (en) * 1995-02-09 1998-07-16 Kawasaki Steel Corporation Continuous casting method for austenitic stainless steel
US11077842B2 (en) 2007-07-12 2021-08-03 Power Technology Holdings Llc Hybrid vehicle drive system and method and idle reduction system and method
US11225240B2 (en) 2011-12-02 2022-01-18 Power Technology Holdings, Llc Hybrid vehicle drive system and method for fuel reduction during idle

Also Published As

Publication number Publication date
JPH0729192B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
US5592988A (en) Method for the continuous casting of peritectic steels
JPH03114638A (en) Method for pouring molten metal in continuous casting
KR100450611B1 (en) A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
CN112743053A (en) Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
JPS61103649A (en) Bottomless mold for continuously casting steel cast piece with polygonal section
JPH0399762A (en) Continuous casting method
JPH02133155A (en) Method for preventing longitudinal crack of continuously cast slab
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
RU2163933C1 (en) Method of steel alloying with bismuth
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip
JPH01501455A (en) Apparatus and method for continuously casting steel slabs
JP2003334636A (en) High speed continuous casting method for medium carbon steel
JPH09285855A (en) Manufacture of ni containing steel
JPH06246404A (en) Tundish for continuous casting
JPH01299744A (en) Method for preventing longitudinal crack on surface of continuous cast slab
JPH09234551A (en) Continuous casting method for preventing segregation and internal crack
JPH0390259A (en) Continuous casting method
JPS635859A (en) Continuous casting method for high silicon steel
SU703228A1 (en) Method of continuous casting of metals
JPH06246406A (en) Method for adjusting overheating degree of molten steel in continuous casting mold
JPH09314287A (en) Continuous casting method for round cross sectional cast billet
JPH06344101A (en) Continuous casting method
JP3030596B2 (en) Continuous casting method
RU2022692C1 (en) Method of continuous casting of steel slabs
JPH02207944A (en) Method for preventing surface cracking in continuous casting of sb-containing steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees