JPH02207944A - Method for preventing surface cracking in continuous casting of sb-containing steel - Google Patents

Method for preventing surface cracking in continuous casting of sb-containing steel

Info

Publication number
JPH02207944A
JPH02207944A JP2754089A JP2754089A JPH02207944A JP H02207944 A JPH02207944 A JP H02207944A JP 2754089 A JP2754089 A JP 2754089A JP 2754089 A JP2754089 A JP 2754089A JP H02207944 A JPH02207944 A JP H02207944A
Authority
JP
Japan
Prior art keywords
steel
slab
ingot
continuous casting
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2754089A
Other languages
Japanese (ja)
Other versions
JPH0616919B2 (en
Inventor
Hisao Otokida
小時田 久雄
Toshio Shimada
利生 嶋田
Mutsuto Tanaka
睦人 田中
Shigenori Igari
猪狩 繁範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2754089A priority Critical patent/JPH0616919B2/en
Publication of JPH02207944A publication Critical patent/JPH02207944A/en
Publication of JPH0616919B2 publication Critical patent/JPH0616919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve toughness and to prevent surface crack so as to relieve or omit ingot mending prior to rolling of the ensuing stage by pouring a steel contg. a specific ratio of Sb at the specific overheating degree of the molten steel and controlling the cooling of the ingot, thereby continuously casting the steel. CONSTITUTION:The overheating degree of the molten steel at the time of pouring the molten steel into a casting mold in continuous casting of the steel contg. 0.02 to 0.15wt.% Sb is specified to <=25 deg.C to avoid rapid cooling at the time of casting. The cooling rate of the ingot surface in the region where the surface temp. of the ingot is 1150 to 950 deg.C is specified <=20 deg./min. The generation of the surface crack and subsurface crack of the ingot is effectively decreased and suppressed and the precise mending stage for the ingot prior to the rolling of the ensuing stage is decreased or omitted. The stable production of the Sb- contg. steel is thus executed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は含Sb鋼の連続鋳造における表面割れ防止方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for preventing surface cracking in continuous casting of Sb-containing steel.

従来の技術 連続鋳造は、鉄鋼製造工程における造塊〜分塊工程の省
略に伴う歩留り向上、省エネルギー、省力化等をもたら
し、その適用分野は板厚等の物理的制限を除けば、はぼ
100%となりつつある。
Continuous casting, a conventional technology, improves yield, saves energy, and saves labor by omitting the ingot making and blooming processes in the steel manufacturing process, and its application fields are almost 100%, excluding physical limitations such as plate thickness. %.

耐硫酸露点腐食鋼に代表される含Sb鋼に対してもこの
連続鋳造化が図られてきた。
Continuous casting has also been attempted for Sb-containing steels, such as sulfuric acid dew point corrosion-resistant steels.

しかしながら、これら0.02〜0.15%のSbを含
有する鋼は、一般の低合金鋼に比べて、 600〜90
0℃における靭性が著しく弱く(脆性を示し)、また組
織変態に伴う寸法変化が大きいことから、割れ感受性が
高い鋼種であり、連続鋳造時に鋳片の表面割れや、表面
直下(表皮下)割れが生じやすく、次工程の圧延の前に
精整手入れを行う工程が必要となり、連続鋳造化のメリ
ットを充分に享受できていない。
However, these steels containing 0.02 to 0.15% Sb have a 600 to 90% Sb content compared to general low alloy steel.
Because its toughness at 0°C is extremely low (indicating brittleness) and its dimensional changes due to structural transformation are large, it is a steel with high cracking susceptibility, and is prone to surface cracking of slabs and subsurface (subcutaneous) cracking during continuous casting. This tends to occur, and a step of finishing and cleaning is required before the next rolling step, making it difficult to fully enjoy the benefits of continuous casting.

連続鋳造におけるこれらの割れを引き起こす物理的原因
としては、(1)冷却帯における鋳片支持ロール間での
冷却水による冷却の際に、鋳片の幅方向の温度不均一に
よって生じる熱応力や、(2)ロール間で鋳片が溶鋼の
静圧によってふくれることによる(バルジング)応力、
また(3)弯曲型の連続鋳造において、鋳片を弯曲部か
ら水平部に曲げ戻す際の矯正点における機械的な引っ張
り応力(矯正歪み)等が挙げられる。
The physical causes of these cracks in continuous casting include (1) thermal stress caused by uneven temperature in the width direction of the slab during cooling with cooling water between the slab support rolls in the cooling zone; (2) Stress caused by the slab swelling between the rolls due to the static pressure of the molten steel (bulging);
In addition, (3) mechanical tensile stress (correction strain) at the correction point when bending the slab back from the curved part to the horizontal part in curved continuous casting.

そこで、従来から、これら含Sb鋼の連続鋳造時の表面
割れを抑制・防止する対策として、材料の靭性や耐腐食
性を高めるという点から、CuやTiを添加することが
おこなわれている。
Therefore, as a measure to suppress and prevent surface cracking during continuous casting of these Sb-containing steels, Cu and Ti have been added from the viewpoint of increasing the toughness and corrosion resistance of the material.

しかしこれら材料の靭性を高める不純物元素の除去や微
量元素の添加は、鋳造前段階の精錬工程で、付加的な工
程を必要とし、そのための温度補償や精錬材、合金等精
錬コストの増加につながっている。
However, removing impurity elements and adding trace elements to improve the toughness of these materials requires additional steps in the refining process before casting, which leads to an increase in temperature compensation, refining materials, alloys, and other refining costs. ing.

一方、特殊な微量元素等の添加は行わずに表面割れを抑
制するために、冷却帯中の冷却水量を落とし、かつ冷却
スプレーの形状を水量密度が均一となるオーバルタイプ
ノズルを用いる方法(鉄と鋼、87(1980)、 S
 −738) 、ないしは気水ノズルを用いて鋳片温度
の均一化を図る方法も採用されている。
On the other hand, in order to suppress surface cracking without adding special trace elements, etc., the amount of cooling water in the cooling zone is reduced and the cooling spray is shaped using an oval type nozzle that has a uniform water density. and Steel, 87 (1980), S
-738), or a method of using an air/water nozzle to equalize the temperature of the slab has also been adopted.

発明が解決しようとする課題 以上述べた各種の対策により、含Sb鋼の連続鋳造時の
表面割れは大幅に改善されてはきたが、実際の連続鋳造
過程においては、例えば弯曲連鋳機の矯正点を高温で通
過させるために、緩冷却パターンを採用しても、鋳片内
部からの復熱が少なく、かつ放熱しやすいために1表面
を靭性の弱い温度以上に常に安定に確保することが難し
いという問題点が残っていた。
Problems to be Solved by the Invention Although surface cracking during continuous casting of Sb-containing steel has been significantly improved by the various measures described above, in the actual continuous casting process, for example, it is difficult to straighten a curved continuous casting machine. Even if a slow cooling pattern is adopted in order to pass through a point at a high temperature, there is little recuperation of heat from inside the slab and it is easy to dissipate heat, so it is necessary to always maintain one surface stably above the temperature at which toughness is weak. The problem remained that it was difficult.

本発明は含Sb鋼の連続鋳造に際して、従来靭性が低下
すると言われてきた温度領域においても、靭性を向上さ
せ1表面割れや表面下割れの発生を軽減せしめ、次工程
圧延前の鋳片手入れ工程を緩和、省略することを目的と
する。
The present invention improves toughness during continuous casting of Sb-containing steel, even in the temperature range where toughness has conventionally been said to decrease, reduces the occurrence of surface cracks and subsurface cracks, and improves the toughness of the cast iron before the next rolling process. The purpose is to ease or omit processes.

課題を解決するための手段 本発明は、Sbを0.02〜G、15wt%含有する鋼
の連続鋳造に際し、鋳型へ注入するときのスーパーヒー
ト(溶鋼過熱度)を25℃以下とするとともに、鋳片表
面温度が1150〜950℃の領域の鋳片表面の冷却速
度を20℃/分以下とすることを特徴とする含Sb鋼の
連続鋳造における表面割れ防止方法である。
Means for Solving the Problems The present invention provides a method for continuous casting of steel containing 0.02 to 15 wt% of Sb, by setting the superheat (degree of superheating of molten steel) to 25°C or less when injecting it into the mold, and This is a method for preventing surface cracking in continuous casting of Sb-containing steel, characterized in that the cooling rate of the slab surface in a region where the slab surface temperature is 1150 to 950 °C is 20 °C/min or less.

作用 連続鋳造における表面割れの発生は熱間延性(靭性)の
低下によるものであることは一般的に知られたところで
ある。
It is generally known that the occurrence of surface cracks in continuous casting is due to a decrease in hot ductility (toughness).

表面割れが生じた場合、その鋳片は次工程圧延前に表面
の手入の必要があるが、この表面手入率と熱間延性の関
係については、これまでにも報告があり、高温引張試験
で得られる断面の収縮率を表わす絞り値(RA)が60
%以上であれば1手入れ率が非常に低減するといわれて
いる。
When surface cracks occur, the surface of the slab needs to be treated before the next rolling process, but there have been reports on the relationship between this surface treatment rate and hot ductility. The aperture value (RA), which represents the shrinkage rate of the cross section obtained in the test, is 60.
% or more, it is said that the 1-care rate is greatly reduced.

そこで第1図に示す、ような連続鋳造の鋳片表面が受け
ると考えられる熱履歴の中で、冷却速度の影響をシミュ
レートした高温引張り試験を行った。この試験に供した
材料成分は第1表に示すものである。またこの600〜
900℃の温度領域で靭性が低下する現象は、歪み速度
が非常に遅い場合に著しいことが報告されているため、
歪み速度としてはlX10−3/秒という遅いもので試
験を行った。
Therefore, we conducted a high-temperature tensile test that simulated the effect of cooling rate under the thermal history that is thought to be experienced by the surface of a continuously cast slab as shown in Figure 1. The material components used in this test are shown in Table 1. This 600~
It has been reported that the phenomenon in which toughness decreases in the temperature range of 900°C is significant when the strain rate is very slow.
The test was conducted at a slow strain rate of 1×10 −3 /sec.

第1表    (wt%) この試験で得られた引張り温度と絞り値(RA)の関係
を第2図に示す、第2図において、冷却速度が大きい場
合には、従来から報告されているように、800〜90
0℃の温度領域で靭性の低下が見られるが、冷却速度を
小さくしていくと、徐々に延性が回復している。
Table 1 (wt%) Figure 2 shows the relationship between the tensile temperature and the reduction of area (RA) obtained in this test. 800-90
A decrease in toughness is seen in the temperature range of 0°C, but as the cooling rate is reduced, ductility gradually recovers.

第2図をもとに、800℃で引張試験を行った際の13
00℃から800℃までの冷却速度と絞り値(RA・)
・の関係を第3図に示す、第3図から、冷却速度20℃
/分以下であれば、最も靭性低下が見られ800℃の温
度における絞り値(RA)が60%以上に確保できるこ
とがわかった。
Based on Figure 2, 13 when performing a tensile test at 800℃
Cooling rate and aperture value (RA・) from 00℃ to 800℃
Figure 3 shows the relationship between
It was found that when the temperature is less than /min, the toughness decreases the most and the reduction of area (RA) at a temperature of 800° C. can be maintained at 60% or more.

試験結果に基づけば鋳片表面温度が1300℃の領域で
20℃/分以下の冷却速度をとることが理想的であるが
、一般の連#!鋳造機においては水冷鋳型による一次冷
却帯を通過し、冷却水により鋳片が直接冷却される、い
わゆる二次冷却帯が始まる際の鋳片表面温度は、鋳造速
度や水冷鋳型の冷却能力にもよるが1200℃程度であ
り、鋳型直下で急激に冷却速度を低下させることは操業
の安定性にも欠ける。よって少なくとも1150℃以下
での領域の鋳片表面の冷却速度を20℃/分以下に維持
しなければならない。
Based on the test results, it is ideal to have a cooling rate of 20°C/min or less in the area where the surface temperature of the slab is 1300°C. In a casting machine, the surface temperature of a slab when it passes through the primary cooling zone of the water-cooled mold and begins the so-called secondary cooling zone, where the slab is directly cooled by cooling water, is affected by the casting speed and the cooling capacity of the water-cooled mold. However, the temperature is about 1200°C, and rapidly reducing the cooling rate directly below the mold also lacks operational stability. Therefore, the cooling rate of the surface of the slab in the region of at least 1150°C or lower must be maintained at 20°C/min or less.

一方、弯曲連鋳機の矯正点を鋳片が通過する際の表面温
度は高く設定することが重要であるが。
On the other hand, it is important to set the surface temperature of the slab high when it passes through the straightening point of the curved continuous caster.

鋳片センタ一部に比して放熱の大きい鋳片幅方向エツジ
部の温度を靭性の低下が生じ始める950℃以上に高く
保つことは難しく、ここに本発明は有効に作用する。す
なわち、950℃以上の高温を安定して確保できない部
分について、靭性の低下が生じ始める1350℃までの
冷却速度を20℃/分以下に維持することが重要となる
It is difficult to maintain the temperature of the edge portion in the width direction of the slab, where heat radiation is greater than that of a portion of the center of the slab, above 950° C., where toughness begins to deteriorate, and the present invention is effective here. That is, for parts where a high temperature of 950° C. or more cannot be stably maintained, it is important to maintain the cooling rate at 20° C./min or less up to 1350° C., where toughness begins to deteriorate.

しかして、鋳片表面温度が1150〜950℃の領域で
の冷却速度を制御する方法としては、種々の連続鋳造機
の冷却能力に適した方法を用いるわけであるが、この際
に冷却水による部分的な冷却は可能な限り避け、例えば
鋳片輻方向の水量密度は極力均一に保ち、温度分布の不
均一を生じないように設定することが好ましい。
Therefore, in order to control the cooling rate in the range where the slab surface temperature is 1150 to 950°C, a method suitable for the cooling capacity of various continuous casting machines is used. It is preferable to avoid partial cooling as much as possible; for example, it is preferable to keep the water density in the radial direction of the slab as uniform as possible so as not to cause uneven temperature distribution.

これにもとずき含Sb鋼(Sb 70.02〜0.15
%)の連続鋳造において1150〜950℃間を20℃
/分以下で冷却したところ、尚割れの発生することがあ
り、その原因について多数のデータを解析した。
Based on this, Sb-containing steel (Sb 70.02~0.15
%) continuous casting at 20°C between 1150 and 950°C.
When cooled at less than 1 minute, cracks may still occur, and a large amount of data was analyzed to determine the cause.

その結果、第4図に示すように単に一定の温度範囲の冷
却を制御するだけでなく、スーパーヒート(溶鋼過熱温
度)を25℃以下に同時に制限して鋳造することが重要
であることを見い出した。
As a result, we discovered that it is important not only to simply control cooling within a certain temperature range, as shown in Figure 4, but also to simultaneously limit superheat (molten steel superheating temperature) to 25°C or less during casting. Ta.

しかしてスーパーヒートが25℃を越える場合、鋳型中
および鋳型を抜けて矯正点に至る2次冷却帯での冷却速
度が急冷となるため、鋳片表面から相当内部に至るまで
急冷組織となり、その表面に熱歪による割れが発生する
と高温の内部の粒界に存在する未凝固のSbに沿って割
れが深く伝播するため、片面当り4■の溶剤でも割れ疵
が残存する。
However, if the superheat exceeds 25°C, the cooling rate in the mold and in the secondary cooling zone that passes through the mold and reaches the straightening point becomes rapid cooling, resulting in a rapidly cooling structure from the surface of the slab to the inside. When cracks occur on the surface due to thermal strain, the cracks propagate deeply along the unsolidified Sb existing at the high-temperature internal grain boundaries, so cracks remain even with 4 μm of solvent per side.

一方、スーパーヒートが25℃以下と小さい場合、急冷
組織が鋳片表面だけになるため、万一熱歪で割れが発生
しても、内部の粒界に存在するSbも凝固しているため
割れが伝播せず、浅い割れにとどまり、少ない溶剤量で
充分に除去が可能となる。
On the other hand, if the superheat is small (below 25°C), the quenched structure is only on the surface of the slab, so even if a crack occurs due to thermal strain, the Sb existing at the internal grain boundaries will also solidify, causing the crack to crack. The cracks do not propagate, remain in shallow cracks, and can be removed sufficiently with a small amount of solvent.

このスーパーヒートは小さい方が良いのであるが、FJ
造するための操業上の問題から下限は5℃以上とするこ
とが好ましい。
This super heat is better if it is smaller, but FJ
It is preferable that the lower limit is 5° C. or higher in view of operational issues for production.

次にSb含有量を0.02〜0.15%に限定したのは
、0.02%未満では耐硫酸露点腐食性が劣るためであ
り、上限を0.15%としたのはこれ以上添加しても特
性の向上が望めないからである。
Next, the Sb content was limited to 0.02-0.15% because the sulfuric acid dew point corrosion resistance is poor if it is less than 0.02%, and the reason why the upper limit was set at 0.15% is that more than 0.02% is added. This is because no improvement in characteristics can be expected.

含Sb鋼として他の成分の好ましい範囲は次の通りであ
る。
Preferred ranges of other components for the Sb-containing steel are as follows.

C: 0.05〜0.20%。C: 0.05-0.20%.

Mn : 0.20〜1.0096、 P : 0.030%以下、 Si : 0.05〜0.50%、 Cu : 0.10〜0.50%。Mn: 0.20-1.0096, P: 0.030% or less, Si: 0.05-0.50%, Cu: 0.10-0.50%.

AQ : 0.005〜0.050%、S : 0.0
20%以下 を基本として、更に旧0.lO〜0.50%を加えても
良い。
AQ: 0.005-0.050%, S: 0.0
Based on 20% or less, the old 0. 10 to 0.50% may be added.

実施例 溶銑予m処理〜転炉〜二次精錬により溶製した第2表に
示す耐硫酸露点腐食鋼を、弯曲半径10.5aR,鋳込
み点から矯正点までの距ll117mの弯曲型連続鋳造
機で本発明の方法を用いて鋳造を行った。
Example: The sulfuric acid dew point corrosion resistant steel shown in Table 2 produced by hot metal pre-treatment - converter - secondary refining was cast in a curved continuous casting machine with a radius of 10.5 aR and a distance of 117 m from the pouring point to the straightening point. Casting was carried out using the method of the present invention.

第2表    (1知 鋳造の条件は以下の通りである。Table 2 (1 knowledge The casting conditions are as follows.

スーパーヒート:15℃ 鋳造速度   : 1.15 (m/5in)冷却方法
   ニオ−パルタイプスプレーノズル冷却条件   
:注木比o、se(見/ kg)鋳型下部から、機端ま
での水量密度を第3表に示す。
Superheat: 15℃ Casting speed: 1.15 (m/5in) Cooling method Niopal type spray nozzle cooling conditions
: Pouring ratio o, se (view/kg) The water density from the bottom of the mold to the end of the mold is shown in Table 3.

上記の条件で鋳造を行った際に鋳片表面に熱電対を設置
し測定した鋳造表面温度の結果を第5図に示す、この図
から、鋳造幅方向センタ一部は、1150℃から矯正点
前までの冷却速度が0.1℃/秒(6℃/分)、矯正点
通過時の鋳片表面温度が880℃である。
Figure 5 shows the results of the casting surface temperature measured by installing a thermocouple on the surface of the slab when casting was carried out under the above conditions. The cooling rate up until now was 0.1°C/sec (6°C/min), and the slab surface temperature when passing the straightening point was 880°C.

一方1幅方向エツジ部は矯正点通過時の鋳片表面温度が
800℃と低下しているが、 1150℃から950℃
までの冷却速度は0.3℃/秒(18℃/分)であった
・ この鋳片を自然冷却後表面から、4鳳履溶剤後。
On the other hand, the surface temperature of the slab surface at the edge in the first width direction when passing through the straightening point decreased to 800℃, but it increased from 1150℃ to 950℃.
The cooling rate was 0.3°C/sec (18°C/min) until the slab was cooled naturally, and then the surface was cooled with a solvent.

表面観察した結果、健全な表面が得られた。すなわち、
エツジ部はこれまで、靭性が低下する温度領域で矯正点
を通過しているにもかかわらず、1150℃から950
℃までの冷却速度を制御するとスーパーヒートを25℃
以下に制御することで表面割れが抑制された。
As a result of surface observation, a healthy surface was obtained. That is,
Although the edge part has passed the straightening point in the temperature range where the toughness decreases, it has been
Controlling the cooling rate down to 25℃ superheats
Surface cracking was suppressed by controlling as follows.

比較例 上記実施例と同じ第2表に示す成分の鋼を冷却条件を変
えて鋳造した。
Comparative Example Steel having the same composition as shown in Table 2 as in the above example was cast under different cooling conditions.

鋳造条件は以下の通りである。The casting conditions are as follows.

スーパーヒート:15℃ 鋳造速度   : 0.13G (m/5in)冷却方
法   ニオ−パルタイプスプレーノズル冷却条件  
 :注水比1.39(1/kg)鋳型下部から、機端ま
での水量密度を第4表に示す。
Superheat: 15℃ Casting speed: 0.13G (m/5in) Cooling method Niopal type spray nozzle cooling conditions
:Water injection ratio: 1.39 (1/kg) The water density from the bottom of the mold to the end of the mold is shown in Table 4.

上記の条件で鋳造を行った際に鋳片表面に熱電対を設置
し測定した鋳片表面温度の結果を第6図に示す、この図
から、矯正点通過時の鋳片表面温度は、 SOO℃を確
保しているが、1150℃から950℃ま〒の冷却速度
は0.87℃/秒(40℃/分)であった・ この鋳片を自然放冷後表面から4s+騰切削して表面観
察した結果、鋳片輻方向の各所にオーステナイトの粒界
に沿った。1膳腸〜1.3層層程度の浅い割れが観察さ
れた。このように矯正点を通過する際の温度を高温に維
持しても、1150℃から1350℃までの間の冷却速
度が20℃/分以上であると1割れの発生を完全に抑制
できない。
Figure 6 shows the results of the slab surface temperature measured by installing a thermocouple on the slab surface when casting was performed under the above conditions. From this figure, the slab surface temperature when passing the straightening point is SOO The cooling rate from 1150°C to 950°C was 0.87°C/sec (40°C/min). After this slab was allowed to cool naturally, it was cut from the surface for 4s+. As a result of surface observation, austenite grain boundaries were observed at various locations along the slab radiation direction. Shallow cracks of about 1 to 1.3 layers were observed. Even if the temperature when passing through the straightening point is maintained at a high temperature in this way, if the cooling rate from 1150°C to 1350°C is 20°C/min or more, the occurrence of one crack cannot be completely suppressed.

第3表 第4表 発明の効果 以上詳細に述べた如く、Sbを0.02〜0.15%含
有する含Sb鋼の連続鋳造において、スーパーヒートを
25℃以下とし、かつ1150〜950℃の領域におけ
る鋳片の冷却速度を25℃以下に制御する本発明法によ
れば、鋳片の表面割れや表面下割れの発生を効果的に軽
減、抑制でき、これにより次工程における圧延前におけ
る鋳片精整手入工程を軽減、省略でき、連続鋳造のメリ
ットを享受しつつ、含sh鋼の安定製造が可能となった
Table 3 Table 4 Effects of the invention As described in detail above, in continuous casting of Sb-containing steel containing 0.02 to 0.15% Sb, the superheat is set to 25°C or less and the temperature is set to 1150 to 950°C. According to the method of the present invention, which controls the cooling rate of the slab in the area below 25°C, it is possible to effectively reduce and suppress the occurrence of surface cracks and subsurface cracks in the slab. It has become possible to reduce and omit the single-side finishing process, and to enjoy the benefits of continuous casting, while stably manufacturing shun-containing steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は含Sb鋼の高温引張試験(グリ−プル試験)の
熱履歴を示すグラフである。 第2図は含Sb鋼の高温引張試験(グリ−プル試験)時
の試験温度と断面絞り値の関係を示すグラフである。 第3図は含Sb鋼の800℃における高温引張試験時の
冷却速度と断面絞り値の関係を示すグラフである。 第4図は含Sb鋼の連続鋳造条件と鋳片表面割れ発生状
況の関係を示すグラフである。 第5図は実施例における鋳片表面温度の履歴を示すグラ
フである。 第6図は比較例における鋳片表面温度の履歴を示すグラ
フである。
FIG. 1 is a graph showing the thermal history of a high temperature tensile test (Greeple test) of Sb-containing steel. FIG. 2 is a graph showing the relationship between test temperature and cross-sectional area of area during a high-temperature tensile test (Greeple test) of Sb-containing steel. FIG. 3 is a graph showing the relationship between cooling rate and cross-sectional area of area during a high-temperature tensile test at 800° C. of Sb-containing steel. FIG. 4 is a graph showing the relationship between the continuous casting conditions of Sb-containing steel and the occurrence of cracks on the slab surface. FIG. 5 is a graph showing the history of slab surface temperature in Examples. FIG. 6 is a graph showing the history of slab surface temperature in a comparative example.

Claims (1)

【特許請求の範囲】[Claims] Sbを0.02〜0.15wt%含有する鋼の連続鋳造
において、溶鋼を鋳型へ注入するときの溶鋼過熱度を2
5℃以下にするとともに、鋳片表面温度が1150〜9
50℃である領域の鋳片表面の冷却速度を20℃/分以
下とすることを特徴とする含Sb鋼の連続鋳造における
表面割れ防止方法。
In continuous casting of steel containing 0.02 to 0.15 wt% Sb, the degree of superheating of the molten steel when injecting it into the mold is set to 2.
5℃ or less, and the surface temperature of the slab is 1150~9
A method for preventing surface cracking in continuous casting of Sb-containing steel, characterized in that the cooling rate of the slab surface in a region of 50°C is 20°C/min or less.
JP2754089A 1989-02-08 1989-02-08 Surface crack prevention method in continuous casting of Sb-containing steel Expired - Lifetime JPH0616919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2754089A JPH0616919B2 (en) 1989-02-08 1989-02-08 Surface crack prevention method in continuous casting of Sb-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2754089A JPH0616919B2 (en) 1989-02-08 1989-02-08 Surface crack prevention method in continuous casting of Sb-containing steel

Publications (2)

Publication Number Publication Date
JPH02207944A true JPH02207944A (en) 1990-08-17
JPH0616919B2 JPH0616919B2 (en) 1994-03-09

Family

ID=12223921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2754089A Expired - Lifetime JPH0616919B2 (en) 1989-02-08 1989-02-08 Surface crack prevention method in continuous casting of Sb-containing steel

Country Status (1)

Country Link
JP (1) JPH0616919B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229799A (en) * 2006-03-03 2007-09-13 Jfe Steel Kk Cooling grid equipment for continuous casting and method for producing continuously cast slab
JP2013154369A (en) * 2012-01-30 2013-08-15 Nippon Steel & Sumitomo Metal Corp Continuous casting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229799A (en) * 2006-03-03 2007-09-13 Jfe Steel Kk Cooling grid equipment for continuous casting and method for producing continuously cast slab
JP4506691B2 (en) * 2006-03-03 2010-07-21 Jfeスチール株式会社 Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP2013154369A (en) * 2012-01-30 2013-08-15 Nippon Steel & Sumitomo Metal Corp Continuous casting method

Also Published As

Publication number Publication date
JPH0616919B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JP6421900B2 (en) Rolled H-section steel and its manufacturing method
US20120237390A1 (en) Martensitic Stainless Steel Produced by a Twin Roll Strip Casting Process and Method for Manufacturing Same
WO2021259376A1 (en) Method for reducing surface cracks of casting blank by using ferrite phase
CN110468334A (en) The uniform plastic mould thickness band steel of section hardness and its process
JP3008825B2 (en) Slab surface crack suppression method
KR100450611B1 (en) A Method for Manufacturing Continuously Cast Strands Having Improved Surface Quality from Martensite Stainless Steel
JPH02207944A (en) Method for preventing surface cracking in continuous casting of sb-containing steel
JPH0344417A (en) Production of thick steel plate for welded structure having excellent internal quality
JPH0565263B2 (en)
JP6149789B2 (en) Steel continuous casting method
JPH0688125A (en) Method for hot-working continuously cast slab and steel ingot
JPH1133688A (en) Method for continuously casting steel
JP2000233266A (en) Production of steel plate having good surface characteristic
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
JPH054169B2 (en)
JPS63168260A (en) Hot working method for continuously cast billet
JP2561476B2 (en) Method for preventing cracking during rapid solidification of Cr-Ni stainless steel or Cr-Ni high alloy steel
KR102175425B1 (en) The Method of Manufacturing Continuous Casted Slab
SU1740450A1 (en) Process for making products from high-chromium iron
JPS62156056A (en) Continuous casting method for low alloy steel
JPH07112563B2 (en) Method for preventing surface cracking of low alloy steel
JP2917236B2 (en) Manufacturing method of 9% Ni steel with excellent low temperature toughness
SU536007A1 (en) Gray cast iron continuous casting method
JPH06246414A (en) Continuous casting of high carbon steel
JPS61193758A (en) Production of hot worked steel material having good surface characteristic