JPH07286977A - X-ray analysis device and x-ray analyzing method - Google Patents

X-ray analysis device and x-ray analyzing method

Info

Publication number
JPH07286977A
JPH07286977A JP10486594A JP10486594A JPH07286977A JP H07286977 A JPH07286977 A JP H07286977A JP 10486594 A JP10486594 A JP 10486594A JP 10486594 A JP10486594 A JP 10486594A JP H07286977 A JPH07286977 A JP H07286977A
Authority
JP
Japan
Prior art keywords
intensity
ray
primary
rays
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10486594A
Other languages
Japanese (ja)
Inventor
Tadashi Uko
忠 宇高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Rigaku Corp
Original Assignee
Toshiba Corp
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Rigaku Industrial Corp filed Critical Toshiba Corp
Priority to JP10486594A priority Critical patent/JPH07286977A/en
Publication of JPH07286977A publication Critical patent/JPH07286977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable accurate analysis to be conducted even if the intensity of primary X-rays is changed by processing the intensity of secondary X-rays by the intensity of primary X-rays, and thereby eliminating the effect of change in the intensity of primary X-rays. CONSTITUTION:Primary X-rays from a X-ray source are diffracted by an artificial lattice 2, and formed into monochromatic light so as to be incident on a specimen 4 at an appropriate incident angle phi, and it is then detected by a detector (transmission type proportion counting tube) 3, so that its intensity is thereby detected. Secondary X-rays generated by the specimen 4 is then detected 6 so as to be detected 8 of its intensity, and a strength ratio with the primary X-rays is computed 9, so that a relative relation between the strength ratio and the incident angle phi is thereby formed 10. An adjuster 5 is so designed that the rotation angle of a specimen table 11 is set to be an incident angle phi most suitable to total reflection based on the strength ratio and the relative relation, and also that the change of the strength of the secondary X-rays with respect to the angle phi can be automatically detected 6. By this constitution, since the strength of the secondary X-rays is changed proportionally with the strength of the primary X-rays even if the latter is changed, a relation between a strength ratio and the concentration of the specimen 4 is not needed, so that correct concentration can thereby be detected at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線分析装置およびX
線分析方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an X-ray analyzer and an X-ray analyzer.
The present invention relates to a line analysis method.

【0002】[0002]

【従来の技術】従来より、たとえば全反射型蛍光X線分
析装置が、試料の表面に付着した不純物を検出する装置
として用いられている。このとき、まず試料に照射され
る1次X線の入射角度を分析対象の試料の主成分に応じ
て適切に設定する必要があり、従来は、あらかじめ図2
(a)に実線Pで示すように、入射角度φと、試料から
の代表的な蛍光X線の強度、たとえば試料がシリコンウ
エハである場合はSi−Kα線の強度ISiとの相関関係
を取っておき、後の分析における入射角度の設定の基準
としていた。
2. Description of the Related Art Conventionally, for example, a total reflection type X-ray fluorescence analyzer has been used as an apparatus for detecting impurities adhering to the surface of a sample. At this time, first, it is necessary to appropriately set the incident angle of the primary X-ray irradiated on the sample according to the main component of the sample to be analyzed.
As indicated by a solid line P in (a), the correlation between the incident angle φ and the intensity of a typical fluorescent X-ray from the sample, for example, the intensity Isi of the Si-Kα line when the sample is a silicon wafer is set aside. , Was used as a reference for setting the incident angle in the later analysis.

【0003】また、試料中の成分分析、たとえば試料が
シリコンウエハで、それに含まれる銅Cuの濃度を測定
する場合において、従来であれば、まずCuの濃度が既
知でかつその濃度が互いに相違する複数の標準試料を用
いて、図3(a)に実線Sで示すような蛍光X線Cu−
Kα線の強度ICuとCuの濃度との濃度曲線を作成して
いた。これを検量線と呼ぶ。そして、分析しようとする
試料からのCu−Kα線の強度ICuと一致する強度をも
つ検量線S上の点HからCuの濃度h(%)を求め、正
しい濃度が得られたとしていた。
Further, in the case of component analysis in a sample, for example, when the sample is a silicon wafer and the concentration of copper Cu contained in the sample is measured, in the conventional case, the concentration of Cu is first known and the concentrations are different from each other. Using a plurality of standard samples, a fluorescent X-ray Cu-as shown by a solid line S in FIG.
A concentration curve of the intensity ICu of the Kα ray and the concentration of Cu was prepared. This is called a calibration curve. Then, the Cu concentration h (%) was obtained from the point H on the calibration curve S having an intensity that matches the intensity ICu of the Cu-Kα ray from the sample to be analyzed, and it was assumed that the correct concentration was obtained.

【0004】[0004]

【発明が解決しようとする課題】ところが実際には、1
次X線の強度は種々の原因で変化し、それに比例して2
次X線である蛍光X線の強度も変化する。したがって、
前記従来の技術での1次X線の試料への入射角度の設定
や試料中の成分分析では、今日要求されるような精密な
分析には十分対応できない。本発明は、前記従来の問題
に鑑みてなされたもので、1次X線の強度が変化して
も、常に精密な分析が可能なX線分析装置およびX線分
析方法を提供することを目的とする。
However, in reality, 1
The intensity of the next X-ray changes due to various causes, and proportionally to 2
The intensity of the fluorescent X-ray which is the next X-ray also changes. Therefore,
The setting of the incident angle of the primary X-ray on the sample and the analysis of the components in the sample in the above-described conventional techniques cannot sufficiently support the precise analysis required today. The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide an X-ray analysis apparatus and an X-ray analysis method that can always perform accurate analysis even if the intensity of primary X-rays changes. And

【0005】[0005]

【課題を解決するための手段および作用】前記目的を達
成するために、本発明に係るX線分析装置は、試料に照
射される1次X線を発生するX線源と、前記1次X線の
強度を計測する第1検出器と、この第1検出器で検出さ
れたX線の強度を求める第1強度検知手段と、試料から
発生する2次X線を検出する第2検出器と、この第2検
出器で検出されたX線の強度を求める第2強度検知手段
と、前記第2強度検知手段で求められた2次X線の強度
を、前記第1強度検知手段で求められた1次X線の強度
によって加工して、前記1次X線の強度変化による影響
を除去するデータ加工手段とを備えている。
In order to achieve the above object, an X-ray analysis apparatus according to the present invention comprises an X-ray source for generating primary X-rays for irradiating a sample, and the primary X-rays. A first detector for measuring the intensity of the X-ray, a first intensity detecting means for obtaining the intensity of the X-ray detected by the first detector, and a second detector for detecting the secondary X-ray generated from the sample The second intensity detecting means for obtaining the intensity of the X-ray detected by the second detector and the intensity of the secondary X-ray obtained by the second intensity detecting means are obtained by the first intensity detecting means. And a data processing means for processing by the intensity of the primary X-rays to remove the influence of the intensity change of the primary X-rays.

【0006】この装置によれば、1次X線の試料への入
射角度設定において、1次X線の強度が変化してもその
影響を受けないように2次X線の強度を加工しておき、
その加工された2次X線の強度に関するデータと、1次
X線の試料への入射角度との相関関係を求めることがで
きる。したがって、この相関関係に基づいて常に最適な
入射角度に設定できる。
According to this apparatus, in setting the incident angle of the primary X-ray on the sample, the intensity of the secondary X-ray is processed so as not to be affected even if the intensity of the primary X-ray changes. Every
It is possible to obtain the correlation between the data on the intensity of the processed secondary X-ray and the incident angle of the primary X-ray on the sample. Therefore, the optimum incident angle can always be set based on this correlation.

【0007】また、試料中の成分分析において、1次X
線の強度が変化してもその影響を受けないように2次X
線の強度を加工しておき、その加工された2次X線の強
度に関するデータと、測定対象成分の濃度との濃度曲線
を作成して検量線とすることができる。したがって、こ
の検量線に基づいて常に正しい成分の濃度が得られ、補
正の必要もない。また、エスケープピークの発生が問題
となる場合においても、この検量線に基づいて、1次X
線の強度変化の影響を受けずに、エスケープピークによ
る測定誤差を正確に解消できる。
In the analysis of the components in the sample, the primary X
Secondary X so that it is not affected even if the intensity of the line changes
It is possible to process the intensity of the line and prepare a concentration curve of the data regarding the intensity of the processed secondary X-ray and the concentration of the component to be measured to obtain a calibration curve. Therefore, the correct component concentrations can always be obtained based on this calibration curve, and no correction is necessary. Even when the occurrence of the escape peak is a problem, the primary X
The measurement error due to the escape peak can be accurately eliminated without being affected by the change in the line intensity.

【0008】前記第1検出器として、前記X線源から試
料に至る光路に設置されて、1次X線を透過させながら
その強度を検出する透過型の検出器を用いることができ
る。この透過型の検出器として、前記1次X線の吸収率
が低い放電媒体を有する比例計数管を用いるのが好まし
い。このような比例計数管を用いた場合、比例計数管を
使用しないときでも、そこでの1次X線の損失を避ける
ために1次X線の光路から移動させる必要がない。よっ
て、比例計数管を光路に設置したままでよいので、X線
分析装置の構造が簡単になる。さらに、このような放電
媒体を有する比例計数管には、分析の障害となる1次X
線中の高エネルギー成分や低エネルギー成分を吸収する
フィルタ効果があるので、人工格子では不十分な1次X
線の単色化を補って、より高い精度の分析が可能にな
る。
As the first detector, it is possible to use a transmission type detector which is installed in the optical path from the X-ray source to the sample and detects the intensity of the primary X-ray while transmitting it. As this transmission type detector, it is preferable to use a proportional counter having a discharge medium having a low primary X-ray absorption rate. When such a proportional counter is used, it is not necessary to move it from the optical path of the primary X-ray in order to avoid loss of the primary X-ray there even when the proportional counter is not used. Therefore, since the proportional counter can be left installed in the optical path, the structure of the X-ray analyzer can be simplified. In addition, the proportional counter with such a discharge medium has a primary X
Since there is a filter effect that absorbs high-energy components and low-energy components in the line, the first-order X that is not sufficient for artificial lattices
Higher precision analysis is possible by supplementing the line monochromatization.

【0009】前記放電媒体の1次X線に対する吸収率と
しては、5%以上で20%以下(5〜20%)が好まし
く、より好ましくは5〜15%、さらに好ましくは5〜
10%である。前記1次X線としてAu−Lα線または
Pt−Lα線を用いる場合、前記放電媒体としては、ク
リプトンガスまたはネオンガスを用いることができる。
一般に比例係数管は、計数効率を上げるために入射X線
の吸収率の大きいアルゴンガスやキセノンガスのような
放電媒体を使用する。これに対し、本発明では、1次X
線の透過量を大きくするために、常識とは逆に、1次X
線の吸収率の低いものを使用している。
The absorptance of the discharge medium for primary X-rays is preferably 5% or more and 20% or less (5 to 20%), more preferably 5 to 15%, and further preferably 5 to 5.
It is 10%. When Au-Lα rays or Pt-Lα rays are used as the primary X-rays, krypton gas or neon gas can be used as the discharge medium.
Generally, a proportional coefficient tube uses a discharge medium such as argon gas or xenon gas, which has a large absorption rate of incident X-rays, in order to improve counting efficiency. On the other hand, in the present invention, the primary X
Contrary to common sense, in order to increase the amount of transmission of rays, the primary X
A line with a low absorption rate is used.

【0010】また、前記データ加工手段としては、前記
第2強度検知手段で求められた2次X線の強度と、前記
第1強度検出手段で検出された1次X線の強度との強度
比を算出する強度比算出手段を用いることができる。
As the data processing means, the intensity ratio between the intensity of the secondary X-ray obtained by the second intensity detecting means and the intensity of the primary X-ray detected by the first intensity detecting means. It is possible to use intensity ratio calculation means for calculating

【0011】さらに、本発明の好ましい実施例において
は、前記第2強度検知手段による2次X線の強度検知終
了ごとに、前記1次X線の試料への入射角度を調整する
調整器と、前記入射角度と前記強度比算出手段で算出さ
れた強度比との相関関係を求める相関作成手段とが設け
られている。これら調整器および相関作成手段によれ
ば、前述した入射角度設定のための相関関係作成および
入射角度設定が自動的に行える。
Further, in a preferred embodiment of the present invention, an adjuster for adjusting the incident angle of the primary X-ray on the sample each time the secondary X-ray intensity detection by the second intensity detection means is completed, Correlation creating means for obtaining a correlation between the incident angle and the intensity ratio calculated by the intensity ratio calculating means is provided. According to the adjuster and the correlation creating means, the correlation creation and the incident angle setting for the above-described incident angle setting can be automatically performed.

【0012】本発明に係るX線分析方法においては、ま
ず、X線源から発生させた1次X線を透過させながらそ
の強度を検出して試料に照射し、前記1次X線の試料へ
の入射角度を調整しながら、試料から発生する2次X線
を検出してその2次X線の強度を求める。次に、前記求
められた2次X線の強度と、前記検出された1次X線の
強度との比を算出し、前記1次X線の入射角度と前記算
出された強度比との相関関係を予め求めておく。そし
て、この相関関係に基づいて、分析対象の試料について
前記のように算出された強度比から1次X線の入射角度
を設定する。このX線分析方法によれば、前述した入射
角度設定のための相関関係作成および入射角度設定が自
動的に行える。
In the X-ray analysis method according to the present invention, first, the intensity of the primary X-ray generated from the X-ray source is detected while the primary X-ray is transmitted and the sample is irradiated with the primary X-ray. The secondary X-ray generated from the sample is detected and the intensity of the secondary X-ray is calculated while adjusting the incident angle of. Next, a ratio between the obtained intensity of the secondary X-ray and the detected intensity of the primary X-ray is calculated, and the correlation between the incident angle of the primary X-ray and the calculated intensity ratio. Find the relationship in advance. Then, based on this correlation, the incident angle of the primary X-ray is set from the intensity ratio calculated as described above for the sample to be analyzed. According to this X-ray analysis method, the correlation creation and the incident angle setting for the above-described incident angle setting can be automatically performed.

【0013】[0013]

【実施例】以下、本発明の実施例を図面にしたがって説
明する。図1に示すように、本実施例に係るX線分析装
置は、まず、X線源1を有している。このX線源1から
発生した試料4に対しての1次X線、たとえば金(A
u)−Lβ線は、この1次X線が適切な角度をもって入
射するように設置された人工格子2で回折、単色化され
る。回折後の1次X線は、その光路に設置された第1検
出器3により検出される。この第1検出器3として、こ
の実施例では、クリプトンガスを放電媒体とする透過型
の比例計数管3が用いられている。この比例計数管3に
より検出されたX線の強度は、第1強度検知手段7によ
って求められる。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the X-ray analysis apparatus according to this embodiment first has an X-ray source 1. A primary X-ray, for example, gold (A
u) -Lβ rays are diffracted and monochromatic by the artificial lattice 2 installed so that the primary X-rays are incident at an appropriate angle. The diffracted first-order X-rays are detected by the first detector 3 installed in the optical path. In this embodiment, as the first detector 3, a transmissive proportional counter 3 using krypton gas as a discharge medium is used. The intensity of the X-ray detected by the proportional counter 3 is obtained by the first intensity detecting means 7.

【0014】ここで、クリプトンガスを放電媒体とした
比例計数管3を用いたので、特に1次X線中のAu−L
α,Lβ,Lγ線に対して吸収率が10%程度と極めて
低く、比例計数管3を使用しない時に、そこでの1次X
線の損失を避けるために1次X線の光路から移動させる
必要がない。よって、比例計数管3を光路に設置したま
までよいので、X線分析装置の構造が簡単になる。さら
に、クリプトンガスを放電媒体とした比例計数管3に
は、分析の障害となる1次X線中の高エネルギー成分や
低エネルギー成分を吸収するフィルタ効果があるので、
人工格子2では不十分な1次X線の単色化を補って、よ
り高い精度の分析が可能になる。
Here, since the proportional counter 3 using krypton gas as the discharge medium is used, the Au-L in the primary X-ray is particularly used.
Absorption rate of α, Lβ, Lγ rays is extremely low at about 10%, and when the proportional counter 3 is not used, the primary X
It is not necessary to move from the optical path of the primary X-rays to avoid line losses. Therefore, since the proportional counter 3 can be left installed in the optical path, the structure of the X-ray analyzer can be simplified. Furthermore, since the proportional counter tube 3 using krypton gas as the discharge medium has a filter effect of absorbing high energy components and low energy components in the primary X-rays which hinder the analysis,
The artificial lattice 2 compensates for the insufficient monochromaticity of the primary X-rays and enables higher-precision analysis.

【0015】比例計数管3の放電媒体の1次X線に対す
る吸収率は、5〜20%が好ましく、より好ましくは5
〜15%、さらに好ましくは5〜10%である。一般に
比例係数管3は、計数効率を上げるために入射X線の吸
収率の大きいアルゴンガスやヘリウムガスのような放電
媒体を使用する。これに対し、本発明では、1次X線の
透過量を大きくするために、常識とは逆に、1次X線の
吸収率の低いものを使用している。
The absorption rate of the discharge medium of the proportional counter tube 3 for the primary X-rays is preferably 5 to 20%, more preferably 5%.
-15%, more preferably 5-10%. In general, the proportional coefficient tube 3 uses a discharge medium such as argon gas or helium gas, which has a large absorption rate of incident X-rays, in order to improve counting efficiency. On the other hand, in the present invention, in order to increase the amount of transmitted primary X-rays, contrary to common sense, a material having a low primary X-ray absorption rate is used.

【0016】その後1次X線は、入射角度φをもって試
料4に照射される。試料4から発生した2次X線は、試
料4に相対して適切な位置に設置された第2検出器6に
よって検出される。この第2検出器6により検出された
X線の強度は、第2強度検知手段8によって求められ
る。この第2強度検知手段8による2次X線の強度検知
終了ごとに、試料4を固定した試料台11が調整器5に
よって回転駆動されて前記1次X線の入射角度φを調整
する。この調整器5はステップモータのような駆動機を
内蔵しており、一定量ずつ試料台11を回転させる。前
記第2強度検知手段8で求められた2次X線の強度と、
前記第1強度検知手段7で求められた1次X線の強度と
の強度比が、データ加工手段の一例である強度比算出手
段9によって算出される。この強度比と、前記入射角度
φとの相関関係が相関作成手段10によって求められ
る。
After that, the primary X-ray is irradiated onto the sample 4 at an incident angle φ. The secondary X-ray generated from the sample 4 is detected by the second detector 6 installed at an appropriate position relative to the sample 4. The intensity of the X-ray detected by the second detector 6 is obtained by the second intensity detecting means 8. Every time the detection of the intensity of the secondary X-ray by the second intensity detecting means 8 is completed, the sample stage 11 on which the sample 4 is fixed is rotationally driven by the adjuster 5 to adjust the incident angle φ of the primary X-ray. The adjuster 5 has a built-in drive such as a step motor, and rotates the sample table 11 by a fixed amount. The intensity of the secondary X-ray obtained by the second intensity detecting means 8,
The intensity ratio with the intensity of the primary X-ray obtained by the first intensity detecting means 7 is calculated by the intensity ratio calculating means 9 which is an example of the data processing means. The correlation between the intensity ratio and the incident angle φ is obtained by the correlation creating means 10.

【0017】こうして、前記調整器5および相関作成手
段10により、入射角度φの変化に対する2次X線強度
の変化を自動的に求めることができる。前記調整器5
は、求められた相関関係に基づいて、試料4について前
記強度比算出手段9で算出された強度比から、全反射に
最適な入射角度φとなるように試料台11の回転角度を
設定する。
In this way, the change of the secondary X-ray intensity with respect to the change of the incident angle φ can be automatically obtained by the adjuster 5 and the correlation creating means 10. The regulator 5
On the basis of the obtained correlation, the rotation angle of the sample table 11 is set so that the incident angle φ optimum for total reflection is obtained from the intensity ratio calculated by the intensity ratio calculating means 9 for the sample 4.

【0018】つぎに、前記構成の動作を説明する。ま
ず、全反射型蛍光X線分析装置等においては、入射角度
φを分析対象の試料4の主成分に応じて適切に設定する
必要がある。なぜならば、入射角度φが大きすぎると、
全反射が起こらず、試料4からの分析しようとする蛍光
X線以外の不要な散乱X線が第2検出器6に多量に入射
して精密な分析が困難になり、また、入射角度φが小さ
すぎると、試料4に入射した1次X線がほとんど反射さ
れてしまい、分析するのに十分な強度の蛍光X線が得ら
れないからである。
Next, the operation of the above configuration will be described. First, in a total reflection X-ray fluorescence analyzer or the like, it is necessary to appropriately set the incident angle φ according to the main component of the sample 4 to be analyzed. Because if the incident angle φ is too large,
Total reflection does not occur, unnecessary scattered X-rays other than the fluorescent X-rays to be analyzed from the sample 4 are incident on the second detector 6 in a large amount, and precise analysis becomes difficult. This is because if it is too small, most of the primary X-rays incident on the sample 4 are reflected and fluorescent X-rays of sufficient intensity for analysis cannot be obtained.

【0019】そこで従来は、あらかじめ図2(a)に実
線Pで示すように、入射角度φと、第2強度検知手段8
(図1)で求められる試料4(図1)からの代表的な蛍
光X線の強度、たとえば試料4がシリコンウエハである
場合はSi−Kα線の強度ISiとの相関関係を取ってい
た。実線P上で、A点は前述の入射角度φが大きすぎる
状態、B点は小さすぎる状態、C点は適切に設定された
状態である。したがって、この相関作成後、また別のシ
リコンウエハを分析しようとする場合は、そのシリコン
ウエハから発生するSi−Kα線の強度ISiがC点にお
けるISiに一致するように入射角度φを設定して、全反
射が得られる最適な入射角度φc に設定されたとしてい
た。
Therefore, conventionally, as shown by a solid line P in FIG. 2 (a), the incident angle φ and the second intensity detecting means 8 are previously set.
A typical fluorescent X-ray intensity from the sample 4 (FIG. 1) obtained in (FIG. 1), for example, in the case where the sample 4 is a silicon wafer, was correlated with the intensity ISi of Si—Kα ray. On the solid line P, the point A is in a state where the incident angle φ is too large, the point B is in a too small state, and the point C is in a properly set state. Therefore, when another silicon wafer is to be analyzed after this correlation is created, the incident angle φ is set so that the intensity Isi of the Si-Kα ray generated from the silicon wafer coincides with the Isi at the point C. , And that the optimum incident angle φc at which total reflection is obtained was set.

【0020】前記従来の入射角度φの設定方法は、試料
4からの2次X線の強度が1次X線の強度に比例して変
化することから分かるように、1次X線の強度が常に一
定であることが前提になっている。ところが実際には、
開放型X線管等のX線源1(図1)では、ターゲットが
長時間の電子衝突に耐えるよう冷却のため回転したり、
フィラメントの成分がターゲットに蒸着されたり、また
はX線源1の置かれる空間の真空度が不安定であったり
するため、1次X線の強度は不安定である。
In the conventional method of setting the incident angle φ, as can be seen from the fact that the intensity of the secondary X-ray from the sample 4 changes in proportion to the intensity of the primary X-ray, the intensity of the primary X-ray is It is assumed that it is always constant. However, in reality,
In an X-ray source 1 (FIG. 1) such as an open X-ray tube, the target rotates for cooling to withstand a long-term electron collision,
The intensity of the primary X-rays is unstable because the filament components are deposited on the target or the vacuum degree of the space where the X-ray source 1 is placed is unstable.

【0021】仮に1次X線の強度が低下したとすると、
試料4からの2次X線の強度もそれに比例して低下する
ため、前記相関関係も実際には図2(a)中の点線Qに
示すように変わっている。にもかかわらず従来のよう
に、分析しようとする場合の強度ISiがC点におけるI
Siに一致するように入射角度φを設定すると、点線Q上
のD点における入射角度φd に設定されてしまい、最適
な入射角度、すなわち実線P上のC点における入射角度
φc に設定されない。したがって前記従来の入射角度φ
の設定方法では、今日要求されるような精密な分析には
十分対応できない。
If the intensity of the primary X-ray is lowered,
Since the intensity of the secondary X-ray from the sample 4 also decreases in proportion thereto, the correlation actually changes as shown by the dotted line Q in FIG. 2 (a). Nevertheless, as in the conventional case, the strength Isi at the time of analysis is I at the C point.
When the incident angle φ is set so as to match Si, the incident angle φd at the point D on the dotted line Q is set, and the optimum incident angle, that is, the incident angle φc at the point C on the solid line P is not set. Therefore, the conventional incident angle φ
The setting method of does not adequately support the precise analysis required today.

【0022】前記問題点に鑑み本実施例では、第2強度
検知手段8(図1)で求められた2次X線の強度と、第
1強度検知手段7(図1)で求められた1次X線の強度
とから、強度比算出手段9(図1)により、2次X線の
強度と1次X線の強度との強度比、たとえば試料4がシ
リコンウエハである場合はSi−Kα線の強度ISiと1
次X線の強度IAuとの強度比ISi/IAuを算出して、こ
の強度比ISi/IAuと入射角度φとの相関関係を相関作
成手段10(図1)によって求めることとした。
In view of the above problems, in this embodiment, the secondary X-ray intensity obtained by the second intensity detecting means 8 (FIG. 1) and the intensity obtained by the first intensity detecting means 7 (FIG. 1) Based on the intensity of the next X-ray, the intensity ratio calculating means 9 (FIG. 1) causes the intensity ratio of the intensity of the secondary X-ray to the intensity of the primary X-ray, for example, Si-Kα when the sample 4 is a silicon wafer. Line Strength Isi and 1
The intensity ratio Isi / IAu of the next X-ray intensity IAu is calculated, and the correlation between this intensity ratio Isi / IAu and the incident angle φ is determined by the correlation creating means 10 (FIG. 1).

【0023】図2(b)の実線Rにこの相関関係を示
す。実線R上で、E点は前述の入射角度φが大きすぎる
状態、F点は小さすぎる状態、G点は適切に設定された
状態である。これを求めておけば、たとえその後1次X
線の強度が変化しても、試料4からの2次X線の強度も
それに比例して変化するために前記強度比ISi/IAuと
入射角度φとの相関関係は不変である。したがって、分
析しようとする場合の強度比ISi/IAuが実線R上のG
点におけるISi/IAuに一致するように入射角度φを設
定すれば、常に最適な入射角度φg に設定される。これ
ら調整器および相関作成手段によれば、前述した入射角
度設定のための相関関係作成および入射角度設定が自動
的に行える。
The solid line R in FIG. 2B shows this correlation. On the solid line R, point E is a state where the incident angle φ is too large, point F is too small, and point G is a properly set state. If you ask for this, then even the first X
Even if the intensity of the line changes, the intensity of the secondary X-ray from the sample 4 also changes in proportion to it, so that the correlation between the intensity ratio ISi / IAu and the incident angle φ remains unchanged. Therefore, the intensity ratio ISi / IAu in the case of trying to analyze is G on the solid line R.
If the incident angle φ is set so as to match ISi / IAu at the point, the optimum incident angle φg is always set. According to the adjuster and the correlation creating means, the correlation creation and the incident angle setting for the above-described incident angle setting can be automatically performed.

【0024】次に、試料4(図1)中の成分分析、たと
えば試料4がシリコンウエハで、それに含まれる銅Cu
の濃度を測定する場合における動作について説明する。
従来であれば、まずCuの濃度が既知でかつその濃度が
互いに相違する複数の標準試料を用いて、図3(a)に
実線Sで示すような2次X線Cu−Kα線の強度ICuと
Cuの濃度との濃度曲線を作成していた。これを検量線
と呼ぶ。そして、分析しようとする試料4からのCu−
Kα線の強度ICuと一致する強度をもつ検量線S上の点
HからCuの濃度h(%)を求め、正しい濃度が得られ
たとしていた。
Next, the component analysis in the sample 4 (FIG. 1), for example, the sample 4 is a silicon wafer and copper Cu contained therein
The operation in the case of measuring the concentration will be described.
In the prior art, first, using a plurality of standard samples having known Cu concentrations and different concentrations, the intensity ICu of the secondary X-ray Cu-Kα line as shown by the solid line S in FIG. And a concentration curve of Cu concentration was created. This is called a calibration curve. And Cu- from the sample 4 to be analyzed
The concentration h (%) of Cu was determined from the point H on the calibration curve S having the intensity corresponding to the intensity I Cu of the Kα ray, and it was assumed that the correct concentration was obtained.

【0025】ところが、前述したように実際には1次X
線の強度は不安定であり、仮に1次X線の強度が低下し
たとすると、試料4からの2次X線の強度もそれに比例
して低下するため、前記検量線も実際には図3(a)中
の点線Tに示すように変わっている。にもかかわらず試
料4からのCu−Kα線の強度ICuと一致する強度をも
つ検量線S上の点HからCuの濃度h(%)を求める
と、正しい濃度、すなわち変動後の検量線T上のI点に
おける濃度i(%)が得られない。したがって前記従来
の成分分析方法では、今日要求されるような精密な分析
には十分対応できない。また、精密な分析をするために
は、検量線Sを作成した時の複数の標準試料を用いて、
点線に示した補正された検量線Tを分析のたびに作成す
る必要がある。
However, as described above, the primary X
The intensity of the X-ray is unstable, and if the intensity of the primary X-ray is reduced, the intensity of the secondary X-ray from the sample 4 is also reduced in proportion to it, so that the calibration curve is actually shown in FIG. It is changed as shown by the dotted line T in (a). Nevertheless, when the Cu concentration h (%) is obtained from the point H on the calibration curve S having the intensity I Cu of the Cu-Kα ray from the sample 4, the correct concentration, that is, the calibration curve T after the fluctuation is obtained. The density i (%) at the point I above cannot be obtained. Therefore, the above-mentioned conventional component analysis method cannot sufficiently deal with the precise analysis required today. In addition, in order to perform a precise analysis, using a plurality of standard samples when the calibration curve S was created,
The corrected calibration curve T shown by the dotted line needs to be created for each analysis.

【0026】前記問題点に鑑み本実施例では、第2強度
検知手段8(図1)で求められた2次X線の強度と、第
1強度検知手段7(図1)で求められた1次X線の強度
とから、強度比算出手段9(図1)により、2次X線の
強度と1次X線の強度との強度比、たとえば試料4がシ
リコンウエハでそれに含まれる銅Cuの濃度を測定する
場合には、試料4からのCu−Kα線の強度ICuと1次
X線の強度IAuとの強度比ICu/IAuを算出し、この強
度比ICu/IAuとCuの濃度との濃度曲線を作成して検
量線とすることとした。
In view of the above problems, in this embodiment, the intensity of the secondary X-ray obtained by the second intensity detecting means 8 (FIG. 1) and the intensity of the secondary X-ray obtained by the first intensity detecting means 7 (FIG. 1) Based on the intensity of the next X-ray, the intensity ratio calculating means 9 (FIG. 1) calculates the intensity ratio of the intensity of the secondary X-ray and the intensity of the primary X-ray, for example, the sample 4 is a silicon wafer and is made of copper Cu. When measuring the concentration, the intensity ratio ICu / IAu between the intensity ICu of the Cu-Kα ray and the intensity IAu of the primary X-ray from the sample 4 is calculated, and the intensity ratio ICu / IAu and the concentration of Cu are calculated. A concentration curve was created and used as a calibration curve.

【0027】図3(b)に実線でこの検量線Uを示す。
これを求めておけば、たとえその後1次X線の強度が変
化しても、試料4からの2次X線の強度もそれに比例し
て変化するため前記強度比ICu/IAuとCuの濃度との
関係は不変である。したがって、分析しようとする場合
の強度比ICu/IAuと一致する強度比をもつ検量線U上
の点Jから、常に正しいCuの濃度j(%)が得られ、
補正の必要もない。
This calibration curve U is shown by a solid line in FIG.
If this is determined, even if the intensity of the primary X-ray changes thereafter, the intensity of the secondary X-ray from the sample 4 also changes in proportion to it, so that the intensity ratio ICu / IAu and the concentration of Cu are The relationship is constant. Therefore, the correct Cu concentration j (%) is always obtained from the point J on the calibration curve U having the intensity ratio that matches the intensity ratio ICu / IAu in the case of analysis.
There is no need for correction.

【0028】次に、本実施例をエスケープピークによる
測定誤差の解消に適用した場合について説明する。たと
えば、1次X線にAu−Lα線を用いてシリコンウエハ
に含まれる銅Cuの濃度を測定する場合、試料4(図
1)で散乱したAu−Lα線が第2検出器6(図1)に
入射し、第2検出器6がたとえば半導体検出器でシリコ
ンリチウム単結晶を用いている場合、そのシリコンを励
起しSi−Kα線を発生してエネルギを失い、その結
果、いわゆるエスケープピークが現れる。このエスケー
プピークのエネルギは、Au−Lα線のエネルギ(9.712
kev)からSi−Kα線のエネルギ(1.739kev)を減じた
値、7.973kevになり、測定すべきCu−Kα線( エネル
ギ8.04kev)と判別がつきにくい。すなわち、第2強度検
知手段8(図1)で得られる試料4からのCu−Kα線
の強度ICuに、エスケープピークの強度もみかけ上含ま
れてしまうことになる。
Next, the case where this embodiment is applied to eliminate the measurement error due to the escape peak will be described. For example, when the concentration of copper Cu contained in the silicon wafer is measured by using Au-Lα ray as the primary X-ray, the Au-Lα ray scattered by the sample 4 (FIG. 1) is the second detector 6 (FIG. 1). ) And the second detector 6 is, for example, a semiconductor detector using a silicon-lithium single crystal, it excites the silicon to generate Si-Kα rays and loses energy, resulting in a so-called escape peak. appear. The energy of this escape peak is the energy of the Au-Lα line (9.712
The value obtained by subtracting the energy (1.739 kev) of Si-Kα ray from kev is 7.973 kev, which is difficult to distinguish from the Cu-Kα ray (energy 8.04 kev) to be measured. That is, the intensity I Cu of the Cu—Kα ray from the sample 4 obtained by the second intensity detecting means 8 (FIG. 1) apparently includes the intensity of the escape peak.

【0029】そこで、測定されたCu−Kα線付近のX
線強度(真のCu−Kα線の強度にエスケープピークの
強度が加わったもの)から、エスケープピークの強度を
差し引いて、Cu−Kα線の強度を求めている。ここ
で、1次X線Au−Lα線の強度が変化すると、これに
比例して試料4での散乱X線の強度、ひいては差し引く
べきエスケープピークの強度も変化する。よって、Cu
を含んでいない試料を用いて、エスケープピークの強度
と散乱X線の強度とを第2強度検知手段8で求めてそれ
らの比例関係を知っておけば、Cuの濃度が未知の試料
においても、第2強度検知手段8で散乱X線の強度を求
め、前記比例関係からエスケープピークの強度を求める
ことができる。そして、第2強度検知手段8で求められ
るCu−Kα線付近のX線強度からそのエスケープピー
クの強度を差し引いて、真のCu−Kα線の強度を求め
ることもできるが、従来の図3(a)のような検量線で
は、1次X線Au−Lα線の強度が変化していれば、前
記真のCu−Kα線の強度を当てはめるべき検量線も変
化している。よって、エスケープピークによる測定誤差
を正確に解消できない。
Therefore, X near the measured Cu-Kα ray
The intensity of the escape peak is subtracted from the line intensity (the intensity of the true Cu-Kα line plus the intensity of the escape peak) to obtain the intensity of the Cu-Kα line. Here, when the intensity of the primary X-ray Au-Lα ray changes, the intensity of the scattered X-ray in the sample 4, and thus the intensity of the escape peak to be subtracted, also changes in proportion to this. Therefore, Cu
If the intensity of the escape peak and the intensity of the scattered X-ray are obtained by the second intensity detecting means 8 using a sample that does not contain, and the proportional relationship between them is known, even in a sample in which the Cu concentration is unknown, The intensity of the scattered X-ray can be obtained by the second intensity detecting means 8 and the intensity of the escape peak can be obtained from the proportional relationship. Then, the intensity of the escape peak can be subtracted from the X-ray intensity in the vicinity of the Cu-Kα line obtained by the second intensity detection means 8 to obtain the true intensity of the Cu-Kα line, but it is possible to obtain the intensity of the conventional Cu-Kα line as shown in FIG. In the calibration curve as shown in a), if the intensity of the primary X-ray Au-Lα ray changes, the calibration curve to which the intensity of the true Cu-Kα ray should be applied also changes. Therefore, the measurement error due to the escape peak cannot be accurately eliminated.

【0030】前記問題点に鑑み、本実施例では以下のよ
うに、エスケープピークによる測定誤差を、1次X線A
u−Lα線の強度変化の影響を受けずに、正確に解消で
きるようにした。まず、Cuを含んでいない試料を用い
て、第2強度検知手段8(図1)で前記散乱X線Au−
Lα線の強度ISCを求め、第1強度検知手段7で求めら
れた1次X線Au−Lα線の強度IAuとの強度比ISC/
IAuを強度比算出手段9で算出する。また、これと並行
して第2強度検知手段8でエスケープピークの強度IEP
を求め、第1強度検知手段7で求められた1次X線Au
−Lα線の強度IAuとの強度比IEP/IAuを強度比算出
手段9で算出する。そして、これらの強度比ISC/IA
u,IEP/IAuの比例関係、すなわち相関を求める。こ
の相関を図4の実線Vに示す。
In view of the above-mentioned problems, in the present embodiment, the measurement error due to the escape peak is determined as follows by the primary X-ray A
It has been made possible to accurately solve the problem without being affected by the intensity change of the u-Lα ray. First, using the sample containing no Cu, the scattered X-ray Au − was detected by the second intensity detecting means 8 (FIG. 1).
The intensity ISC of the Lα ray is obtained, and the intensity ratio ISC / the intensity XA of the primary X-ray Au-Lα ray obtained by the first intensity detecting means 7 is calculated.
IAu is calculated by the intensity ratio calculation means 9. In parallel with this, the intensity IEP of the escape peak is detected by the second intensity detector 8.
And the primary X-ray Au obtained by the first intensity detecting means 7
The intensity ratio calculation means 9 calculates the intensity ratio IEP / IAu with respect to the intensity IAu of the −Lα line. And these intensity ratio ISC / IA
A proportional relationship between u and IEP / IAu, that is, a correlation is obtained. This correlation is shown by the solid line V in FIG.

【0031】この相関線を求める際に、前記Cuを含ん
でいない試料、たとえば半導体ウエハをその主面に垂直
な軸まわりに回転させることにより、散乱X線の強度I
SCを変化させる。つまり、ウエハを回転させると、特定
の回転位置で1次X線Au−Lα線の回折線が生じ、こ
れが散乱X線の一種として第2検出器6に入射され、散
乱X線の強度ISCを増大させる。こうして得られた複数
の異なるISCについてIEPを測定し、その測定点の近傍
を通る直線を最小2乗法で求めて相関線とする。
In obtaining the correlation line, the intensity of scattered X-rays I is obtained by rotating the sample containing no Cu, for example, a semiconductor wafer around an axis perpendicular to its main surface.
Change SC. That is, when the wafer is rotated, a diffraction line of the primary X-ray Au-Lα line is generated at a specific rotation position, and this is incident on the second detector 6 as a kind of scattered X-ray, and the intensity ISC of the scattered X-ray is changed. Increase. IEPs are measured for a plurality of different ISCs obtained in this way, and a straight line passing through the vicinity of the measurement points is obtained by the least-squares method and used as a correlation line.

【0032】さて、Cuの濃度が未知の試料において、
強度比算出手段9(図1)で前記強度比ISC/IAuが算
出されると、図4において、それに相当する強度比をも
つ実線V上の点Kから、エスケープピークの強度IEPと
1次X線Au−Lα線の強度IAuとの強度比IEP/IAu
がkと読み取れる。そこで、図3(b)において、強度
比算出手段9で算出されたCu−Kα線付近のX線強度
Ix (真のCu−Kα線の強度ICuにエスケープピーク
の強度IEPが加わったもの)と1次X線Au−Lα線の
強度IAuとの強度比IX /IAuからkを差し引いたもの
を、正しい強度比ICu/IAuとして検量線Uに当てはめ
れば、正しいCuの濃度m(%)が得られる。よって、
本実施例では、エスケープピークによる測定誤差を、1
次X線の強度変化の影響を受けずに、正確に解消でき
る。
Now, in a sample whose Cu concentration is unknown,
When the intensity ratio ISC / IAu is calculated by the intensity ratio calculating means 9 (FIG. 1), the intensity IEP of the escape peak and the primary X are calculated from the point K on the solid line V having the intensity ratio corresponding to it in FIG. Intensity ratio IEP / IAu of intensity Au-Lα ray to intensity IAu
Can be read as k. Therefore, in FIG. 3B, the X-ray intensity Ix in the vicinity of the Cu-Kα line calculated by the intensity ratio calculating means 9 (the intensity IEP of the escape peak added to the intensity ICu of the true Cu-Kα line) If the value obtained by subtracting k from the intensity ratio IX / IAu of the intensity of the primary X-ray Au-Lα ray to the intensity IAu is applied to the calibration curve U as the correct intensity ratio ICu / IAu, the correct Cu concentration m (%) is obtained. can get. Therefore,
In this embodiment, the measurement error due to the escape peak is 1
It can be resolved accurately without being affected by the intensity change of the next X-ray.

【0033】図1に示した実施例において、クリプトン
ガスを放電媒体とした比例計数管3は、Au−Lα,L
β,Lγ線ばかりでなく、白金(Pt)−Lα,Lβ,
Lγ線に対する吸収率も10%程度と極めて低い。した
がって、この比例計数管3は、1次X線がPtである場
合にも利用できる。
In the embodiment shown in FIG. 1, the proportional counter 3 using krypton gas as the discharge medium is Au-Lα, L.
Not only β, Lγ rays, but also platinum (Pt) -Lα, Lβ,
The absorption rate for Lγ rays is also extremely low at about 10%. Therefore, the proportional counter 3 can be used even when the primary X-ray is Pt.

【0034】また、ネオンガスを放電媒体とした比例計
数管も、Au−Lα,Lβ,Lγ線およびPt−Lα,
Lβ,Lγ線に対する吸収率が10%程度と極めて低い
ので、前記比例計数管3として好ましく用いることがで
きる。
A proportional counter using neon gas as a discharge medium is also used for Au-Lα, Lβ, Lγ rays and Pt-Lα,
Since the absorption rate for Lβ and Lγ rays is extremely low at about 10%, it can be preferably used as the proportional counter 3.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すX線分析装置の概略構
成図である。
FIG. 1 is a schematic configuration diagram of an X-ray analysis apparatus showing an embodiment of the present invention.

【図2】従来および本発明における入射角度設定のため
の相関関係図である。
FIG. 2 is a correlation diagram for setting an incident angle in the related art and the present invention.

【図3】従来および本発明における銅の濃度測定のため
の検量線を示す図である。
FIG. 3 is a diagram showing a calibration curve for copper concentration measurement in the conventional method and the present invention.

【図4】本発明におけるエスケープピークによる測定誤
差解消のための相関関係図である。
FIG. 4 is a correlation diagram for eliminating a measurement error due to an escape peak in the present invention.

【符号の説明】[Explanation of symbols]

1…X線源、3…第1検出器、4…試料、5…調整器、
6…第2検出器、7…第1強度検知手段、8…第2強度
検知手段、9…強度比算出手段(データ加工手段)、1
0…相関作成手段、φ…入射角度。
1 ... X-ray source, 3 ... First detector, 4 ... Sample, 5 ... Adjuster,
6 ... 2nd detector, 7 ... 1st intensity detection means, 8 ... 2nd intensity detection means, 9 ... intensity ratio calculation means (data processing means), 1
0 ... Correlation creating means, φ ... Incident angle.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 試料に照射される1次X線を発生するX
線源と、 前記1次X線の強度を計測する第1検出器と、 この第1検出器で検出されたX線の強度を求める第1強
度検知手段と、 試料から発生する2次X線を検出する第2検出器と、 この第2検出器で検出されたX線の強度を求める第2強
度検知手段と、 前記第2強度検知手段で求められた2次X線の強度を、
前記第1強度検知手段で求められた1次X線の強度によ
って加工して、前記1次X線の強度変化による影響を除
去するデータ加工手段とを備えたX線分析装置。
1. An X generating a primary X-ray that is irradiated onto a sample.
A radiation source, a first detector for measuring the intensity of the primary X-ray, a first intensity detecting means for obtaining the intensity of the X-ray detected by the first detector, and a secondary X-ray generated from the sample A second detector for detecting the intensity of the X-ray, a second intensity detector for obtaining the intensity of the X-ray detected by the second detector, and an intensity of the secondary X-ray obtained by the second intensity detector,
An X-ray analysis apparatus comprising: a data processing unit that processes the primary X-ray intensity obtained by the first intensity detection unit to remove the influence of the intensity change of the primary X-ray.
【請求項2】 請求項1において、前記第1検出器は、
前記X線源から試料に至る光路に設置されて、1次X線
を透過させながらその強度を検出する透過型の検出器か
らなるX線分析装置。
2. The device according to claim 1, wherein the first detector is
An X-ray analyzer comprising a transmission type detector installed in the optical path from the X-ray source to the sample to detect the intensity of the primary X-ray while transmitting the same.
【請求項3】 請求項2において、前記透過型の検出器
は、前記1次X線の吸収率が低い放電媒体を有する比例
計数管であるX線分析装置。
3. The X-ray analysis apparatus according to claim 2, wherein the transmission type detector is a proportional counter having a discharge medium having a low primary X-ray absorption rate.
【請求項4】 請求項1において、前記データ加工手段
は、前記第2強度検知手段で求められた2次X線と、前
記第1強度検出手段で求められた1次X線の強度との比
を算出する強度比算出手段からなるX線分析装置。
4. The data processing unit according to claim 1, wherein the intensity of the secondary X-ray obtained by the second intensity detecting unit and the intensity of the primary X-ray obtained by the first intensity detecting unit are used. An X-ray analysis apparatus comprising intensity ratio calculation means for calculating a ratio.
【請求項5】 請求項2において、さらに、前記第2強
度検知手段による2次X線の強度検知終了ごとに、前記
1次X線の試料への入射角度を調整する調整器と、 前記入射角度と前記強度比算出手段で算出された強度比
との相関関係を求める相関作成手段とを備えたX線分析
装置。
5. The adjusting device according to claim 2, further comprising an adjuster that adjusts an incident angle of the primary X-ray to the sample every time the secondary intensity detection by the second intensity detecting unit is completed. An X-ray analysis apparatus comprising: a correlation creating unit that obtains a correlation between an angle and the intensity ratio calculated by the intensity ratio calculating unit.
【請求項6】 X線源から発生させた1次X線を透過さ
せながらその強度を検出して試料に照射し、 前記1次X線の試料への入射角度を調整しながら、試料
から発生する2次X線を検出してその2次X線の強度を
求め、 前記求められた2次X線の強度と、前記検出された1次
X線の強度との比を算出し、 前記1次X線の入射角度と前記算出された強度比との相
関関係を予め求めておき、 この相関関係に基づいて、分析対象の試料について前記
のように算出された強度比から1次X線の入射角度を設
定するX線分析方法。
6. The primary X-ray generated from the X-ray source is transmitted while being transmitted to the sample by detecting its intensity, and the primary X-ray is generated from the sample while adjusting the incident angle of the primary X-ray to the sample. Detecting the secondary X-rays to obtain the intensity of the secondary X-rays, calculating the ratio of the intensity of the obtained secondary X-rays to the intensity of the detected primary X-rays, The correlation between the incident angle of the next X-ray and the calculated intensity ratio is obtained in advance, and based on this correlation, the intensity ratio of the primary X-ray calculated from the intensity ratio calculated as described above for the sample to be analyzed is calculated. An X-ray analysis method for setting the incident angle.
JP10486594A 1994-04-18 1994-04-18 X-ray analysis device and x-ray analyzing method Pending JPH07286977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10486594A JPH07286977A (en) 1994-04-18 1994-04-18 X-ray analysis device and x-ray analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10486594A JPH07286977A (en) 1994-04-18 1994-04-18 X-ray analysis device and x-ray analyzing method

Publications (1)

Publication Number Publication Date
JPH07286977A true JPH07286977A (en) 1995-10-31

Family

ID=14392137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10486594A Pending JPH07286977A (en) 1994-04-18 1994-04-18 X-ray analysis device and x-ray analyzing method

Country Status (1)

Country Link
JP (1) JPH07286977A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385563B1 (en) * 2000-12-01 2003-05-27 한국과학기술원 Spectrophotometer With Driving Means And Intensity Of Light Measurement Method
JP2007178445A (en) * 2007-03-05 2007-07-12 Jeol Ltd Quantitative analysis method in sample analyzer
JP2018134630A (en) * 2016-12-06 2018-08-30 ザ・ボーイング・カンパニーThe Boeing Company Apparatus, system, and method for producing sealant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385563B1 (en) * 2000-12-01 2003-05-27 한국과학기술원 Spectrophotometer With Driving Means And Intensity Of Light Measurement Method
JP2007178445A (en) * 2007-03-05 2007-07-12 Jeol Ltd Quantitative analysis method in sample analyzer
JP2018134630A (en) * 2016-12-06 2018-08-30 ザ・ボーイング・カンパニーThe Boeing Company Apparatus, system, and method for producing sealant

Similar Documents

Publication Publication Date Title
Iida et al. Synchrotron radiation excited X-ray fluorescence analysis using total reflection of X-rays
JP2008309807A (en) Method of determining background corrected count of radiation quantum in x-ray energy spectrum
US6173037B1 (en) Method of and apparatus for X-ray fluorescent analysis of thin layers
JP2535675B2 (en) Total reflection X-ray fluorescence analyzer
US8011830B2 (en) Method and system for calibrating an X-ray photoelectron spectroscopy measurement
JPH07286977A (en) X-ray analysis device and x-ray analyzing method
JP2000504422A (en) X-ray analyzer having two collimator masks
JP2005513478A5 (en)
Streli et al. Total reflection X-ray fluorescence analysis of light elements using synchrotron radiation
JPH07128263A (en) X-ray analyzing device
JP2630249B2 (en) Total reflection X-ray fluorescence analyzer
JPH10221047A (en) Fluorescent x-ray film thickness analyzer and method
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JP3270829B2 (en) X-ray fluorescence analyzer
JP2877534B2 (en) Total reflection X-ray fluorescence analysis method and analyzer
JP2759922B2 (en) Method for measuring high-order X-ray intensity
JP2002005858A (en) Total reflection x-ray fluorescence analyzer
KR950010390B1 (en) Total reflection of x-rays fluorescence analyzing apparatus
Esslinger et al. Elimination of the background in high‐precision Compton profile analysis
JP2554104Y2 (en) X-ray fluorescence analyzer
JPH10221275A (en) X-ray diffraction determining device
JPH0735708A (en) Fluorescent x-ray analysis method
JP3433182B2 (en) X-ray fluorescence analyzer
Schmitt et al. An angle‐resolved, wavelength‐dispersive x‐ray fluorescence spectrometer for depth profile analysis of ion‐implanted semiconductors using synchrotron radiation
JPH10232207A (en) All reflection fluorescent x-ray analyzing method and all reflection fluorescent x-ray analyzing device