JPH0735708A - Fluorescent x-ray analysis method - Google Patents

Fluorescent x-ray analysis method

Info

Publication number
JPH0735708A
JPH0735708A JP19928393A JP19928393A JPH0735708A JP H0735708 A JPH0735708 A JP H0735708A JP 19928393 A JP19928393 A JP 19928393A JP 19928393 A JP19928393 A JP 19928393A JP H0735708 A JPH0735708 A JP H0735708A
Authority
JP
Japan
Prior art keywords
ray
diffracted
sample
rays
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19928393A
Other languages
Japanese (ja)
Other versions
JP2912127B2 (en
Inventor
Takashi Yamada
隆 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP19928393A priority Critical patent/JP2912127B2/en
Publication of JPH0735708A publication Critical patent/JPH0735708A/en
Application granted granted Critical
Publication of JP2912127B2 publication Critical patent/JP2912127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the analysis accuracy using X-rays diffracted fro a sample from being deteriorated by previously determining-the relationship between the rotational angle of a sample and the energy or wavelength of diffracted X-rays. CONSTITUTION:The relationship between the rotational angle of a sample having crystal structure and the energy or wavelength of X-rays B6 diffracted by the sample at that rotational angle is determined previously. The intensity of diffracted X-rays B6 causing noise is then determined based on the relationship thus determined and the true spectrum of fluorescent X-rays is obtained by subtracting the intensity of diffracted X-rays B6 from a measured spectrum. In other words, the intensity of diffracted X-rays B6 causing noise is determined by multiplying the intensity of effective incident X-rays by an intensity ratio determined by the rotational angle and then correcting the product while taking account of the deflection angle. Thus determined spectrum of diffracted X-rays B6 causing noise is then subtracted from the measured spectrum thus obtaining a true spectrum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シリコンウエハのよ
うな結晶構造を有する試料の分析に適した蛍光X線分析
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent X-ray analysis method suitable for analyzing a sample having a crystal structure such as a silicon wafer.

【0002】[0002]

【従来の技術】従来より、シリコンウエハの表面層の分
析には、試料表面に一次X線を微小な入射角で照射し
て、試料の表面層からの蛍光X線を分析する全反射蛍光
X線分析装置が用いられている(たとえば、特開昭63-7
8056号公報参照)。この種の装置の一例を図8に示す。
2. Description of the Related Art Conventionally, for the analysis of the surface layer of a silicon wafer, total reflection fluorescence X in which primary X-rays are irradiated onto the surface of the sample at a minute incident angle and fluorescent X-rays from the surface layer of the sample are analyzed. A line analyzer is used (see, for example, JP-A-63-7).
(See Japanese Patent No. 8056). An example of this type of device is shown in FIG.

【0003】図8において、X線管5のターゲット材5
1から出たX線B1は、湾曲型の分光結晶(分光素子)
1Aに向う。X線B1のうちの所定の波長の特性X線
は、分光結晶1Aで回折され、単色化された一次X線B
2が、試料(シリコンウエハ)2の表面2aに微小な入
射角γ (たとえば、0.05°〜0.20°程度) で照射され
る。試料2に入射した一次X線B2は、全反射されて反
射X線B4となるとともに、励起X線として試料2を励
起して、試料2を構成する元素固有の蛍光X線B5を発
生させる。蛍光X線B5は、試料表面2aに対向して配
置したX線検出器3に入射する。この入射した蛍光X線
B5は、X線検出器3において、そのX線強度が検出さ
れた後、X線検出器3からの検出信号aに基づき、多重
波高分析器4によって目的とするX線スペクトルが得ら
れる。
In FIG. 8, the target material 5 of the X-ray tube 5 is shown.
X-ray B1 emitted from 1 is a curved dispersive crystal (dispersive element)
Go to 1A. The characteristic X-ray of a predetermined wavelength of the X-ray B1 is diffracted by the dispersive crystal 1A, and is made into a monochromatic primary X-ray B1.
The surface 2a of the sample (silicon wafer) 2 is irradiated with 2 at a small incident angle γ (for example, about 0.05 ° to 0.20 °). The primary X-ray B2 incident on the sample 2 is totally reflected to become a reflected X-ray B4, and the sample 2 is excited as an excited X-ray to generate a fluorescent X-ray B5 peculiar to the element constituting the sample 2. The fluorescent X-ray B5 is incident on the X-ray detector 3 arranged so as to face the sample surface 2a. The X-ray detector 3 detects the X-ray intensity of the incident fluorescent X-rays B5, and then the target X-rays are detected by the multiple wave height analyzer 4 based on the detection signal a from the X-ray detector 3. A spectrum is obtained.

【0004】この種の全反射蛍光X線分析装置は、一次
X線B2の入射角γが微小であることから、反射X線B
4および散乱X線がX線検出器3に入射しにくく、X線
検出器3により検出される蛍光X線B5の出力レベルに
比べてノイズが小さいという利点がある。つまり、大き
なS/N 比が得られ、そのため、分析感度が良く、たとえ
ば、微量の不純物でも検出できるという利点がある。こ
のようなことから、この分析方法は、シリコンウエハの
表面汚染の分析方法として有効であり、広く採用されて
いる。
In this type of total reflection X-ray fluorescence analyzer, since the incident angle γ of the primary X-ray B2 is very small, the reflected X-ray B
4 and scattered X-rays are less likely to enter the X-ray detector 3, and there is an advantage that noise is smaller than the output level of the fluorescent X-ray B5 detected by the X-ray detector 3. In other words, a large S / N ratio can be obtained, so that there is an advantage that the analytical sensitivity is high and, for example, a trace amount of impurities can be detected. Therefore, this analysis method is effective as a surface contamination analysis method for silicon wafers and is widely adopted.

【0005】また、この従来技術では、分光結晶1Aを
用いてX線B1を単色化しているから、散乱X線などの
強度が小さくなるので、分析精度がより一層向上する。
Further, in this prior art, since the X-ray B1 is monochromated by using the dispersive crystal 1A, the intensity of scattered X-rays and the like is reduced, so that the analysis accuracy is further improved.

【0006】しかし、分光結晶1Aを用いると、一次X
線B2の強度が著しく低下するという欠点がある。そこ
で、図7のように、分光素子として人工多層膜格子1を
用いて、一次X線B2の強度を高める方法が考えられ
る。しかし、人工多層膜格子1では、X線B1を十分に
単色化できないので、一次X線B2に連続X線が含まれ
る。この連続X線は、試料2がシリコンウエハからなる
単結晶であることから、一次X線B2のうちの特定の波
長のX線が、試料2の種々の格子面(たとえば、311
面や202面など)で回折されて、X線検出器3に入射
する。そのため、この試料2で回折された回折X線B6
がノイズとなるので、試料2の分析精度の低下を招くと
いう問題が生じる。
However, when the dispersive crystal 1A is used, the primary X
There is a drawback in that the strength of line B2 is significantly reduced. Therefore, as shown in FIG. 7, a method of increasing the intensity of the primary X-ray B2 by using the artificial multilayer film grating 1 as a spectroscopic element can be considered. However, since the artificial multilayer film grating 1 cannot sufficiently convert the X-ray B1 into a single color, the primary X-ray B2 includes continuous X-rays. In this continuous X-ray, since the sample 2 is a single crystal made of a silicon wafer, the X-rays of a specific wavelength of the primary X-ray B2 are various lattice planes (for example, 311) of the sample 2.
Surface, 202 surface, etc.) and is incident on the X-ray detector 3. Therefore, the diffracted X-ray B6 diffracted by this sample 2
Becomes noise, which causes a problem that the analysis accuracy of the sample 2 is deteriorated.

【0007】上記回折X線B6による分析精度の低下を
防止する技術としては、特開平5−66204号公報に
開示された全反射蛍光X線分析装置が知られている。こ
の分析装置は、一次X線B2を単色化するとともに、予
め、回折X線の発生しない試料2の特定の回転角を求
め、この特定の回転角の位置において、上記単色化した
一次X線B1を試料2に照射する。
As a technique for preventing a decrease in analysis accuracy due to the above-mentioned diffracted X-ray B6, a total reflection X-ray fluorescence analyzer disclosed in Japanese Patent Laid-Open No. 5-66204 is known. This analyzer monochromates the primary X-rays B2, obtains a specific rotation angle of the sample 2 in which no diffracted X-rays are generated, and at the position of this specific rotation angle, the monochromatic primary X-rays B1 are obtained. To the sample 2.

【0008】[0008]

【発明が解決しようとする課題】このように、上記先行
技術では、試料2から回折X線が発生するのを防止する
ことで、分析精度の向上を図るものであるから、十分に
単色化された一次X線B2を用いる必要がある。したが
って、一次X線B2が十分に単色化されていない場合に
は、適用できないので、汎用性がない。
As described above, according to the above-mentioned prior art, it is intended to improve the analysis accuracy by preventing the generation of the diffracted X-rays from the sample 2, so that the sample is sufficiently monochromatic. It is necessary to use the primary X-ray B2. Therefore, when the primary X-ray B2 is not sufficiently monochromatic, it cannot be applied, and thus has no versatility.

【0009】この発明は上記問題に鑑みてなされたもの
で、結晶構造を有する試料に一次X線を照射し、上記試
料から発生する蛍光X線に基づいて上記試料の分析を行
う蛍光X線分析方法において、一次X線が単色化されて
いるか否かにかかわらず、試料で回折された回折X線に
よる分析精度の低下を防止し得る蛍光X線分析方法を提
供することを目的とする。
The present invention has been made in view of the above problems, and a fluorescent X-ray analysis in which a sample having a crystal structure is irradiated with primary X-rays and the sample is analyzed based on the fluorescent X-rays generated from the sample. An object of the method is to provide a fluorescent X-ray analysis method capable of preventing a decrease in analysis accuracy due to diffracted X-rays diffracted by a sample regardless of whether primary X-rays are monochromatic.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、結晶構造を有する試料の回転角度と、
その回転角度において試料により回折される回折X線の
エネルギまたは波長との関係を予め求め、この予め求め
た関係に基づいて、ノイズとなる回折X線の強度を求め
ることにより、測定スペクトルから回折X線の強度を除
去した蛍光X線のスペクトルを得る。
In order to achieve the above object, the present invention provides a rotation angle of a sample having a crystal structure,
The relationship between the energy or wavelength of the diffracted X-rays diffracted by the sample at the rotation angle is obtained in advance, and the intensity of the diffracted X-rays that cause noise is obtained based on the obtained relation. A spectrum of fluorescent X-rays from which the line intensity has been removed is obtained.

【0011】[0011]

【作用】以下、この発明の原理を説明する。回折X線が
発生する波長およびエネルギは、下記のブラッグの式か
ら分かるように、結晶の格子面間隔dと回折角θにより
定まる。 2dsin θ=nλ …(1) 但し、n:反射の次数(1,2,3…) λ:X線の波長(Å)(λ=12.4/E) E:エネルギ(KeV)
The principle of the present invention will be described below. The wavelength and energy generated by the diffracted X-rays are determined by the lattice spacing d of the crystal and the diffraction angle θ, as can be seen from the Bragg equation below. 2dsin θ = nλ (1) where n: Order of reflection (1, 2, 3, ...) λ: X-ray wavelength (Å) (λ = 12.4 / E) E: Energy (KeV)

【0012】ここで、格子面間隔dは、1つの結晶構造
の中に種々存在するので、試料からは種々の回折X線が
発生する。しかし、格子面の方向を設定することによ
り、格子面間隔dが定まり、また、試料の基準面からの
回転角度を設定することで、回折角θが定まる。さら
に、2次以上(n=2以上)の回折X線は、その強度が
小さいので、無視しても、分析精度に差程大きな影響を
与えない。したがって、結晶構造を有する試料の回転角
度と、その回転角度において試料により回折される回折
X線のエネルギとの関係を予め求めることができる。
Since various lattice spacings d exist in one crystal structure, various diffracted X-rays are generated from the sample. However, by setting the direction of the lattice plane, the lattice plane spacing d is determined, and by setting the rotation angle of the sample from the reference plane, the diffraction angle θ is determined. Furthermore, since the intensity of the diffracted X-rays of the second order or higher (n = 2 or higher) is small, it does not significantly affect the analysis accuracy even if they are ignored. Therefore, the relationship between the rotation angle of the sample having the crystal structure and the energy of the diffracted X-ray diffracted by the sample at the rotation angle can be obtained in advance.

【0013】一方、回折X線の強度は、周知のように、
結晶の構造因子から求めることができる。したがって、
上記回転角度において生じる回折X線の強度も求めるこ
とができるので、予め求めた回転角度と回折X線のエネ
ルギまたは波長との関係に基づいて、測定スペクトルか
ら回折X線の強度を除去した蛍光X線のスペクトルを得
ることができる。
On the other hand, the intensity of the diffracted X-ray is, as is well known,
It can be determined from the crystal structure factor. Therefore,
Since the intensity of the diffracted X-ray generated at the above rotation angle can also be obtained, the fluorescence X obtained by removing the intensity of the diffracted X-ray from the measurement spectrum based on the relationship between the previously obtained rotational angle and the energy or wavelength of the diffracted X-ray. The spectrum of the line can be obtained.

【0014】[0014]

【実施例】以下、この発明の一実施例を図面にしたがっ
て説明する。まず、試料の回転角度と、その回転角度に
おいて試料により回折されるエネルギとの関係の求め方
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, a method of obtaining the relationship between the rotation angle of the sample and the energy diffracted by the sample at the rotation angle will be described.

【0015】図1において、シリコンウエハからなる試
料2には、一般に、オリフラと呼ばれる110方向に沿
った基準面2bが形成されている。一次X線B2は、全
反射蛍光X線分析の場合、試料2の表面2aに平行に近
い角度で入射するので、一次X線B2の入射する方向に
X軸を設定し、シリコンウエハ2の表面2aにXY平面
を設定する。また、試料2の表面に垂直で、かつ、X線
検出器3(図7)の軸線と一致する方向にZ軸を設定す
る。
In FIG. 1, a sample 2 made of a silicon wafer is generally provided with a reference plane 2b called an orientation flat along the 110 direction. In the case of total reflection fluorescent X-ray analysis, the primary X-ray B2 is incident on the surface 2a of the sample 2 at an angle close to parallel, so the X axis is set in the incident direction of the primary X-ray B2, and the surface of the silicon wafer 2 is set. Set the XY plane to 2a. Further, the Z axis is set in a direction that is perpendicular to the surface of the sample 2 and coincides with the axis of the X-ray detector 3 (FIG. 7).

【0016】今、試料2内に結晶面2cを設定し、その
法線方向の単位ベクトルをr1 、その成分をx1
1 ,z1 とすると、x1 ,y1 ,z1 は下記の(2) 〜
(4) 式で表される。 x1 =(OA)・cos φ1 =sin α1 ・cos φ1 …(2) y1 =(OA)・sin φ1 =sin α1 ・sin φ1 …(3) z1 = cosα1 …(4) 但し、α1 :ベクトルr1 とz軸のなす角 φ1 :ベクトルr1 をXY平面へ投影した線OAとX軸
とのなす角 なお、数式において、英字に( )を付したものは、線
分の長さを示す。
Now, the crystal plane 2c is set in the sample 2, the unit vector in the normal direction thereof is r 1 , its component is x 1 ,
Assuming y 1 and z 1 , x 1 , y 1 and z 1 are the following (2) to
It is expressed by equation (4). x 1 = (OA) ・ cos φ 1 = sin α 1・ cos φ 1 … (2) y 1 = (OA) ・ sin φ 1 = sin α 1・ sin φ 1 … (3) z 1 = cos α 1 … (4) where α 1 is the angle between the vector r 1 and the z axis φ 1 is the angle between the line OA that is the projection of the vector r 1 on the XY plane and the X axis. The thing shows the length of the line segment.

【0017】ベクトルr1 とX軸のなす角をθ1 、ま
た、ベクトルr1 をYZ平面へ投影した線OBとY軸と
のなす角をβとすると、下記の(5),(6) 式が成り立つ。 x1 = cosθ1 …(5) y1 =(OB)・cos β=sin θ1 ・cos β …(6)
When the angle between the vector r 1 and the X axis is θ 1 , and the angle between the line OB obtained by projecting the vector r 1 on the YZ plane and the Y axis is β, the following (5), (6) The formula holds. x 1 = cos θ 1 (5) y 1 = (OB) ・ cos β = sin θ 1・ cos β (6)

【0018】一方、斜線で示す結晶面2cにより回折さ
れる回折X線B6の出射方向の単位ベクトルをrとし、
その成分をx,y,zとする。ここで、一次X線B2が
結晶面2cで等角反射されて、回折X線B6が発生する
ことから、ベクトルrとX軸とのなす角は2θ1 とな
る。また、X軸、ベクトルr1 およびベクトルrは同一
平面上に存在するから、ベクトルrをYZ平面に投影し
た線OCとY軸とのなす角は、線分OBとY軸とのなす
角βに等しい。したがって、x,y,zは、下記の(7),
(8),(9)式で表される。 x= cos2θ1 …(7) y=(OC)・cos β= sin2θ1 ・cos β …(8) z=(OC)・sin β= sin2θ1 ・sin β …(9)
On the other hand, the unit vector in the outgoing direction of the diffracted X-ray B6 diffracted by the crystal plane 2c shown by the diagonal line is r,
Let the components be x, y, and z. Here, since the primary X-ray B2 is reflected equiangularly on the crystal plane 2c to generate the diffracted X-ray B6, the angle formed by the vector r and the X axis is 2θ 1 . Further, since the X axis, the vector r 1, and the vector r are on the same plane, the angle formed by the line OC obtained by projecting the vector r on the YZ plane and the Y axis is the angle β formed by the line segment OB and the Y axis. be equivalent to. Therefore, x, y, and z are the following (7),
It is expressed by Eqs. (8) and (9). x = cos2θ 1 ... (7) y = (OC) · cos β = sin2θ 1 · cos β ... (8) z = (OC) · sin β = sin2θ 1 · sin β ... (9)

【0019】つぎに、ベクトルrとZ軸のなす角をαと
する。この角αは、回折X線B6がX線検出器3(図
7)に対して入射する角度であり、以下、この角αを偏
り角と呼ぶ。また、ベクトルrをXY平面に投影した線
ODとX軸とのなす角をφとすると、上記偏り角αと角
φとで、回折X線B6の出射する方向が表される。上記
角αおよびφは下記の(10),(11) 式の関係を有する。 z= cosα …(10) x=(OD)・cos φ=sin α・cos φ …(11)
Next, the angle between the vector r and the Z axis is α. This angle α is an angle at which the diffracted X-ray B6 is incident on the X-ray detector 3 (FIG. 7), and this angle α is hereinafter referred to as a deviation angle. Further, when the angle between the line OD obtained by projecting the vector r on the XY plane and the X axis is φ, the deviation angle α and the angle φ represent the emission direction of the diffracted X-ray B6. The angles α and φ have the relationships of the following expressions (10) and (11). z = cos α (10) x = (OD) ・ cos φ = sin α ・ cos φ (11)

【0020】今、結晶面の種類(面指数)設定すると、
結晶面の方向が設定されるので、線OAと110方向と
のなす角φ0 および角α1が決まり、また、試料2の回
転角度ω、つまり、110方向とX軸とのなす角ωを設
定すると、角ωおよび上記角φ0 から角φ1 が決まるの
で、上記(2) 式からx1 が決まり、更に、(5) 式から角
θ1 が決まる。
Now, when the type of crystal plane (plane index) is set,
Since the direction of the crystal plane is set, the angle φ 0 and the angle α 1 formed by the line OA and the 110 direction are determined, and the rotation angle ω of the sample 2, that is, the angle ω formed by the 110 direction and the X axis is set. Then, since the angle φ 1 is determined from the angle ω and the angle φ 0, x 1 is determined from the equation (2), and the angle θ 1 is determined from the equation (5).

【0021】ここで、ブラッグの回折角θを角θ1 で表
すと、θ=(π/2)−θ1 であるから、前述のブラッ
グの式は、 λ=2dsin θ =2dsin {(π/2)−θ1 } =2dcos θ …(12) 但し、λ=12.4/E で表される。また、結晶面の種類を設定すれば、格子面
間隔dは一義的に決まるので、上記(12)式から、回折角
θと波長λとの関係が決まる。この回折角θから角θ1
が分かり、また、上記角θ1 と(2),(3),(6),(7),(9),(1
0),(11) 式から角φおよび角αを知ることができ、ひい
ては、試料2の回転角度ωと回折X線B6の発生するエ
ネルギEとの関係を机上計算のみで知ることができる。
Here, if the Bragg diffraction angle θ is represented by an angle θ 1 , then θ = (π / 2) −θ 1 , so the above Bragg equation is λ = 2dsin θ = 2dsin {(π / 2) −θ 1 } = 2d cos θ (12) where λ = 12.4 / E. Further, if the type of crystal plane is set, the lattice plane spacing d is uniquely determined, and thus the relationship between the diffraction angle θ and the wavelength λ is determined from the equation (12). From this diffraction angle θ to the angle θ 1
And the angle θ 1 and (2), (3), (6), (7), (9), (1
The angles φ and α can be known from the equations 0) and (11), and by extension, the relationship between the rotation angle ω of the sample 2 and the energy E generated by the diffracted X-ray B6 can be known only by desk calculation.

【0022】図2は、上記計算式に基づいて、試料2で
反射される回折X線B6のエネルギを、試料2の回転角
度ωごとに求めた結果の一部を示すものである。この計
算結果は、図7の装置で実際に測定した図3のスペクト
ルにおけるノイズと一致し、上記計算方法が正しいこと
を裏付けている。なお、上記計算は、結晶の対称性か
ら、回転角度ωが0°〜45°までの範囲で求めればよ
く、回転角度が45°以上の場合については、ω+m・90
°および−ω+m・90°(mは整数)の回転角度におけ
る回折X線B6のエネルギおよび強度比が、回転角度ω
における回折X線B6のエネルギおよび強度比と同一に
なる。
FIG. 2 shows a part of the result of obtaining the energy of the diffracted X-ray B6 reflected by the sample 2 for each rotation angle ω of the sample 2 based on the above calculation formula. This calculation result agrees with the noise in the spectrum of FIG. 3 actually measured by the apparatus of FIG. 7, which confirms that the above calculation method is correct. It should be noted that the above calculation may be performed in the range of the rotation angle ω of 0 ° to 45 ° from the symmetry of the crystal, and ω + m · 90 when the rotation angle is 45 ° or more.
The energy and intensity ratio of the diffracted X-ray B6 at the rotation angles of ° and −ω + m · 90 ° (m is an integer) are
The same as the energy and intensity ratio of the diffracted X-ray B6 at.

【0023】つぎに、回折X線B6の強度I6 を求める
方法について説明する。 I6 =I200 …(13) 但し、I20:試料に入射するX線(有効入射X線)強度
(Kcps) I0 :I20に対する回折X線B6の相対強度(無名数)
Next, a method for obtaining the intensity I 6 of the diffracted X-ray B6 will be described. I 6 = I 20 I 0 (13) where I 20 : X-ray (effective incident X-ray) intensity (Kcps) incident on the sample I 0 : Relative intensity of diffracted X-ray B 6 with respect to I 20 (anonymous number)

【0024】[0024]

【数1】 [Equation 1]

【0025】上記(13)式において、回折X線B6の強度
6 は、図1の試料2が微小な球状であることを前提と
している。また、回折X線B6の全てがX線検出器3
(図7)に入射するものではなく、たとえば、偏り角α
が大きくなると、図4のように、方形の回折X線B6の
光束の一部が、円形のX線検出器3に入射し、残部はX
線検出器3に入射しない。さらに、図1の偏り角αが、
たとえば45°を超える大きな角度では、回折X線B6
がX線検出器3(図7)に全く入射しない。したがっ
て、試料2の形状および偏り角αを考慮して、周知のよ
うに、補正を行って、回折X線B6の強度を求める必要
がある。
In the above formula (13), the intensity I 6 of the diffracted X-ray B6 is based on the assumption that the sample 2 in FIG. 1 has a minute spherical shape. Further, all of the diffracted X-rays B6 are the X-ray detector 3
(FIG. 7), for example, the deviation angle α
Becomes larger, as shown in FIG. 4, a part of the light beam of the rectangular diffracted X-ray B6 is incident on the circular X-ray detector 3, and the rest is X-ray.
It does not enter the line detector 3. Further, the deviation angle α in FIG.
For example, at a large angle exceeding 45 °, the diffracted X-ray B6
Does not enter the X-ray detector 3 (FIG. 7) at all. Therefore, in consideration of the shape of the sample 2 and the deviation angle α, it is necessary to perform correction as is well known to obtain the intensity of the diffracted X-ray B6.

【0026】全反射蛍光X線分析では、図7の入射角γ
が著しく小さい。しかも、図7の試料2は、ゴニオメー
タにより回転されるので、入射角γは一定でなく、この
入射角γが極めて微小(0.05°〜0.2 °程度) であるこ
とから、入射角γが若干異なることにより、全反射率が
著しく異なる。したがって、後述するように、測定対象
である試料2に対する入射角γにおける図6(b)の有
効入射X線つまり、試料2に実際に入射した有効入射X
線の強度I20を求める必要がある。
In the total reflection X-ray fluorescence analysis, the incident angle γ in FIG.
Is extremely small. Moreover, since the sample 2 of FIG. 7 is rotated by the goniometer, the incident angle γ is not constant, and the incident angle γ is extremely small (about 0.05 ° to 0.2 °), so the incident angle γ is slightly different. As a result, the total reflectance is significantly different. Therefore, as will be described later, the effective incident X-ray of FIG. 6B at the incident angle γ with respect to the sample 2 to be measured, that is, the effective incident X actually incident on the sample 2.
It is necessary to determine the line intensity I 20 .

【0027】図6(c)のノイズとなる回折X線B6
は、図6(b)の有効入射X線のうち、図2のエネルギ
を持つものであり、上記回折X線B6の強度は、図6
(b)の有効入射X線の強度に、図2の強度比を乗算
し、更に偏り角αなどを考慮して補正することにより求
めることができる。こうして求めた図6(c)のノイズ
となる回折X線B6のスペクトルを、図6(a)の測定
スペクトルから減算することにより、図6(d)の真の
スペクトルが得られる。
Diffracted X-ray B6 which becomes noise in FIG. 6 (c)
Of the effective incident X-rays of FIG. 6B has the energy of FIG. 2, and the intensity of the diffracted X-ray B6 is as shown in FIG.
The intensity can be obtained by multiplying the intensity of the effective incident X-ray of (b) by the intensity ratio of FIG. 2 and further correcting by considering the deviation angle α and the like. By subtracting the spectrum of the diffracted X-ray B6 which becomes the noise of FIG. 6C from the measured spectrum of FIG. 6A, the true spectrum of FIG. 6D is obtained.

【0028】以下、真のスペクトルを実際に求める方法
について説明する。まず、前述の式(2) 〜式(12)を用い
て、試料2の種々の回転角度ωと、この回転角度ωにお
いて、試料2により回折される回折X線B6のエネル
ギ、強度比および直上角αとの関係を図2(a)〜
(d)のように、計算機の記憶素子に記憶させる。な
お、回転角度ωのピッチは、図2の(a)〜(d)に示
すように、5°ピッチではなく、実際に測定するピッチ
に合わせてもよいし、1°ピッチなどとしてもよい。ま
た、図2の具体的数値を記憶させずに、前述の(2) 〜(1
2)式などを記憶素子に記憶させ、後に演算させてもよ
い。
The method for actually obtaining the true spectrum will be described below. First, various rotation angles ω of the sample 2 and the energy, intensity ratio and directly above the diffracted X-ray B6 diffracted by the sample 2 at the rotation angles ω are calculated by using the above equations (2) to (12). The relationship with the angle α is shown in FIG.
As shown in (d), it is stored in the storage element of the computer. The pitch of the rotation angle ω may be adjusted to the actually measured pitch instead of the 5 ° pitch as shown in FIGS. 2A to 2D, or may be a 1 ° pitch. Further, without storing the specific numerical values in FIG. 2, the above (2) to (1
The equation (2) may be stored in a storage element for later calculation.

【0029】また、発生した回折X線B6の強度と、X
線検出器3に入射する回折X線B6の強度との関係を、
直上角αの関数で表した数式を記憶素子に記憶させる。
たとえば、α>45°の場合は、X線検出器3に入射す
る回折X線の強度を0とする。
The intensity of the generated diffracted X-ray B6 and X
The relationship with the intensity of the diffracted X-ray B6 incident on the line detector 3 is
The storage element stores the mathematical expression represented by the function of the upright angle α.
For example, when α> 45 °, the intensity of the diffracted X-rays incident on the X-ray detector 3 is set to 0.

【0030】つぎに、図7の全反射蛍光X線分析装置
と、ブランクウエハ(表面に薄膜を形成する前のシリコ
ンの単結晶)を用い、図5のブランクウエハに入射した
基準有効入射X線のスペクトルを求める。このスペクト
ルを求める方法を簡単に説明すると、種々の回転角度ω
(たとえば、1°ごと)において、図3のX線のスペク
トルを測定する。ついで、任意の格子面における回折X
線のX線強度を、偏り角αおよび反射率を考慮して補正
することにより、各エネルギにおける基準有効入射X線
の強度を求めることで、図5の基準有効入射X線のスペ
クトルを得る。たとえば、図3(a)〜(d)の202
面における回折X線の強度を、各エネルギ位置に対して
プロットし、このプロットしたX線強度を、偏り角αお
よび反射率を考慮して補正し、更に、他の格子面(たと
えば313面)についても同様に求めることで、図5の
基準有効入射X線のスペクトルを求める。以上の図2の
強度比の算出や図5のブラウンウエハに入射した基準有
効入射X線のスペクトルの算出は、装置の調整後や、そ
の後に定期的に行う。
Next, using the total reflection X-ray fluorescence analyzer of FIG. 7 and a blank wafer (single crystal of silicon before forming a thin film on the surface), the reference effective incident X-rays incident on the blank wafer of FIG. Find the spectrum of. The method of obtaining this spectrum will be briefly described. Various rotation angles ω
At (for example, every 1 °), the X-ray spectrum of FIG. 3 is measured. Then, the diffraction X on any lattice plane
The intensity of the reference effective incident X-ray at each energy is obtained by correcting the X-ray intensity of the ray in consideration of the deviation angle α and the reflectance, and the spectrum of the reference effective incident X-ray of FIG. 5 is obtained. For example, 202 in FIGS.
The intensity of the diffracted X-ray on the plane is plotted for each energy position, the plotted X-ray intensity is corrected in consideration of the deviation angle α and the reflectance, and further, another lattice plane (for example, 313 plane). Is similarly obtained, the spectrum of the reference effective incident X-ray of FIG. 5 is obtained. The calculation of the intensity ratio in FIG. 2 and the spectrum of the reference effective incident X-ray incident on the brown wafer in FIG. 5 described above are performed after the adjustment of the apparatus and periodically thereafter.

【0031】つぎに、実際に測定するシリコンウエハ、
つまり、成分が未知の試料2を図7の分析装置にセット
し、X線検出器3で検出された図6(a)のX線のスペ
クトルを一時的に記憶させる。
Next, a silicon wafer to be actually measured,
That is, the sample 2 having an unknown component is set in the analyzer of FIG. 7, and the X-ray spectrum of FIG. 6A detected by the X-ray detector 3 is temporarily stored.

【0032】この測定スペクトルのSi−Kαの強度
と、図3のブランクウエハの測定スペクトルにおけるS
i−Kαの強度比から、未知試料のスペクトル測定時の
入射角γ(図7)を求める。この求めた入射角γから、
エネルギごとの臨界角および反射率を考慮して、図5の
基準有効入射X線を補正することにより、試料2におい
て全反射されずに、試料2に実際に入射した図6(b)
の有効入射X線のスペクトルを求める。なお、入射角γ
は図7の反射X線B4の強度を測定し、この反射X線B
4の強度から求めてもよい。
The Si-Kα intensity of this measurement spectrum and S in the measurement spectrum of the blank wafer of FIG.
From the intensity ratio of i-Kα, the incident angle γ (FIG. 7) at the time of spectrum measurement of the unknown sample is obtained. From this calculated incident angle γ,
By correcting the reference effective incident X-ray of FIG. 5 in consideration of the critical angle and the reflectance for each energy, the sample 2 was actually incident on the sample 2 without being totally reflected on the sample 2 (FIG. 6B).
Of the effective incident X-ray of Note that the incident angle γ
Measures the intensity of the reflected X-ray B4 in FIG.
It may be determined from the strength of 4.

【0033】上記試料2に実際に入射した有効入射X線
のスペクトルと、実際に試料2に一次X線B2を照射し
たときの試料2の回転角度ωにおける図2の強度比とを
乗算し、図6(c)のノイズとなる回折X線の強度を求
める。つまり、図2(a)の回折X線の生じるエネルギ
位置における図6(b)の有効入射X線の強度と、上記
特定の回転角度ωにおいて当該図2の回折X線の生じる
エネルギ位置における強度比とを乗算し、上記特定の回
転角度における図6(c)のノイズとなる回折X線の強
度を求める。
The effective incident X-ray spectrum actually incident on the sample 2 is multiplied by the intensity ratio of FIG. 2 at the rotation angle ω of the sample 2 when the primary X-ray B2 is actually irradiated on the sample 2, The intensity of the diffracted X-ray that becomes noise in FIG. 6C is obtained. That is, the intensity of the effective incident X-ray of FIG. 6B at the energy position of the diffracted X-ray of FIG. 2A and the intensity at the energy position of the diffracted X-ray of FIG. 2 at the specific rotation angle ω. The ratio is multiplied with the ratio to obtain the intensity of the diffracted X-ray that becomes noise in FIG. 6C at the specific rotation angle.

【0034】その後、図6(a)の測定スペクトルか
ら、図6(c)のノイズとなる回折X線のスペクトルを
減算し、試料2で回折された回折X線を除いた図6
(d)の真のスペクトルを求める。この求めた真のスペ
クトルに基づいて、試料2の元素の定量分析を行う。
After that, the spectrum of the diffracted X-ray which becomes noise of FIG. 6C is subtracted from the measured spectrum of FIG. 6A, and the diffracted X-ray diffracted by the sample 2 is removed.
Find the true spectrum of (d). Quantitative analysis of the element of sample 2 is performed based on the obtained true spectrum.

【0035】なお、この発明は、全反射蛍光X線分析以
外の蛍光X線分析についても適用でき、この発明の範囲
に含まれる。その場合、図1の一次X線B2とX軸との
なす角をパラメータとして、前述の (2)〜(12)式を汎用
性のある式とする必要がある。また、シリコンウエハ以
外のたとえばガリウムアルセナイド(GaAs)などの
結晶構造を有する試料についても適用できる。
The present invention can be applied to fluorescent X-ray analysis other than the total reflection fluorescent X-ray analysis and is included in the scope of the present invention. In that case, it is necessary to make the above equations (2) to (12) into versatile equations using the angle between the primary X-ray B2 and the X axis in FIG. 1 as a parameter. Further, it can be applied to samples having a crystal structure such as gallium arsenide (GaAs) other than silicon wafers.

【0036】また、上記実施例では、分光素子として図
7の人工多層膜格子1を用いた場合について説明した
が、この発明は図8の分光結晶1Aを用いた場合につい
ても適用される。つまり、一次X線B2が完全な単色光
である場合にも、この発明が適用される。
Further, in the above embodiment, the case where the artificial multilayer film grating 1 of FIG. 7 is used as the spectroscopic element has been described, but the present invention is also applied to the case where the dispersive crystal 1A of FIG. 8 is used. That is, the present invention is also applied to the case where the primary X-ray B2 is completely monochromatic light.

【0037】また、上記実施例では、試料2の外部から
試料2に入射した一次X線B2が試料2において回折さ
れる場合について説明したが、この発明は、回折される
X線の発生源を限定するものではない。たとえば、試料
2内で発生した特性X線が光源となって、試料2内で回
折を生じた場合にも、この発明を適用することができ
る。
In the above embodiment, the case where the primary X-ray B2 incident on the sample 2 from the outside of the sample 2 is diffracted in the sample 2 has been described. However, the present invention provides a source of diffracted X-rays. It is not limited. For example, the present invention can be applied even when the characteristic X-ray generated in the sample 2 serves as a light source to cause diffraction in the sample 2.

【0038】[0038]

【発明の効果】以上説明したように、この発明によれ
ば、予め求めた試料の回転角度と回折X線のエネルギま
たは波長との関係に基づいて、測定スペクトルから回折
X線の強度を除去した蛍光X線のスペクトルを得ること
ができるから、ノイズである回折X線による分析精度の
低下を防止して、分析精度を向上させることができる。
特に、この発明は、回折X線が試料から発生しないよう
にするのではなく、試料から発生した回折X線を補正に
よって除去するものであるから、一次X線が単色化され
ているか否かにかかわらず、分析精度を向上させること
ができるという利点がある。
As described above, according to the present invention, the intensity of the diffracted X-rays is removed from the measured spectrum based on the relationship between the rotation angle of the sample and the energy or wavelength of the diffracted X-rays which is obtained in advance. Since the spectrum of the fluorescent X-rays can be obtained, it is possible to prevent the deterioration of the analysis accuracy due to the diffracted X-rays, which is noise, and improve the analysis accuracy.
In particular, the present invention does not prevent the diffracted X-rays from being generated from the sample, but removes the diffracted X-rays generated from the sample by correction. Therefore, whether or not the primary X-rays are monochromatic is determined. Nevertheless, there is an advantage that the analysis accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる回折X線の強度を求める方法
を説明する斜視図である。
FIG. 1 is a perspective view illustrating a method for obtaining the intensity of a diffracted X-ray according to the present invention.

【図2】試料の回転角度と発生する回折X線のエネルギ
との関係などを示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between a rotation angle of a sample and energy of diffracted X-rays generated.

【図3】ブランクウエハの測定スペクトルを示す特性図
である。
FIG. 3 is a characteristic diagram showing a measured spectrum of a blank wafer.

【図4】直上角との関係でX線検出器に入射する回折X
線の光束を示す平面図である。
FIG. 4 is the diffraction X incident on the X-ray detector in relation to the angle directly above.
It is a top view which shows the light flux of a line.

【図5】ブラウンウエハに入射した有効入射X線のスペ
クトルを示す特性図である。
FIG. 5 is a characteristic diagram showing a spectrum of effective incident X-rays incident on a brown wafer.

【図6】(a)は実際の未知試料の測定スペクトル、
(b)は未知試料に入射した有効入射X線のスペクト
ル、(c)はノイズとなる回折X線のスペクトル、
(d)は真のスペクトルである。
FIG. 6A is a measurement spectrum of an actual unknown sample,
(B) is a spectrum of effective incident X-rays incident on an unknown sample, (c) is a spectrum of diffracted X-rays that become noise,
(D) is the true spectrum.

【図7】この発明の分析方法に用いる分析装置の一例を
示す概略構成図である。
FIG. 7 is a schematic configuration diagram showing an example of an analysis device used in the analysis method of the present invention.

【図8】一般的な全反射蛍光X線分析装置の一例を示す
概略構成図である。
FIG. 8 is a schematic configuration diagram showing an example of a general X-ray fluorescence analyzer for total reflection.

【符号の説明】[Explanation of symbols]

2…試料、B2…一次X線、B5…蛍光X線、B6…回
折X線、ω…回転角度。
2 ... sample, B2 ... primary X-ray, B5 ... fluorescent X-ray, B6 ... diffraction X-ray, ω ... rotation angle.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 結晶構造を有する試料に一次X線を照射
し、上記試料から発生する蛍光X線に基づいて上記試料
の分析を行う蛍光X線分析方法において、 試料の回転角度と、その回転角度において試料により回
折される回折X線のエネルギまたは波長との関係を予め
求め、 この予め求めた関係に基づいてノイズとなる回折X線の
強度を求めることにより、測定スペクトルから回折X線
の強度を除去した蛍光X線のスペクトルを得ることを特
徴とする蛍光X線分析方法。
1. A fluorescent X-ray analysis method in which a sample having a crystal structure is irradiated with primary X-rays and the sample is analyzed based on the fluorescent X-rays generated from the sample. The relationship between the energy or wavelength of the diffracted X-rays diffracted by the sample at an angle is obtained in advance, and the intensity of the diffracted X-rays that cause noise is obtained based on the obtained relation, thereby obtaining the intensity of the diffracted X-rays from the measured spectrum A fluorescent X-ray analysis method, which comprises obtaining a fluorescent X-ray spectrum from which is removed.
JP19928393A 1993-07-15 1993-07-15 X-ray fluorescence analysis method Expired - Lifetime JP2912127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19928393A JP2912127B2 (en) 1993-07-15 1993-07-15 X-ray fluorescence analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19928393A JP2912127B2 (en) 1993-07-15 1993-07-15 X-ray fluorescence analysis method

Publications (2)

Publication Number Publication Date
JPH0735708A true JPH0735708A (en) 1995-02-07
JP2912127B2 JP2912127B2 (en) 1999-06-28

Family

ID=16405224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19928393A Expired - Lifetime JP2912127B2 (en) 1993-07-15 1993-07-15 X-ray fluorescence analysis method

Country Status (1)

Country Link
JP (1) JP2912127B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005969A1 (en) * 2003-07-11 2005-01-20 Waseda University Energy dispersion type x-ray diffraction/spectral device
JP2008256698A (en) * 2007-04-05 2008-10-23 Panalytical Bv Fluorescent x-ray analyzer
CN102959387A (en) * 2010-07-02 2013-03-06 株式会社理学 Fluorescent X-ray analysis device and method
KR101273714B1 (en) * 2012-03-26 2013-06-12 전북대학교산학협력단 Noise characteristic analysis method for x-ray fluorescence spectrum

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005969A1 (en) * 2003-07-11 2005-01-20 Waseda University Energy dispersion type x-ray diffraction/spectral device
US7352845B2 (en) 2003-07-11 2008-04-01 Waseda University Energy dispersion type X-ray diffraction/spectral device
JP2008256698A (en) * 2007-04-05 2008-10-23 Panalytical Bv Fluorescent x-ray analyzer
CN102959387A (en) * 2010-07-02 2013-03-06 株式会社理学 Fluorescent X-ray analysis device and method
EP2589956A1 (en) * 2010-07-02 2013-05-08 Rigaku Corporation Fluorescent x-ray analysis device and method
US8644450B2 (en) 2010-07-02 2014-02-04 Rigaku Corporation X-ray fluorescence spectrometer and X-ray fluorescence analyzing method
EP2589956A4 (en) * 2010-07-02 2014-04-02 Rigaku Denki Co Ltd Fluorescent x-ray analysis device and method
KR101273714B1 (en) * 2012-03-26 2013-06-12 전북대학교산학협력단 Noise characteristic analysis method for x-ray fluorescence spectrum

Also Published As

Publication number Publication date
JP2912127B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US6381303B1 (en) X-ray microanalyzer for thin films
Chantler et al. Measurement of the x-ray mass attenuation coefficient of copper using 8.85–20 keV synchrotron radiation
US7231016B2 (en) Efficient measurement of diffuse X-ray reflections
US5406609A (en) X-ray analysis apparatus
JP2954819B2 (en) Calibration method for total reflection X-ray fluorescence analyzer
US6678347B1 (en) Method and apparatus for quantitative phase analysis of textured polycrystalline materials
JP2004045369A (en) Method for evaluating orientation of polycrystalline material
JP2912127B2 (en) X-ray fluorescence analysis method
JPH0566204A (en) Total-reflection fluorescent x-ray analyzer
JP3968350B2 (en) X-ray diffraction apparatus and method
US20040047447A1 (en) Method and apparatus for thin film thickness mapping
JP3034420B2 (en) Background correction method for X-ray fluorescence analysis
JP2630249B2 (en) Total reflection X-ray fluorescence analyzer
JP3127875B2 (en) Total reflection X-ray fluorescence analysis method and apparatus
US6263042B1 (en) Apparatus for X-ray analysis in grazing exit conditions
JPH05240809A (en) Method and device for fluorescent x-ray analysis
JP2955142B2 (en) Total reflection X-ray fluorescence analyzer
JPH0792112A (en) X-ray evaluation system
JP3217871B2 (en) X-ray analyzer and total reflection X-ray fluorescence analyzer
JPH08338819A (en) Method and apparatus for x ray analysis
JP3950074B2 (en) Thickness measuring method and thickness measuring apparatus
JP2004503771A (en) X-ray reflectivity apparatus and method
JP2645227B2 (en) X-ray fluorescence analysis method
JP3404338B2 (en) X-ray reflectance measuring method and apparatus
JP2952284B2 (en) X-ray optical system evaluation method