JP3270829B2 - X-ray fluorescence analyzer - Google Patents

X-ray fluorescence analyzer

Info

Publication number
JP3270829B2
JP3270829B2 JP27315898A JP27315898A JP3270829B2 JP 3270829 B2 JP3270829 B2 JP 3270829B2 JP 27315898 A JP27315898 A JP 27315898A JP 27315898 A JP27315898 A JP 27315898A JP 3270829 B2 JP3270829 B2 JP 3270829B2
Authority
JP
Japan
Prior art keywords
sample
ray
rays
intensity
ray source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27315898A
Other languages
Japanese (ja)
Other versions
JPH11174007A (en
Inventor
久征 河野
正次 倉岡
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP27315898A priority Critical patent/JP3270829B2/en
Publication of JPH11174007A publication Critical patent/JPH11174007A/en
Application granted granted Critical
Publication of JP3270829B2 publication Critical patent/JP3270829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料とX線源間の
距離のばらつきによる測定誤差と、測定中の真空度の変
化による測定誤差の少なくとも一方を、簡単な構成で短
時間に除去できる蛍光X線分析装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can remove at least one of a measurement error due to a variation in the distance between a sample and an X-ray source and a measurement error due to a change in the degree of vacuum during measurement with a simple structure in a short time. The present invention relates to a fluorescent X-ray analyzer.

【0002】[0002]

【従来の技術】従来より、蛍光X線分析においては、試
料とX線源間の距離のばらつきによる測定誤差と、測定
中の真空度の変化による測定誤差は、大きな問題であっ
た。このうち、試料とX線源間の距離のばらつきによる
測定誤差については、例えば、X線源の側方に、レーザ
光を用いて距離測定を行う光学変位センサを備え、試料
をX線源の下方から変位センサの下方へ水平移動させて
X線源との距離を測定してこれが一定の値になるよう試
料の高さを調整した後、X線源の下方へ水平移動させて
戻すことにより、除去している。また、測定中の真空度
の変化による測定誤差については、例えば、真空引きに
十分な時間をかけ、真空度を測定しその真空度が一定の
高真空になるように制御することにより、除去してい
る。
2. Description of the Related Art Conventionally, in fluorescent X-ray analysis, measurement errors due to variations in the distance between a sample and an X-ray source and measurement errors due to changes in the degree of vacuum during measurement have been serious problems. Regarding measurement errors due to variations in the distance between the sample and the X-ray source, for example, an optical displacement sensor that performs distance measurement using laser light is provided on the side of the X-ray source, and the sample is connected to the X-ray source. By moving horizontally from below to below the displacement sensor, measuring the distance to the X-ray source, adjusting the height of the sample so that this becomes a constant value, and moving horizontally back below the X-ray source to return , Has been removed. In addition, measurement errors due to changes in the degree of vacuum during measurement are removed, for example, by taking sufficient time for evacuation, measuring the degree of vacuum, and controlling the degree of vacuum to a constant high vacuum. ing.

【0003】[0003]

【発明が解決しようとする課題】しかし、変位センサを
用いて試料とX線源間の距離のばらつきによる測定誤差
を除去する装置では、変位センサや試料を厳密に水平移
動させる機構が必要であり、装置の構成が複雑になる。
また、測定する真空度が一定の高真空になるように制御
して測定中の真空度の変化による測定誤差を除去する装
置では、高精度の真空計や制御機構が必要で装置の構成
が複雑になり、また、一定の高真空に到達するまでに、
すなわち測定開始までに時間がかかる。測定開始までの
待ち時間を短縮するために、いわゆる高真空用ポンプを
使用すること、例えばドライポンプ(オイルレスポン
プ)とTMP(分子ポンプ)とを連続して使用すること
も考えられるが、待ち時間の短縮には限度がある。
However, an apparatus for removing a measurement error due to a variation in the distance between a sample and an X-ray source using a displacement sensor requires a mechanism for strictly moving the displacement sensor and the sample horizontally. However, the configuration of the device becomes complicated.
In addition, a device that controls the degree of vacuum to be measured to a constant high vacuum and removes measurement errors due to changes in the degree of vacuum during measurement requires a high-precision vacuum gauge and control mechanism, and the configuration of the device is complicated. Until it reaches a certain high vacuum
That is, it takes time to start the measurement. In order to reduce the waiting time until the start of measurement, a so-called high vacuum pump may be used. For example, a dry pump (oilless pump) and a TMP (molecular pump) may be used continuously. There is a limit to the time reduction.

【0004】本発明は前記従来の問題に鑑みてなされた
もので、試料とX線源間の距離のばらつきによる測定誤
差と、測定中の真空度の変化による測定誤差の少なくと
も一方を、簡単な構成で短時間に除去できる蛍光X線分
析装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and at least one of a measurement error due to a variation in the distance between a sample and an X-ray source and a measurement error due to a change in the degree of vacuum during the measurement is simplified. It is an object of the present invention to provide a fluorescent X-ray analyzer that can be removed in a short time with a configuration.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の蛍光X線分析装置は、まず、試料が固定
される試料台と、試料に1次X線を照射するX線源と、
試料台のX線源に対する高さを調整する高さ調整器と、
試料から発生する2次X線の強度を測定する検出手段と
を備えている。また、この装置は、1次X線および検出
手段に入射する2次X線を通過させるスリットシステム
と、試料への1次X線の照射領域を制限する絞りとを有
する絞りブロックと、その絞りブロックを、前記スリッ
トシステムまたは絞りがX線源の前方に位置するよう
に、選択的に位置させる選択手段とを備えている。
To achieve the above object, an X-ray fluorescence spectrometer according to claim 1 comprises a sample stage on which a sample is fixed and an X-ray for irradiating the sample with primary X-rays. Source
A height adjuster for adjusting the height of the sample stage with respect to the X-ray source;
Detecting means for measuring the intensity of secondary X-rays generated from the sample. The apparatus further includes an aperture block having a slit system for passing the primary X-rays and secondary X-rays incident on the detection means, an aperture for limiting an irradiation area of the sample to the primary X-rays, and the aperture. Selection means for selectively positioning the block such that the slit system or aperture is located in front of the X-ray source.

【0006】さらに、この装置は、選択手段によりX線
源の前方にスリットシステムを位置させ、X線源から試
料に1次X線を照射させ、検出手段に試料から発生する
2次X線の強度を測定させながら、高さ調整器により、
試料台のX線源に対する高さを変化させ、2次X線の測
定強度が最大になる高さに調整する高さ調整手段を備え
ている。
Further, in this apparatus, the slit system is positioned in front of the X-ray source by the selecting means, the sample is irradiated with primary X-rays from the X-ray source, and the detecting means detects secondary X-rays generated from the sample. While measuring the strength, with the height adjuster,
Height adjustment means is provided for changing the height of the sample table with respect to the X-ray source and adjusting the height of the secondary X-ray to a maximum measurement intensity.

【0007】請求項1の装置によれば、測定に用いる絞
りブロックに設けたスリットシステムと、測定に用いる
検出手段とを利用して、試料とX線源間の距離を一定に
調整するので、変位センサや水平移動機構が不要で装置
の構成が簡単で済む。したがって、この装置によれば、
試料とX線源間の距離のばらつきによる測定誤差を簡単
な構成で短時間に除去できる。
According to the first aspect of the present invention, the distance between the sample and the X-ray source is adjusted to be constant by utilizing the slit system provided in the diaphragm block used for measurement and the detecting means used for measurement. A displacement sensor and a horizontal moving mechanism are not required, and the configuration of the apparatus can be simplified. Therefore, according to this device,
Measurement errors due to variations in the distance between the sample and the X-ray source can be eliminated in a short time with a simple configuration.

【0008】請求項2の蛍光X線分析装置は、まず、試
料が固定される試料台と、試料に1次X線を照射するX
線源と、試料台のX線源に対する高さを調整する高さ調
整器と、試料から発生する2次X線の強度を測定する検
出手段とを備えている。また、この装置は、1次X線お
よび検出手段に入射する2次X線を通過させるスリット
システムと、測定中の真空度に応じて測定される2次X
線の強度が変化するモニター試料と、試料への1次X線
の照射領域を制限する絞りとを有する絞りブロックと、
その絞りブロックを、前記スリットシステム、モニター
試料または絞りがX線源の前方に位置するように、選択
的に位置させる選択手段とを備えている。
According to a second aspect of the present invention, there is provided an X-ray fluorescence spectrometer comprising: a sample stage on which a sample is fixed;
The apparatus includes a radiation source, a height adjuster for adjusting the height of the sample stage with respect to the X-ray source, and a detecting means for measuring the intensity of secondary X-rays generated from the sample. In addition, the apparatus includes a slit system for passing the primary X-rays and the secondary X-rays incident on the detecting means, and a secondary X-ray measured according to the degree of vacuum during the measurement.
An aperture block having a monitor sample in which the intensity of the line changes, and an aperture for limiting an irradiation area of the sample with primary X-rays;
Selective means for selectively positioning the aperture block such that the slit system, monitor sample or aperture is located in front of the X-ray source.

【0009】さらに、この装置は、選択手段によりX線
源の前方にスリットシステムを位置させ、X線源から試
料に1次X線を照射させ、検出手段に試料から発生する
2次X線の強度を測定させながら、高さ調整器により、
試料台のX線源に対する高さを変化させ、2次X線の測
定強度が最大になる高さに調整する高さ調整手段を備え
ている。さらにまた、この装置は、選択手段によりX線
源の前方に絞りを位置させ、X線源から試料に1次X線
を照射させ、検出手段に試料から発生する2次X線の強
度を測定させる測定手段を備えている。さらにまた、こ
の装置は、その測定手段の作動の前後に、選択手段によ
りX線源の前方にモニター試料を位置させ、X線源から
モニター試料に1次X線を照射させ、検出手段にモニタ
ー試料から発生する2次X線の強度を測定させ、それら
モニター試料の測定強度に基づいて前記測定手段による
試料の測定強度の測定中の真空度を推定することによ
り、試料の測定強度を補正する補正手段を備えている。
Further, in this apparatus, the slit system is positioned in front of the X-ray source by the selection means, the sample is irradiated with primary X-rays from the X-ray source, and the detection means detects secondary X-rays generated from the sample. While measuring the strength, with the height adjuster,
Height adjustment means is provided for changing the height of the sample table with respect to the X-ray source and adjusting the height of the secondary X-ray to a maximum measurement intensity. Furthermore, in this apparatus, the diaphragm is positioned in front of the X-ray source by the selection means, the sample is irradiated with primary X-rays from the X-ray source, and the intensity of the secondary X-rays generated from the sample is measured by the detection means. Measurement means for measuring the temperature. Furthermore, the apparatus arranges the monitor sample in front of the X-ray source by the selection device before and after the operation of the measurement device, irradiates the monitor sample with the primary X-ray from the X-ray source, and monitors the detection device. The measurement intensity of the sample is corrected by measuring the intensity of the secondary X-rays generated from the sample and estimating the degree of vacuum during the measurement of the measurement intensity of the sample by the measuring means based on the measurement intensity of the monitor sample. A correction means is provided.

【0010】請求項2の装置によれば、測定に用いる絞
りブロックに設けたスリットシステムと、測定に用いる
検出手段とを利用して、試料とX線源間の距離を一定に
調整するので、変位センサや水平移動機構が不要で装置
の構成が簡単で済む。また、測定に用いる絞りブロック
に設けたモニター試料と、測定に用いる検出手段とを利
用し、モニター試料の測定強度に基づいて分析対象の試
料の測定強度の測定中の真空度を推定して補正するの
で、高精度の真空計や制御機構が不要で装置の構成が簡
単で済み、一定の高真空に到達する前に測定を開始でき
るので、測定作業全体が短時間で済む。したがって、こ
の装置によれば、試料とX線源間の距離のばらつきによ
る測定誤差と、測定中の真空度の変化による測定誤差の
両方を、簡単な構成で短時間に除去できる。
According to the second aspect of the present invention, the distance between the sample and the X-ray source is adjusted to be constant by utilizing the slit system provided in the aperture block used for measurement and the detection means used for measurement. A displacement sensor and a horizontal moving mechanism are not required, and the configuration of the apparatus can be simplified. In addition, using the monitor sample provided in the aperture block used for measurement and the detecting means used for measurement, the degree of vacuum during the measurement of the measured intensity of the sample to be analyzed is estimated and corrected based on the measured intensity of the monitor sample. Therefore, a high-precision vacuum gauge and a control mechanism are not required, the configuration of the apparatus is simple, and the measurement can be started before a certain high vacuum is reached, so that the entire measurement work can be completed in a short time. Therefore, according to this apparatus, both a measurement error due to a variation in the distance between the sample and the X-ray source and a measurement error due to a change in the degree of vacuum during the measurement can be removed with a simple configuration in a short time.

【0011】[0011]

【発明の実施の形態】以下、本発明の第1実施形態の装
置を図面にしたがって説明する。まず、この装置の構成
について説明する。図1に示すように、この装置は、試
料1が固定される試料台2と、試料1に1次X線3を照
射するX線源であるX線管4と、試料台2のX線管4に
対する高さを調整する高さ調整器5と、試料1から発生
する蛍光X線、散乱線等の2次X線6の強度を測定する
検出手段7とを備えている。ここで、検出手段7は、発
散スリット8、分光素子9、受光スリット10および検
出器11からなる。また、検出手段7は、試料1に含ま
れる分析対象の元素の数に応じて、X線管4の周囲に、
複数備えてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus according to a first embodiment of the present invention will be described below with reference to the drawings. First, the configuration of this device will be described. As shown in FIG. 1, this apparatus includes a sample stage 2 on which a sample 1 is fixed, an X-ray tube 4 which is an X-ray source for irradiating the sample 1 with primary X-rays 3, and an X-ray A height adjuster 5 for adjusting the height of the tube 4 is provided, and a detecting means 7 for measuring the intensity of secondary X-rays 6 such as fluorescent X-rays and scattered rays generated from the sample 1. Here, the detecting means 7 includes a divergent slit 8, a spectral element 9, a light receiving slit 10, and a detector 11. Further, the detecting means 7 is arranged around the X-ray tube 4 in accordance with the number of elements to be analyzed contained in the sample 1.
A plurality may be provided.

【0012】また、この装置は、1次X線3および検出
手段7に入射する2次X線6を通過させるスリットシス
テム14と、測定中の真空度に応じて測定される蛍光X
線6の強度が変化するモニター試料12(図2)と、試
料1への1次X線3の照射領域を制限する絞り13(図
3)とを有する絞りブロック15と、その絞りブロック
15を、前記スリットシステム14、モニター試料12
(図2)または絞り13(図3)がX線管4の前方に位
置するように、紙面垂直方向に移動させて選択的に位置
させる選択手段17とを備えている。なお、図1ないし
図3において、絞りブロック15、発散スリット8およ
び受光スリット10は、断面で示す。
Further, the apparatus comprises a slit system 14 for passing the primary X-ray 3 and the secondary X-ray 6 incident on the detecting means 7, and a fluorescent X-ray measured according to the degree of vacuum during the measurement.
An aperture block 15 having a monitor sample 12 (FIG. 2) in which the intensity of the line 6 changes, an aperture 13 (FIG. 3) for limiting an irradiation area of the sample 1 with the primary X-ray 3, and the aperture block 15 , The slit system 14, the monitor sample 12
There is provided a selection means 17 for moving the diaphragm 13 (FIG. 3) in the direction perpendicular to the paper surface and selectively positioning the diaphragm 13 (FIG. 3) in front of the X-ray tube 4. 1 to 3, the stop block 15, the divergent slit 8, and the light receiving slit 10 are shown in cross sections.

【0013】ここで、スリットシステム14は、絞りブ
ロック15に形成された、1次X線3を通過させるスリ
ット14aと検出手段7に入射する2次X線6を通過さ
せるスリット14bとからなる。また、図2に示すよう
に、例えば、シリコンウエハ上の付着物を分析対象とす
る場合には、含まれることが予想される元素のうち、発
生する蛍光X線6の吸収が真空度に鋭敏なもの、例えば
ほう素を、シリコンウエハに付着させたものをモニター
試料12とすればよい。モニター試料12の上方には、
モニター試料用絞り16が形成されている。なお、図3
に示す絞り13は、1次X線3の照射領域の大きさに応
じて、紙面垂直方向に複数備えてもよい。また、1次X
線3および2次X線6は、いわゆる針状のものに限ら
ず、紙面垂直方向に幅をもつ帯状のものでもよく、その
場合には、スリットシステム14、モニター試料用絞り
16、絞り13、発散スリット8および受光スリット1
0等も、対応させて紙面垂直に延びた形状とする。
Here, the slit system 14 includes a slit 14a formed on the aperture block 15 for passing the primary X-ray 3 and a slit 14b for passing the secondary X-ray 6 incident on the detecting means 7. Further, as shown in FIG. 2, for example, when an attached matter on a silicon wafer is to be analyzed, among the elements expected to be contained, the absorption of the generated fluorescent X-ray 6 is sensitive to the degree of vacuum. What is necessary is just to make the monitor sample 12 a material such as boron adhered to a silicon wafer. Above the monitor sample 12,
A monitor sample aperture 16 is formed. Note that FIG.
May be provided in the direction perpendicular to the plane of the paper according to the size of the irradiation area of the primary X-ray 3. Also, primary X
The line 3 and the secondary X-ray 6 are not limited to a so-called needle-shaped one, but may be a band-shaped one having a width in a direction perpendicular to the paper surface. In this case, the slit system 14, the monitor sample aperture 16, the aperture 13, Divergence slit 8 and light receiving slit 1
0 and the like also have a shape extending in a direction perpendicular to the paper of the drawing.

【0014】絞りブロックは、円板状として、その周囲
にスリットシステム、モニター試料および絞りを有する
ものであってもよく、その場合、選択手段は、その円板
状の絞りブロックを中心軸回りに回転させて、スリット
システム、モニター試料または絞りをX線管の前方に選
択的に位置させるものとすればよい。なお、複数の絞り
を有する絞りブロックと、いずれかの絞りがX線管の前
方に位置するように絞りブロックを選択的に位置させる
選択手段とは、蛍光X線装置に通常備えられ、本装置に
おいては、その絞りブロックに、スリットシステム14
と、モニター試料12(図2)とを設けている。
[0014] The aperture block may be a disc-shaped one having a slit system, a monitor sample, and an aperture around the disc, in which case the selection means may move the disc-shaped aperture block around the central axis. It may be rotated to selectively position the slit system, the monitor sample or the aperture in front of the X-ray tube. Note that an aperture block having a plurality of apertures and a selecting means for selectively positioning the aperture block so that one of the apertures is located in front of the X-ray tube are usually provided in a fluorescent X-ray apparatus, In the aperture block, the slit system 14
And a monitor sample 12 (FIG. 2).

【0015】さらに、この装置は、以下の高さ調整手段
18、測定手段19および補正手段20を含む制御手段
21を備えている。図1に示すように、高さ調整手段1
8は、選択手段17によりX線管4の前方にスリットシ
ステム14を位置させ、X線管4から試料1に1次X線
3を照射させ、検出手段7に試料1から発生する2次X
線6の強度を測定させながら、高さ調整器5により、試
料台2のX線管4に対する高さを変化させ、2次X線6
の測定強度が最大になる高さに調整する。
The apparatus further comprises a control means 21 including the following height adjusting means 18, measuring means 19 and correcting means 20. As shown in FIG.
Reference numeral 8 designates a slit system 14 positioned in front of the X-ray tube 4 by the selection means 17, irradiates the sample 1 from the X-ray tube 4 with primary X-rays 3, and causes the detection means 7 to emit secondary X-rays generated from the sample 1.
The height of the sample table 2 with respect to the X-ray tube 4 is changed by the height adjuster 5 while measuring the intensity of the
Adjust the height to the maximum measurement intensity.

【0016】また、図3に示すように、前記測定手段1
9は、選択手段17によりX線管4の前方に絞り13を
位置させ、X線管4から試料1に1次X線3を照射さ
せ、検出手段7に試料1から発生する蛍光X線6の強度
を測定させる。さらに、図2に示すように、前記補正手
段20は、その測定手段19の作動の前後に、選択手段
17によりX線管4の前方にモニター試料12を位置さ
せ、X線管4からモニター試料12に1次X線3を照射
させ、検出手段7にモニター試料12から発生する蛍光
X線6の強度を測定させ、それらモニター試料12の測
定強度に基づいて前記測定手段19による試料1の測定
強度の測定中の真空度を推定することにより、試料1の
測定強度を補正する。
Further, as shown in FIG.
Reference numeral 9 designates a diaphragm 13 located in front of the X-ray tube 4 by the selection means 17, irradiates the sample 1 with the primary X-rays 3 from the X-ray tube 4, and causes the detection means 7 to emit fluorescent X-rays 6 Is measured. Further, as shown in FIG. 2, before and after the operation of the measuring means 19, the correcting means 20 positions the monitor sample 12 in front of the X-ray tube 4 by the selecting means 17. 12 is irradiated with the primary X-rays 3, the detecting means 7 measures the intensity of the fluorescent X-rays 6 generated from the monitor sample 12, and the measurement of the sample 1 by the measuring means 19 based on the measured intensities of the monitor samples 12. The measurement intensity of the sample 1 is corrected by estimating the degree of vacuum during the measurement of the intensity.

【0017】次に、この装置の動作について説明する。
まず、図1に示すように、あらかじめ、例えば何も付着
させていないブランクウエハが基準となる試料1として
試料台2に固定され、制御手段21に距離特性を求める
べき旨が入力されると、高さ調整手段18は、選択手段
17によりX線管4の前方(下方)にスリットシステム
14を位置させ、X線管4からブランクウエハ1に1次
X線3を照射させ、検出手段7にブランクウエハ1から
発生するけい素(シリコン)の特性X線、Si−Kα線
である蛍光X線6の強度を測定させながら、高さ調整器
5により、試料台2のX線管4に対する高さを変化さ
せ、図4に示すような、蛍光X線6の測定強度Iの、試
料1とX線管4(厳密にはX線管4のターゲット)間の
距離dT に対する特性を求め、グラフ、表または式の形
で記憶する。
Next, the operation of this device will be described.
First, as shown in FIG. 1, for example, when a blank wafer on which nothing is attached is fixed to the sample table 2 as a reference sample 1 in advance, and it is input to the control unit 21 that distance characteristics should be obtained, The height adjusting means 18 positions the slit system 14 in front of (below) the X-ray tube 4 by the selecting means 17, irradiates the blank wafer 1 with the primary X-rays 3 from the X-ray tube 4, The height adjuster 5 measures the height of the sample table 2 with respect to the X-ray tube 4 while measuring the intensity of the characteristic X-rays of silicon (silicon) generated from the blank wafer 1 and the fluorescent X-rays 6 as Si-Kα rays. The characteristics of the measured intensity I of the fluorescent X-ray 6 with respect to the distance d T between the sample 1 and the X-ray tube 4 (strictly, the target of the X-ray tube 4) as shown in FIG. Store in graph, table or formula form.

【0018】また、高さ調整手段18は、この距離特性
において蛍光X線6の測定強度Iが最大IMAX になる試
料台2の高さを、基準高さとして記憶する。ここで、前
述したように、スリットシステム14は、1次X線3を
通過させるスリット14aと、検出手段7に入射する蛍
光X線6を通過させる、すなわち検出手段7における発
散スリット8、分光素子9および受光スリット10等の
光学系に合致したスリット14bとからなるから、蛍光
X線6の測定強度Iが最大IMAX になるとき、試料1の
表面はX線管4に対し、図1に示すような、発生する蛍
光X線6が、最大強度でスリット14bを通過して検出
手段7に入射する高さにある。換言すると、試料1の表
面とX線管4(厳密にはX線管4のターゲット)間の距
離は、最適な距離dTGになっている。ブランクウエハ、
すなわち基準となる試料1におけるこのような試料台2
の最適の高さを、基準高さとするのである。
The height adjusting means 18 stores, as the reference height, the height of the sample table 2 at which the measured intensity I of the fluorescent X-ray 6 at this distance characteristic becomes the maximum IMAX . Here, as described above, the slit system 14 includes the slit 14a that allows the primary X-ray 3 to pass therethrough and the fluorescent X-ray 6 that enters the detection unit 7 to pass therethrough. When the measured intensity I of the fluorescent X-rays 6 reaches the maximum IMAX , the surface of the sample 1 moves relative to the X-ray tube 4 as shown in FIG. As shown, the generated fluorescent X-rays 6 are at a height at which the fluorescent X-rays 6 pass through the slit 14b at the maximum intensity and enter the detecting means 7. In other words, the distance between the surface of the sample 1 and the X-ray tube 4 (strictly, the target of the X-ray tube 4) is the optimum distance d TG . Blank wafer,
That is, such a sample stage 2 in the sample 1 serving as a reference
The optimum height is set as the reference height.

【0019】以後、試料1が固定されるときには、試料
台2はまずこの基準高さにあるものとする。なお、これ
ら距離特性と基準高さは、装置固有のものであり、経時
変化を考慮しても一定期間(例えば24時間)ごとに求
めておけば足りるので、手動で求めて高さ調整手段18
に記憶させてもよい。
Thereafter, when the sample 1 is fixed, the sample table 2 is assumed to be at this reference height first. The distance characteristic and the reference height are unique to the apparatus, and need only be obtained at regular intervals (for example, 24 hours) even when time-dependent changes are considered.
May be stored.

【0020】また、図2に示すように、あらかじめ、制
御手段21に真空度特性を求めるべき旨が入力される
と、装置の測定雰囲気の真空引きが開始され、補正手段
20は、選択手段17によりX線管4の前方にモニター
試料、前述したように例えばほう素を付着させたシリコ
ンウエハ12を位置させ、X線管4からモニター試料1
2に1次X線3を照射させ、検出手段7にモニター試料
12から発生するほう素の特性X線、B−Kα線である
蛍光X線6の強度を測定させ、図5に示すような、蛍光
X線6の測定強度 MIの時間tに対する時間特性を求
め、グラフ、表または式の形で記憶する。なお、添字 M
は、モニター試料12に関する数値であることを示す。
As shown in FIG. 2, when the control means 21 is previously instructed to determine the degree of vacuum characteristic, the evacuation of the measurement atmosphere of the apparatus is started, and the correction means 20 selects the selection means 17. The monitor sample is placed in front of the X-ray tube 4 by, for example, the silicon wafer 12 to which, for example, boron is attached, as described above.
2 is irradiated with primary X-rays 3 and the detecting means 7 measures the intensity of the characteristic X-rays of boron generated from the monitor sample 12 and the intensity of the fluorescent X-rays 6 as B-Kα rays, as shown in FIG. , The time characteristic of the measured intensity MI of the fluorescent X-ray 6 with respect to the time t is obtained and stored in the form of a graph, a table or an equation. The subscript M
Indicates a numerical value related to the monitor sample 12.

【0021】ここで、蛍光X線6の測定強度 MIと雰囲
気の密度ρx (真空度に関係する)に対する関係が、次
式(1)に示すように、既知とし得る数値を用いて表さ
れるので、これも記憶する。ただし、実際には、X線管
4から試料1までの吸収は、試料1から検出器11まで
の吸収に比べて、きわめて小さいので、これを無視して
式(1)において第2項 exp{−(μ/ρ)S ・ρx
MS }を1としてもよい。なお、これら時間特性と式
(1)は、装置固有のものであり、経時変化を考慮して
も一定期間(例えば24時間)ごとに求めておけば足り
るので、手動で求めて補正手段20に記憶させてもよ
い。
[0021] Here, the relationship with respect to the fluorescence measured intensity of X-ray 6 M I and the atmosphere of the density [rho x (related to the degree of vacuum) is, as shown in the following equation (1), using a numerical value may be a known table This is also remembered. However, in actuality, the absorption from the X-ray tube 4 to the sample 1 is extremely small compared to the absorption from the sample 1 to the detector 11, so that the second term exp { − (Μ / ρ) S・ ρ x
M d S } may be set to 1. Note that these time characteristics and equation (1) are specific to the apparatus and need only be obtained at regular intervals (for example, 24 hours) even if changes over time are taken into account. It may be stored.

【0022】[0022]

【数1】 (Equation 1)

【0023】また、簡単のため、以上の高さ調整手段1
8と補正手段20との動作において、それぞれ図1また
は図2に表した同一の検出手段7を用いて説明したが、
実際には、両検出手段7は測定する蛍光X線6の波長が
異なるから、同一のものでなく、少なくとも一方は紙面
上にない。以下において、測定手段19の動作説明も含
めて、同様である。
For the sake of simplicity, the height adjusting means 1 described above is used.
8 and the operation of the correction means 20 have been described using the same detection means 7 shown in FIG. 1 or FIG. 2, respectively.
Actually, the two detecting means 7 are not the same because the wavelengths of the fluorescent X-rays 6 to be measured are different, and at least one of them is not on the paper. In the following, the same applies to the description of the operation of the measuring means 19.

【0024】以上で前もっての準備が終わり、図1に示
すように、試料台2に分析対象である試料1、例えばほ
う素を付着物として有するシリコンウエハ1が固定され
る。このとき、前述したように、試料台2は前記基準高
さにあるが、試料1の厚みやそりのばらつきにより、図
4に示すように、試料1の表面とX線管4との間の距離
T1には、前記最適の距離dTGから例えば±30μm程
度の範囲でずれdC が存在し得る。そこで、制御手段2
1にこの試料1について測定を行うべき旨が入力される
と、まず、図1の高さ調整手段18が、選択手段17に
よりX線管4の前方にスリットシステム14を位置さ
せ、X線管4から試料1に1次X線3を照射させ、高さ
調整器5により、試料台2のX線管4に対する高さを、
少なくとも2種類の高さで、例えば基準高さから上下に
0.3mm変化させ、検出手段7に試料1から発生する
蛍光X線6の強度IA ,IB を測定させる。
As described above, the preparation in advance is completed. As shown in FIG. 1, a sample 1 to be analyzed, for example, a silicon wafer 1 having boron as an adhering substance is fixed to a sample table 2. At this time, as described above, the sample stage 2 is at the reference height, but due to variations in the thickness and warpage of the sample 1, as shown in FIG. The distance d T1 may have a deviation d C within the range of, for example, about ± 30 μm from the optimum distance d TG . Therefore, the control means 2
When the sample 1 is input to the effect that the measurement is to be performed on the sample 1, first, the height adjusting means 18 of FIG. 4 irradiates the sample 1 with primary X-rays 3, and adjusts the height of the sample stage 2 with respect to the X-ray tube 4 by the height adjuster 5.
At least two height, for example, by 0.3mm changed vertically from the reference height, strength I A of the fluorescent X-rays 6 generated from the sample 1 to the detecting means 7, thereby measuring the I B.

【0025】高さ調整手段18は、この2点の測定結果
A ,IB を、記憶した図4の距離特性にあてはめて、
図4上のdTG−dT1として、前記ずれdC を求め、高さ
調整器5により、試料台2を基準高さからdC だけ上昇
させることにより、この試料1において、蛍光X線6の
強度が最大になる試料台2の最適の高さに調整する。こ
れにより、その試料1について、試料1の表面がX線管
4に対し、図1に示すような、発生する蛍光X線6が、
最大強度でスリット14bを通過して検出手段7に入射
する最適の高さになる。なお、このような動作によら
ず、分析対象試料1ごとに、図4に示すような距離特性
を求めて、測定される蛍光X線6の強度が実際に最大に
なる高さに、試料台2の高さを調整してもよい。
The height adjusting means 18, the measurement result I A of the two points, the I B, by applying the distance characteristic of FIG stored,
The difference d C is obtained as d TG −d T1 on FIG. 4, and the height of the sample stage 2 is raised from the reference height by d C by the height adjuster 5. Is adjusted to the optimum height of the sample stage 2 at which the strength of the sample table 2 is maximized. Thereby, regarding the sample 1, the fluorescent X-rays 6 generated as shown in FIG.
At the maximum intensity, the light passes through the slit 14b and enters the detection means 7 at an optimum height. Instead of such an operation, a distance characteristic as shown in FIG. 4 is obtained for each sample 1 to be analyzed, and the height of the sample X The height of 2 may be adjusted.

【0026】この装置によれば、測定に用いる絞りブロ
ック15に設けたスリットシステム14と、測定に用い
る検出手段7とを利用して、試料1とX線管4間の距離
を一定dTGに調整するので、変位センサや水平移動機構
が不要で装置の構成が簡単で済む。すなわち、この装置
によれば、試料1とX線管4間の距離dT のばらつきに
よる測定誤差を簡単な構成で除去できる。また、高さ調
整において測定する蛍光X線6としては、分析対象の試
料1から発生するもののうち、吸収が真空度に鈍感なも
の、例えば以上に説明した場合ではSi −Kα線を採用
することが望ましく、そうすれば、装置内の真空度が高
真空に達しないうちに高さ調整を行うことができ、測定
作業全体をより短時間で済ませることができる。
According to this apparatus, the distance between the sample 1 and the X-ray tube 4 is set to a constant d TG by using the slit system 14 provided in the diaphragm block 15 used for measurement and the detection means 7 used for measurement. Since the adjustment is performed, the displacement sensor and the horizontal moving mechanism are not required, and the configuration of the apparatus can be simplified. That is, according to this device can be removed measurement errors due to variations in the distance d T between the sample 1 and the X-ray tube 4 with a simple structure. Further, as the fluorescent X-rays 6 to be measured in the height adjustment, among the ones generated from the sample 1 to be analyzed, those whose absorption is insensitive to the degree of vacuum, for example, Si-Kα rays in the case described above may be used. In this case, the height can be adjusted before the degree of vacuum in the apparatus reaches a high vacuum, and the entire measurement operation can be completed in a shorter time.

【0027】次に、図2に示すように、補正手段20
は、後述する測定手段19の作動の前に、選択手段17
によりX線管4の前方にモニター試料12を位置させ、
X線管4からモニター試料12に1次X線3を照射さ
せ、検出手段7にモニター試料12から発生するほう素
の特性X線、B−Kα線である蛍光X線6の強度を、例
えば1秒間測定させ、その測定強度 M0 を記憶する。
Next, as shown in FIG.
Before the operation of the measuring means 19 described later, the selecting means 17
To position the monitor sample 12 in front of the X-ray tube 4,
The X-ray tube 4 irradiates the monitor sample 12 with primary X-rays 3, and the detecting means 7 determines the intensity of the characteristic X-rays of boron generated from the monitor sample 12 and the intensity of the fluorescent X-rays 6 which are BKα rays. It is measured for 1 second, and stores the measured intensity M I 0.

【0028】続いて、図3に示すように、測定手段19
は、選択手段17によりX線管4の前方に絞り13を位
置させ、X線管4から分析対象の試料1に1次X線3を
照射させ、検出手段7に試料1から発生するB−Kα線
である蛍光X線6の強度を、例えば1秒間ずつn回すな
わちn秒間測定させ、それらの測定強度I1 〜In を記
憶する。
Subsequently, as shown in FIG.
Is to position the aperture 13 in front of the X-ray tube 4 by the selecting means 17, irradiate the sample 1 to be analyzed from the X-ray tube 4 with primary X-rays 3, and to apply the B- the intensity of the fluorescent X-ray 6 is a Kα line, for example, by measuring one second n times ie n seconds, stores those measured intensities I 1 ~I n.

【0029】この測定手段19の作動の後にさらに続い
て、図2に示すように、補正手段20は、選択手段17
によりX線管4の前方にモニター試料12を位置させ、
X線管4からモニター試料12に1次X線3を照射さ
せ、検出手段7にモニター試料12から発生するB−K
α線6の強度を、例えば1秒間測定させ、その測定強度
Mn+1 を記憶する。
Following the operation of the measuring means 19,
Thus, as shown in FIG.
To position the monitor sample 12 in front of the X-ray tube 4,
The monitor sample 12 is irradiated with the primary X-ray 3 from the X-ray tube 4.
BK generated from the monitor sample 12 by the detecting means 7.
The intensity of α ray 6 is measured, for example, for one second, and the measured intensity is
MIn + 1Is stored.

【0030】そして、補正手段20は、以下のように、
記憶したモニター試料12の測定強度 M0 Mn+1
に基づいて、記憶した試料1の測定強度I1 〜In の測
定中の雰囲気の密度ρ1 〜ρn (真空度に関係する)を
推定することにより、試料1の測定強度I1 〜In を補
正する。まず、モニター試料12の測定強度 M0 M
n+1 を図5の時間特性に当てはめ、対応する時刻を
0,n+1とする。また、横軸において0からn+1ま
でをn+1等分することにより、試料1についてn回測
定した1からnの各回に対応する時刻を求め、さらに、
各時刻に対応すべきモニター試料12の測定強度(実際
には測定していない) M1 Mn を求める。そし
て、時刻0,n+1における雰囲気の密度ρ0 ,ρn+1
を、式(1)を変形した次式(2),(3)により算出
し、同様に、時刻1〜nにおける雰囲気の密度ρ1 〜ρ
n を、次式(4)により推定算出する。
Then, the correction means 20 operates as follows:
Measurement intensity of stored monitor sample 12MI0,MIn + 1
The measured intensity I of the stored sample 1 based on1~ InMeasurement
Density of constant atmosphere ρ1~ Ρn(Related to vacuum)
By estimating, the measured intensity I of sample 11~ InComplement
Correct. First, the measurement intensity of the monitor sample 12MI0, M
In + 1To the time characteristic of FIG. 5, and the corresponding time
0, n + 1. Also, from 0 to n + 1 on the horizontal axis
Is measured n times for sample 1 by dividing
The time corresponding to each of the times 1 to n is determined, and further,
The measured intensity of the monitor sample 12 that should correspond to each time (actual
Has not been measured)MI1~MInAsk for. Soshi
And the density ρ of the atmosphere at time 0, n + 10, Ρn + 1
Is calculated by the following equations (2) and (3) obtained by modifying the equation (1).
Similarly, the density ρ of the atmosphere at times 1 to n1~ Ρ
nIs estimated and calculated by the following equation (4).

【0031】[0031]

【数2】 (Equation 2)

【0032】[0032]

【数3】 (Equation 3)

【0033】[0033]

【数4】 (Equation 4)

【0034】ここで、試料1の測定強度Ij (I1 〜I
n )は、式(1)のモニター試料12の測定強度 MIと
同様に、次式(5)で表されるので、補正手段20は、
前記求めた雰囲気の密度ρ1 〜ρn を用いて、次式
(6)により、試料1の測定強度Ij から、この装置に
おける最高到達真空度において測定されるべき1回当た
り(1秒当たり)の平均の強度 CIを求める。
Here, the measured intensity I j (I 1 to I
n ) is expressed by the following equation (5), similarly to the measured intensity MI of the monitor sample 12 in the equation (1).
Using the density ρ 1 to ρ n of the atmosphere thus obtained, the following formula (6) is used to calculate the intensity (I j ) of the sample 1 per one time (per second) to be measured at the highest ultimate vacuum degree in this apparatus. obtaining the average of the intensity C I) of.

【0035】[0035]

【数5】 (Equation 5)

【0036】[0036]

【数6】 (Equation 6)

【0037】ほう素以外の元素について、対応する検出
手段7で測定する場合にも、対応する既知とし得る数値
(μ・ρ)S ,(μ・ρ)D ,dD 等と、前記求めた雰
囲気の密度ρ1 〜ρn (ほう素以外の元素についても適
用できる)とを用いて、同様に、その元素の特性X線に
ついて、試料1の測定強度Ij から、この装置における
最高到達真空度において測定されるべき平均強度 CIを
求める。
When an element other than boron is measured by the corresponding detecting means 7, the corresponding known numerical values (μ · ρ) S , (μ · ρ) D , d D, etc. are obtained. Similarly, using the densities ρ 1 to ρ n of the atmosphere (applicable to elements other than boron) as well, for the characteristic X-ray of the element, from the measured intensity I j of the sample 1, Determine the average intensity CI to be measured in degrees.

【0038】なお、高さ調整手段18による、分析対象
試料1における試料台2の高さ調整は、補正手段20に
よる、1回目のモニター試料12の蛍光X線6の強度 M
0の測定と、測定手段19による、その分析対象試料
1の蛍光X線6の強度I1 〜In の測定との間に行って
もよい。
The height adjustment means 18 adjusts the height of the sample table 2 in the sample 1 to be analyzed by the correction means 20 to adjust the intensity M of the fluorescent X-ray 6 of the first monitor sample 12.
The measurement of I 0, by measuring means 19 may be performed between the measurement of the intensity I 1 ~I n of the fluorescent X-ray 6 of the analysis sample 1.

【0039】この装置によれば、測定に用いる絞りブロ
ック15に設けたモニター試料12と、測定に用いる検
出手段7とを利用し、モニター試料12の測定強度 M
0 Mn+1 に基づいて分析対象の試料1の測定強度I
1 〜In の測定中の真空度を推定して補正するので、高
精度の真空計や制御機構が不要で装置の構成が簡単で済
み、一定の高真空に到達する前に測定を開始できるの
で、測定作業全体が短時間で済む。したがって、前記高
さ調整手段18による効果と併せて、この装置によれ
ば、試料1とX線管4間の距離のばらつきによる測定誤
差と、測定中の真空度の変化による測定誤差の両方を、
簡単な構成で短時間に除去できる。
According to this device, the diaphragm blower used for measurement is
The monitor sample 12 provided in the
Using the output means 7 to measure the intensity of the monitor sample 12MI
0, MIn + 1Intensity I of sample 1 to be analyzed based on
1~ InSince the degree of vacuum during measurement is estimated and corrected,
No need for a precision vacuum gauge or control mechanism, simplifies equipment configuration
Measurement can be started before reaching a certain high vacuum.
Thus, the entire measurement operation can be completed in a short time. Therefore, the high
In addition to the effect of the
For example, a measurement error due to a variation in the distance between the sample 1 and the X-ray tube 4 may occur.
Both the difference and the measurement error due to the change in the degree of vacuum during the measurement,
It can be removed in a short time with a simple configuration.

【0040】次に、本発明の第2実施形態の装置を図6
にしたがって説明する。第2実施形態の装置は、高さ調
整手段18の作動時に使用される検出手段27、すなわ
ちスリットシステム14に対応する検出手段27の構成
が、前記第1実施形態の装置における検出手段7(図
1)と異なる。具体的には、この検出手段27は、分光
素子を含まず、発散スリット8、受光スリット10、X
線シャッター22および検出器11からなる。高さ調整
手段18は、作動時に、進退手段23により検出器11
の前方からX線シャッター22を退避させ(図6に示す
状態)、非作動時には、進退手段23により検出器11
の前方にX線シャッター22を進出させる。
Next, the apparatus according to the second embodiment of the present invention is shown in FIG.
It is explained according to. In the device of the second embodiment, the detecting means 27 used when the height adjusting means 18 is operated, that is, the structure of the detecting means 27 corresponding to the slit system 14 is the same as the detecting means 7 (FIG. Different from 1). Specifically, the detecting means 27 does not include a spectral element, and includes a divergence slit 8, a light receiving slit 10, and X
It comprises a line shutter 22 and a detector 11. The height adjusting means 18 is operated by the reciprocating means 23 during operation.
The X-ray shutter 22 is retracted from the front of the camera (the state shown in FIG. 6).
The X-ray shutter 22 is advanced forward of.

【0041】スリットシステム14に対応する検出手段
27に分光素子を用いないのは、前述したように高さ調
整において測定する蛍光X線6としてSi −Kα線を採
用すると、分析対象の試料1が例えば厚さ数μmのアル
ミニウムを製膜されたシリコンウエハ1である場合に
は、基板であるシリコンから発生したSi −Kα線6が
厚いアルミニウムの膜に吸収され微弱となり、これを分
光素子で回折させるとさらに微弱となって、検出器11
での強度測定が困難となるからである。なお、分光素子
を用いず検出器11がSSDでなくても、Si −Kα線
6が極端に微弱でなければ、検出器11に通常用いられ
る波高分析器で分光して強度測定が可能であり、高さ調
整のための強度測定としてはそれで十分である。
The reason why the spectroscopic element is not used for the detecting means 27 corresponding to the slit system 14 is that if the Si-Kα ray is adopted as the fluorescent X-ray 6 to be measured in the height adjustment as described above, the sample 1 to be analyzed becomes For example, in the case of a silicon wafer 1 on which aluminum having a thickness of several μm is formed, the Si—Kα ray 6 generated from silicon as a substrate is absorbed by a thick aluminum film and becomes weak, and this is diffracted by a spectral element. If it is made weaker, the detector 11
This is because it becomes difficult to measure the strength at a time. In addition, even if the detector 11 is not an SSD without using a spectroscopic element, if the Si-Kα ray 6 is not extremely weak, the intensity can be measured by spectral separation using a pulse height analyzer usually used for the detector 11. That is sufficient for strength measurement for height adjustment.

【0042】また、分析対象の試料1がけい素(シリコ
ン)を含まない場合には、波長においてSi −Kα線近
傍の散乱線6の強度を検出器11で測定すれば高さ調整
が可能であるが、そのような場合にも、散乱線6がより
微弱にならないように分光素子を用いるべきでない。
When the sample 1 to be analyzed does not contain silicon (silicon), the height can be adjusted by measuring the intensity of the scattered radiation 6 near the Si-Kα ray at the wavelength with the detector 11. However, even in such a case, the spectral element should not be used so that the scattered radiation 6 is not weakened.

【0043】スリットシステム14に対応する検出手段
27の検出器11の直前にX線シャッター22を設け
て、高さ調整手段18の非作動時に進退手段23により
検出器11を覆うように進出させるのは、この検出手段
27においては検出器11が試料1を見込む方向を向い
ており、X線シャッター22がなければ、測定手段19
による分析対象の試料1についての測定時(図3)等
に、試料1から発生する強い強度の蛍光X線6が検出器
11に入射し続け、検出器11の寿命を無駄に短くして
しまうからである。以上に述べた以外の構成、動作、作
用効果は、前記第1実施形態の装置と同様である。
An X-ray shutter 22 is provided immediately before the detector 11 of the detecting means 27 corresponding to the slit system 14 so that when the height adjusting means 18 is not operated, the advancing / retreating means 23 advances so as to cover the detector 11. In the detection means 27, the detector 11 is oriented in the direction of looking at the sample 1, and if there is no X-ray shutter 22, the measurement means 19
During the measurement of the sample 1 to be analyzed by the method (FIG. 3) or the like, the fluorescent X-rays 6 having a strong intensity generated from the sample 1 continue to be incident on the detector 11, and the life of the detector 11 is shortened unnecessarily. Because. The configurations, operations, and effects other than those described above are the same as those of the device of the first embodiment.

【0044】なお、本発明において、試料とX線源間の
距離のばらつきによる測定誤差の除去のみを目的とする
装置の場合は、前記測定手段19を備えず、手動で、選
択手段17によりX線管4の前方に絞り13を位置さ
せ、X線管4から分析対象の試料1に1次X線3を照射
させ、検出手段7に試料1から発生する蛍光X線6の強
度を測定させてもよい。また、同装置の場合は、前記絞
りブロック15におけるモニター試料12、補正手段2
0も備えなくてよい。
In the present invention, in the case of an apparatus only for removing a measurement error due to a variation in the distance between the sample and the X-ray source, the measuring means 19 is not provided, and the X-ray source is manually operated by the selecting means 17. An aperture 13 is positioned in front of the X-ray tube 4, the primary X-ray 3 is irradiated from the X-ray tube 4 to the sample 1 to be analyzed, and the detecting means 7 measures the intensity of the fluorescent X-ray 6 generated from the sample 1. You may. In the case of the same apparatus, the monitor sample 12 and the correction means 2 in the aperture block 15 are used.
It is not necessary to provide 0.

【0045】[0045]

【発明の効果】以上詳細に説明したように、本発明によ
れば、試料とX線源間の距離のばらつきによる測定誤差
と、測定中の真空度の変化による測定誤差の少なくとも
一方を、簡単な構成で短時間に除去できる。
As described above in detail, according to the present invention, at least one of the measurement error due to the variation in the distance between the sample and the X-ray source and the measurement error due to the change in the degree of vacuum during the measurement can be simplified. With a simple configuration, it can be removed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の装置において、高さ調
整手段の作動中の状態を示す側面図である。
FIG. 1 is a side view showing a state in which a height adjusting means is operating in a device according to a first embodiment of the present invention.

【図2】同装置において、補正手段の作動中の状態を示
す側面図である。
FIG. 2 is a side view showing a state in which a correction unit is operating in the apparatus.

【図3】同装置において、測定手段の作動中の状態を示
す側面図である。
FIG. 3 is a side view showing a state in which the measuring means is operating in the apparatus.

【図4】同装置において、高さ調整手段にあらかじめ記
憶しておく距離特性を示す図である。
FIG. 4 is a diagram showing distance characteristics stored in advance in height adjustment means in the apparatus.

【図5】同装置において、補正手段にあらかじめ記憶し
ておく時間特性を示す図である。
FIG. 5 is a diagram showing a time characteristic stored in advance in a correction unit in the apparatus.

【図6】本発明の第2実施形態の装置において、高さ調
整手段の作動中の状態を示す側面図である。
FIG. 6 is a side view showing a state during operation of a height adjusting unit in the device according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…試料、2…試料台、3…1次X線、4…X線源(X
線管)、5…高さ調整器、6…2次X線、7,27…検
出手段、12…モニター試料、13…絞り、14…スリ
ットシステム、15…絞りブロック、17…選択手段、
18…高さ調整手段、19…測定手段、20…補正手
段。
DESCRIPTION OF SYMBOLS 1 ... sample, 2 ... sample stage, 3 ... primary X-ray, 4 ... X-ray source (X
5) height adjuster, 6 ... secondary X-ray, 7, 27 ... detection means, 12 ... monitor sample, 13 ... aperture, 14 ... slit system, 15 ... aperture block, 17 ... selection means,
18 height adjusting means, 19 measuring means, 20 correcting means.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 23/00 - 23/227 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 23/00-23/227

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料台のX線源に対する高さを調整する高さ調整器と、 試料から発生する2次X線の強度を測定する検出手段
と、 1次X線および検出手段に入射する2次X線を通過させ
るスリットシステムと、試料への1次X線の照射領域を
制限する絞りとを有する絞りブロックと、 その絞りブロックを、前記スリットシステムまたは絞り
がX線源の前方に位置するように、選択的に位置させる
選択手段と、 選択手段によりX線源の前方にスリットシステムを位置
させ、X線源から試料に1次X線を照射させ、検出手段
に試料から発生する2次X線の強度を測定させながら、
高さ調整器により、試料台のX線源に対する高さを変化
させ、2次X線の測定強度が最大になる高さに調整する
高さ調整手段とを備えた蛍光X線分析装置。
1. A sample stage on which a sample is fixed; an X-ray source for irradiating the sample with primary X-rays; a height adjuster for adjusting the height of the sample stage relative to the X-ray source; Detecting means for measuring the intensity of secondary X-rays, a slit system for passing the primary X-rays and secondary X-rays incident on the detecting means, and a diaphragm for limiting the irradiation area of the sample with primary X-rays A diaphragm block having: a selector for selectively positioning the diaphragm block so that the slit system or the diaphragm is located in front of the X-ray source; and positioning the slit system in front of the X-ray source by the selector. While irradiating the sample with primary X-rays from the X-ray source and causing the detecting means to measure the intensity of secondary X-rays generated from the sample,
A fluorescent X-ray analysis apparatus comprising: a height adjuster that changes a height of a sample stage with respect to an X-ray source and adjusts the height of a secondary X-ray to a maximum measurement intensity.
【請求項2】 試料が固定される試料台と、 試料に1次X線を照射するX線源と、 試料台のX線源に対する高さを調整する高さ調整器と、 試料から発生する2次X線の強度を測定する検出手段
と、 1次X線および検出手段に入射する2次X線を通過させ
るスリットシステムと、測定中の真空度に応じて測定さ
れる2次X線の強度が変化するモニター試料と、試料へ
の1次X線の照射領域を制限する絞りとを有する絞りブ
ロックと、 その絞りブロックを、前記スリットシステム、モニター
試料または絞りがX線源の前方に位置するように、選択
的に位置させる選択手段と、 選択手段によりX線源の前方にスリットシステムを位置
させ、X線源から試料に1次X線を照射させ、検出手段
に試料から発生する2次X線の強度を測定させながら、
高さ調整器により、試料台のX線源に対する高さを変化
させ、2次X線の測定強度が最大になる高さに調整する
高さ調整手段と、 選択手段によりX線源の前方に絞りを位置させ、X線源
から試料に1次X線を照射させ、検出手段に試料から発
生する2次X線の強度を測定させる測定手段と、その測
定手段の作動の前後に、選択手段によりX線源の前方に
モニター試料を位置させ、X線源からモニター試料に1
次X線を照射させ、検出手段にモニター試料から発生す
る2次X線の強度を測定させ、それらモニター試料の測
定強度に基づいて前記測定手段による試料の測定強度の
測定中の真空度を推定することにより、試料の測定強度
を補正する補正手段とを備えた蛍光X線分析装置。
2. A sample stage on which a sample is fixed; an X-ray source for irradiating the sample with primary X-rays; a height adjuster for adjusting the height of the sample stage relative to the X-ray source; Detecting means for measuring the intensity of the secondary X-ray; a slit system for passing the primary X-ray and the secondary X-ray incident on the detecting means; and a secondary X-ray which is measured according to the degree of vacuum during the measurement. An aperture block having a monitor sample whose intensity changes and an aperture for limiting the irradiation area of the sample with primary X-rays; and positioning the aperture block with the slit system, monitor sample or aperture in front of the X-ray source. Selecting means for selectively positioning the slit system in front of the X-ray source by the selecting means, irradiating the sample with primary X-rays from the X-ray source, and causing the detecting means to generate primary X-rays from the sample. While measuring the intensity of the next X-ray,
A height adjuster that changes the height of the sample table with respect to the X-ray source and adjusts the height of the secondary X-ray to a maximum measurement intensity; Measuring means for positioning the aperture, irradiating the sample with primary X-rays from the X-ray source, and causing detecting means to measure the intensity of secondary X-rays generated from the sample, and selecting means before and after the operation of the measuring means Position the monitor sample in front of the X-ray source by
Irradiates the next X-ray, and causes the detecting means to measure the intensity of the secondary X-ray generated from the monitor sample, and estimates the degree of vacuum during the measurement of the measured intensity of the sample by the measuring means based on the measured intensity of the monitor sample. X-ray fluorescence spectrometer provided with a correction means for correcting the measurement intensity of the sample by performing the measurement.
JP27315898A 1997-10-06 1998-09-28 X-ray fluorescence analyzer Expired - Fee Related JP3270829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27315898A JP3270829B2 (en) 1997-10-06 1998-09-28 X-ray fluorescence analyzer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27264997 1997-10-06
JP9-272649 1997-10-06
JP27315898A JP3270829B2 (en) 1997-10-06 1998-09-28 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JPH11174007A JPH11174007A (en) 1999-07-02
JP3270829B2 true JP3270829B2 (en) 2002-04-02

Family

ID=26550308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27315898A Expired - Fee Related JP3270829B2 (en) 1997-10-06 1998-09-28 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3270829B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614545B2 (en) * 2011-06-30 2014-10-29 株式会社リガク X-ray fluorescence analyzer
JP6096419B2 (en) * 2012-04-12 2017-03-15 株式会社堀場製作所 X-ray detector
JP6990460B2 (en) * 2020-06-19 2022-01-12 株式会社リガク X-ray fluorescence analyzer, judgment method and judgment program

Also Published As

Publication number Publication date
JPH11174007A (en) 1999-07-02

Similar Documents

Publication Publication Date Title
JPH10274518A (en) Method and device for measuring thickness of thin layer by fluorescent x-ray
JP2005207982A (en) Spectroscope, and measuring device using it
US6885726B2 (en) Fluorescent X-ray analysis apparatus
JP3270829B2 (en) X-ray fluorescence analyzer
JP2720131B2 (en) X-ray reflection profile measuring method and apparatus
JP4677217B2 (en) Sample inspection method, sample inspection apparatus, cluster tool for manufacturing microelectronic devices, apparatus for manufacturing microelectronic devices
JPH06100545B2 (en) Fluorescence image densitometer by flying spot method
JP2000275113A (en) Method and apparatus for measuring x-ray stress
EP0697109B1 (en) X-ray spectrometer with a grazing take-off angle
EP3822622B1 (en) X-ray analysis system, x-ray analysis device, and vapor phase decomposition device
JP2891780B2 (en) Energy beam irradiation angle setting method
JP3286010B2 (en) X-ray fluorescence analyzer and X-ray irradiation angle setting method
JP2978460B2 (en) Method and apparatus for setting incident angle in total reflection X-ray fluorescence analysis
JP2921597B2 (en) Total reflection spectrum measurement device
JPH07286977A (en) X-ray analysis device and x-ray analyzing method
JP3599870B2 (en) X-ray irradiation positioning method and X-ray CT apparatus
JP2009222727A (en) Spectrometer
JP2001133420A (en) Method and apparatus for total reflection x-ray fluorescence analysis
JPH1164253A (en) Fluorescent x-ray analyzer
JP2000275193A (en) Method and apparatus for measuring surface density
JPH10311809A (en) Method and device for analyzing total reflection fluorescent x-ray
JPH0833358B2 (en) Total reflection fluorescent X-ray analyzer
JP2554104Y2 (en) X-ray fluorescence analyzer
JPWO2021144634A5 (en)
JP2000180388A (en) X-ray diffraction apparatus and x-ray diffracting and measuring method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees