JP2001133420A - Method and apparatus for total reflection x-ray fluorescence analysis - Google Patents

Method and apparatus for total reflection x-ray fluorescence analysis

Info

Publication number
JP2001133420A
JP2001133420A JP31651899A JP31651899A JP2001133420A JP 2001133420 A JP2001133420 A JP 2001133420A JP 31651899 A JP31651899 A JP 31651899A JP 31651899 A JP31651899 A JP 31651899A JP 2001133420 A JP2001133420 A JP 2001133420A
Authority
JP
Japan
Prior art keywords
sample
ray
slit
rays
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31651899A
Other languages
Japanese (ja)
Inventor
Akihiro Ikeshita
昭弘 池下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP31651899A priority Critical patent/JP2001133420A/en
Publication of JP2001133420A publication Critical patent/JP2001133420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus, for a total reflection X-ray fluorescence analysis, in which a part near the side end face of a sample can be analyzed and in which the sample can be used effectively. SOLUTION: In this total reflection X-ray fluorescence analysis, a visual-field limitation member 6 which comprises a plurality of slits is arranged between a sample 50 and an X-ray detector 4 so as to be capable of being changed over. When a part near the side end face of the sample is analyzed, the limitation member is changed over to a second slit 62 whose opening area is smaller than that of a first slit 61 used for an ordinary analysis. A visual field is limited in such a way that fluorescent X-rays and scattered X-rays from the side end face of the sample are not taken into the X-ray detector 4. Consequently, even when the part near the side end face of the sample is analyzed, the fluorescent X-rays and the scattered X-rays from the side end face of the sample are not taken into the X-ray detector 4, and the sample 50 including the part near the side end face can be analyzed as a whole. A specific place which is narrower than the sample can be analyzed by the second slit 62.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料表面に一次X
線を微小な入射角で照射して、試料の表面層からの蛍光
X線を分析する全反射蛍光X線分析装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a total reflection X-ray fluorescence spectrometer that irradiates a line at a small incident angle and analyzes X-ray fluorescence from a surface layer of a sample.

【0002】[0002]

【従来の技術】一般に、全反射蛍光X線分析装置は、試
料の表面層に含まれた微量の不純物を高感度で非破壊分
析できる装置として知られている。図7に、従来の全反
射蛍光X線分析装置の一例を示す。図示しないX線源か
ら出た一次X線B1は、試料50の表面51に微小な入
射角α(例えば、0.05°〜0.20°程度)で照射される。
入射した一次X線B1は、その一部が全反射されて反射
X線B2となり、他の一部が試料50を励起して、試料
50を構成する元素固有の蛍光X線B3を発生させる。
蛍光X線B3は、試料表面51に対向して配置した半導
体検出器(SSD)のようなX線検出器4に入射する。
この入射した蛍光X線B3は、X線検出器4において、
そのX線強度が検出された後、X線検出器4からの検出
信号aに基づき、多重波高分析器5によって目的とする
X線スペクトルが得られる。
2. Description of the Related Art In general, a total reflection X-ray fluorescence spectrometer is known as a device capable of non-destructively analyzing trace impurities contained in a surface layer of a sample with high sensitivity. FIG. 7 shows an example of a conventional total reflection X-ray fluorescence spectrometer. Primary X-rays B1 emitted from an unillustrated X-ray source are applied to the surface 51 of the sample 50 at a small incident angle α (for example, about 0.05 ° to 0.20 °).
A part of the incident primary X-ray B1 is totally reflected and becomes a reflected X-ray B2, and another part excites the sample 50 to generate a fluorescent X-ray B3 unique to the element constituting the sample 50.
The fluorescent X-rays B3 are incident on an X-ray detector 4 such as a semiconductor detector (SSD) arranged to face the sample surface 51.
The X-ray fluorescence B3 incident on the X-ray detector 4
After the X-ray intensity is detected, the target X-ray spectrum is obtained by the multiplex height analyzer 5 based on the detection signal a from the X-ray detector 4.

【0003】この種の全反射蛍光X線分析装置は、一次
X線B1の入射角αが微小であることから、反射X線B
2および散乱X線がX線検出器4に入射しにくく、X線
検出器4により検出される蛍光X線B3の出力レベルに
比べてノイズが小さいという利点がある。つまり、大き
なS/N比が得られ、そのため、分析精度が良く、たと
えば、微量の不純物でも検出できるという利点がある。
In this type of total reflection X-ray fluorescence spectrometer, since the incident angle α of the primary X-ray B1 is very small, the reflected X-ray B
2 and scattered X-rays are less likely to be incident on the X-ray detector 4, and there is an advantage that the noise is smaller than the output level of the fluorescent X-rays B3 detected by the X-ray detector 4. That is, a large S / N ratio can be obtained, and therefore, there is an advantage that the analysis accuracy is high and, for example, even a trace amount of impurities can be detected.

【0004】[0004]

【発明が解決しようとする課題】しかし、試料50がシ
リコン(Si)ウエハや磁気ディスク等のような場合、
図8のように、一般に、例えばシリコンウエハ50の側
端部(エッジ部)54のほうがその中央部55よりも汚
染されている場合が多いので、エッジ部近傍53に一次
X線B1を照射して分析する必要がある。その場合、前
述のように、一次X線B1の入射角αが極めて小さいこ
とから、一次X線B1の照射方向のスポット径D(図
7)が大きくなるのは避けられず、シリコンウエハ50
のエッジ部54に一次X線B1が照射される場合があ
り、このエッジ部54からのシリコン(Si)の反射X
線や散乱X線のような外乱線B4がX線検出器4に入射
することにより、S/N比が著しく低下する。したがっ
て、分析可能なエッジ部近傍53の範囲は、エッジ部5
4からの外乱線B4が発生しない範囲内、つまり、エッ
ジ部54に十分接近した部分を除いた範囲内に制限され
る。その結果、エッジ部54に十分接近した部分の分析
が困難であった。
However, when the sample 50 is a silicon (Si) wafer, a magnetic disk or the like,
As shown in FIG. 8, in general, for example, the side edge (edge portion) 54 of the silicon wafer 50 is more contaminated than the central portion 55, and therefore, the vicinity 53 of the edge portion is irradiated with the primary X-ray B1. Need to be analyzed. In this case, as described above, since the incident angle α of the primary X-ray B1 is extremely small, it is inevitable that the spot diameter D (FIG. 7) in the irradiation direction of the primary X-ray B1 becomes large, and the silicon wafer 50
May be irradiated with the primary X-rays B1. The reflection X of silicon (Si) from the edge
When a disturbance line B4 such as a ray or a scattered X-ray enters the X-ray detector 4, the S / N ratio is significantly reduced. Therefore, the range of the edge portion vicinity 53 that can be analyzed is the edge portion 5
4 is limited to a range where the disturbance line B4 does not occur, that is, a range excluding a portion sufficiently close to the edge portion 54. As a result, it was difficult to analyze a portion sufficiently close to the edge portion 54.

【0005】本発明は上記の問題点を解決して、側端面
近傍も含めた試料全体の分析が可能な全反射蛍光X線分
析方法および装置を提供することを目的としている。
An object of the present invention is to solve the above problems and to provide a total reflection X-ray fluorescence analysis method and apparatus capable of analyzing the entire sample including the vicinity of the side end face.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の全反射蛍光X線分析方法は、X線源から
の一次X線を試料表面に向かって微小な所定の入射角で
入射させ、前記試料表面に対向させたX線検出器で前記
一次X線を受けた試料からの蛍光X線を検出するもので
あって、前記試料とX線検出器間に、試料の所定の測定
部位からの蛍光X線をX線検出器に取り込むように視野
制限する第1のスリット、および第1のスリットよりも
小径の開口面積をもつ第2のスリットを含む複数のスリ
ットを有する視野制限部材を切換え可能に配置し、前記
試料の側端面近傍を測定するとき、前記X線検出器に前
記試料の側端面からの蛍光X線および散乱X線が取り込
まれないように、前記第2のスリットにより視野制限す
るものである。
According to a first aspect of the present invention, there is provided a total reflection X-ray fluorescence X-ray analysis method, comprising the steps of: providing a primary X-ray from an X-ray source at a small incident angle toward a sample surface; A fluorescent X-ray from a sample that has received the primary X-rays is detected by an X-ray detector facing the sample surface, and a predetermined amount of the sample is provided between the sample and the X-ray detector. A field of view having a plurality of slits including a first slit for restricting the field of view so as to capture fluorescent X-rays from the measurement site into the X-ray detector, and a second slit having an opening area smaller in diameter than the first slit When the restricting member is switchably arranged, and when measuring near the side end surface of the sample, the second X-ray detector is configured to prevent fluorescent X-rays and scattered X-rays from the side end surface of the sample from being taken into the X-ray detector. The slit restricts the visual field.

【0007】請求項2の全反射蛍光X線分析装置は、X
線源からの一次X線を試料表面に向かって微小な所定の
入射角で入射させ、前記試料表面に対向させたX線検出
器で前記一次X線を受けた試料からの蛍光X線を検出す
るものであって、前記試料とX線検出器間に配置され、
試料の所定の測定部位からの蛍光X線をX線検出器に取
り込むように視野制限する第1のスリット、および第1
のスリットよりも小径の開口面積をもつ第2のスリット
を含む複数のスリットを有する視野制限部材と、前記視
野制限部材の各スリットを切換えて、前記試料の側端面
近傍を測定するとき、前記X線検出器に前記試料の側端
面からの蛍光X線および散乱X線が取り込まれないよう
に、前記第2のスリットにより視野制限させる切換手段
とを備えている。
The total reflection X-ray fluorescence analyzer according to claim 2
Primary X-rays from a source are incident on the sample surface at a small predetermined angle of incidence, and X-ray detectors facing the sample surface detect fluorescent X-rays from the sample that has received the primary X-rays That is disposed between the sample and the X-ray detector,
A first slit for restricting the field of view so as to capture fluorescent X-rays from a predetermined measurement site of the sample into the X-ray detector;
A field limiting member having a plurality of slits including a second slit having an opening area smaller in diameter than the slit, and switching each slit of the field limiting member to measure the vicinity of the side end surface of the sample. Switching means for restricting the field of view by the second slit so that the X-ray detector does not take in fluorescent X-rays and scattered X-rays from the side end surface of the sample.

【0008】上記請求項1または請求項2の構成によれ
ば、全反射蛍光X線分析において、試料とX線検出器間
に複数のスリットを有する視野制限部材が切換え可能に
配置され、試料の側端面近傍を分析するとき、通常の分
析に用いる第1のスリットよりも小径の開口面積をもつ
第2のスリットに切換えて、X線検出器に試料の側端面
からの蛍光X線および散乱X線が取り込まれないように
視野制限する。したがって、試料の側端面近傍での分析
であっても、小径の開口面積をもつ第2のスリットによ
り、試料の側端面からの蛍光X線および散乱X線がX線
検出器に取り込まれることがないので、側端面近傍も含
めた試料全体の分析が可能となる。また、この第2のス
リットにより試料の狭い特定箇所の分析を行うこともで
きる。
According to the first or second aspect of the present invention, in the total reflection X-ray fluorescence analysis, a field limiting member having a plurality of slits between the sample and the X-ray detector is switchably disposed, and When analyzing the vicinity of the side end face, the X-ray detector is switched to a second slit having an opening area smaller in diameter than the first slit used for normal analysis, and the X-ray detector detects fluorescent X-rays and scattered X-rays from the side end face of the sample. Limit the field of view so that lines are not captured. Therefore, even in the analysis near the side end surface of the sample, the fluorescent light and the scattered X-ray from the side end surface of the sample can be taken into the X-ray detector by the second slit having the small-diameter opening area. Therefore, the analysis of the entire sample including the vicinity of the side end face can be performed. In addition, the second slit allows analysis of a narrow specific portion of the sample.

【0009】また、請求項3の全反射蛍光X線分析装置
は、前記X線検出器で検出されたX線強度を、前記視野
制限部材の各スリットの開口面積に応じて補正する補正
手段を備えている。したがって、各スリットの開口面積
に応じてX線強度を自動的に補正できる。
The total reflection X-ray fluorescence spectrometer according to a third aspect of the present invention includes a correction means for correcting the X-ray intensity detected by the X-ray detector in accordance with the opening area of each slit of the visual field limiting member. Have. Therefore, the X-ray intensity can be automatically corrected according to the opening area of each slit.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1に、本発明の一実施形態による
全反射蛍光X線分析装置の概略側面図を示す。本装置
は、X線を発生させるX線源2、X線を回折させて単色
化した一次X線B1を、試料台70上の試料50の表面
に向かって微小な所定の入射角度で入射させる分光結晶
(モノクロメータ)3、試料50表面に対向して、一次
X線B1を受けた試料50からの蛍光X線B3を検出す
る半導体検出器(SSD)のようなX線検出器4を備え
ている。試料50をのせた試料台70が、図示しない駆
動手段によって駆動されて回転および直線移動すること
で、試料50の任意の位置に、一次X線B1が照射され
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic side view of a total reflection X-ray fluorescence spectrometer according to one embodiment of the present invention. In this apparatus, an X-ray source 2 for generating X-rays, and a primary X-ray B1 that is monochromatic by diffracting X-rays is made incident on the surface of a sample 50 on a sample stage 70 at a small predetermined incident angle. A spectral crystal (monochromator) 3 and an X-ray detector 4 such as a semiconductor detector (SSD) for detecting fluorescent X-rays B3 from the sample 50 that has received the primary X-rays B1 and facing the surface of the sample 50 are provided. ing. An arbitrary position on the sample 50 is irradiated with the primary X-rays B1 by rotating and linearly moving the sample table 70 on which the sample 50 is placed by driving means (not shown).

【0011】本装置は、さらに、試料50とX線検出器
4間に配置され、複数のスリットを有する視野制限部材
6と、この視野制限部材6の各スリットを切換える切換
手段7とを備えている。また、本装置は、X線検出器4
で検出されたX線強度を、視野制限部材6の各スリット
の開口面積に応じて補正する補正手段8と、この補正手
段8からの検出信号aに基づいてX線スペクトルを得る
多重波高分析器5とを備えている。上記X線源2とX線
検出器4の一部、分光結晶3、視野制限部材6、試料5
0および試料台70は真空チャンバ22内に配置され
る。
The apparatus further comprises a field limiting member 6 disposed between the sample 50 and the X-ray detector 4 and having a plurality of slits, and switching means 7 for switching each slit of the field limiting member 6. I have. In addition, the present apparatus has an X-ray detector 4
A correcting means 8 for correcting the X-ray intensity detected in step 4 in accordance with the opening area of each slit of the visual field limiting member 6, and a multiple wave height analyzer for obtaining an X-ray spectrum based on the detection signal a from the correcting means 8. 5 is provided. X-ray source 2 and part of X-ray detector 4, spectral crystal 3, field limiting member 6, sample 5
0 and the sample stage 70 are arranged in the vacuum chamber 22.

【0012】図2〜図4は、上記視野制限部材6および
切換手段7の一例を示す。図2(a)の一部破断した側
面図に示すように、本装置の真空チャンバ22内に配置
された視野制限部材6は、長手方向(この図では、紙面
と垂直方向)に延びて、両側部に形成された立上げ部6
aと底部6cとを有する横断面が略コの字状である。底
部6cに複数のスリットが形成され、立上げ部6aには
それぞれ内方に突出する突起部6bが形成されている。
SSD素子4eをもつX線検出器4はガイド部24を有
し、このガイド部24は、両外側に上記突起部6bと嵌
合する溝部24bと、X線検出器4の窓部4aとほぼ同
一の開口面積をもつ開口24aとからなる。視野制限部
材6はガイド部24に、突起部6bと溝部24bが嵌合
した状態で、視野制限部材6の長手方向に移動自在に取
り付けられている。
FIGS. 2 to 4 show an example of the visual field limiting member 6 and the switching means 7. As shown in a partially cutaway side view of FIG. 2A, the view restricting member 6 disposed in the vacuum chamber 22 of the present apparatus extends in the longitudinal direction (in this figure, the direction perpendicular to the paper surface), Start-up portions 6 formed on both sides
a and the bottom 6c is substantially U-shaped in cross section. A plurality of slits are formed in the bottom part 6c, and a protruding part 6b that protrudes inward is formed in the rising part 6a.
The X-ray detector 4 having the SSD element 4e has a guide portion 24. The guide portion 24 is formed on both outer sides with a groove portion 24b fitted with the protrusion 6b and a window portion 4a of the X-ray detector 4. An opening 24a having the same opening area. The view restricting member 6 is attached to the guide 24 so as to be movable in the longitudinal direction of the view restricting member 6 in a state where the protrusion 6b and the groove 24b are fitted.

【0013】図3の一部破断した平面図に示すように、
視野制限部材6は、例えば、試料50の通常の測定部位
からの蛍光X線B3をX線検出器4に取り込むように視
野制限する第1のスリット61、第1のスリット61よ
りも小径の開口面積をもつ第2のスリット62、第1の
スリット61と同一開口面積でフィルタ65が嵌め込ま
れた第3のスリット63、および第2のスリット62と
同一開口面積でフィルタ65が嵌め込まれた第4のスリ
ット64が、直線上に並べて配置されている。フィルタ
65には、例えばシリコン(Si)用としてポリイミド
樹脂が用いられる。上記視野制限部材6は長手方向に延
びる棒状のスリット支持部26により支持される。スリ
ット支持部26の先端にはノブ26aが形成されてい
る。
As shown in a partially broken plan view of FIG.
The field-of-view restricting member 6 includes, for example, a first slit 61 for restricting the field of view so that the X-ray detector 4 takes in fluorescent X-rays B3 from a normal measurement site of the sample 50, and an opening having a smaller diameter than the first slit 61. A second slit 62 having an area, a third slit 63 in which the filter 65 is fitted with the same opening area as the first slit 61, and a fourth slit in which the filter 65 is fitted with the same opening area as the second slit 62. Are arranged side by side on a straight line. For the filter 65, for example, a polyimide resin is used for silicon (Si). The field-of-view limiting member 6 is supported by a rod-like slit support 26 extending in the longitudinal direction. A knob 26a is formed at the tip of the slit support portion 26.

【0014】図4の一部破断した正面図に示すように、
視野制限部材6を支持するスリット支持部26は、本装
置の真空チャンバ22の外面に固定されたフランジ部3
1に、円筒形のカラー部38を介して長手方向Xに移動
自在に取り付けられる。このフランジ部31の上部に取
付け板32が取付けられ、この取付け板32は、本装置
全体を支持する架台33に固定されたブラケット71に
ボルト72で固定されている。この取付け板32に、ス
リット支持部26をその長手方向Xにガイドするガイド
部35がボルト73で取り付けられ、また、図3の各ス
リット61〜64の位置を検出するセンサ部36を支持
するセンサ支持ブラケット37が取り付けられている。
図4のスリット支持部26とカラー部38間、およびフ
ランジ部31と真空チャンバ22間にはそれぞれ、Oリ
ング39,40が嵌め込まれ、カラー部38とフランジ
部31間にはキャップシール41が嵌め込まれて、真空
チャンバ22内の真空が保持される。
As shown in the partially broken front view of FIG.
The slit supporting portion 26 for supporting the view restricting member 6 is provided on the flange portion 3 fixed to the outer surface of the vacuum chamber 22 of the present apparatus.
1 is movably attached in the longitudinal direction X via a cylindrical collar portion 38. A mounting plate 32 is mounted on the upper portion of the flange portion 31. The mounting plate 32 is fixed by bolts 72 to a bracket 71 fixed to a gantry 33 supporting the entire apparatus. A guide portion 35 for guiding the slit support portion 26 in the longitudinal direction X is attached to the mounting plate 32 with a bolt 73, and a sensor for supporting a sensor portion 36 for detecting the positions of the slits 61 to 64 in FIG. A support bracket 37 is attached.
O-rings 39 and 40 are fitted between the slit support portion 26 and the collar portion 38 and between the flange portion 31 and the vacuum chamber 22, respectively, and a cap seal 41 is fitted between the collar portion 38 and the flange portion 31 in FIG. Thus, the vacuum in the vacuum chamber 22 is maintained.

【0015】図3に示すように、真空チャンバ22の外
部に配置される切換手段7は、スリット支持部26に固
定されて、その側方に並列配置され、長手方向Xに移動
自在な位置決め板42と、取付け板32に取り付けら
れ、位置決め板42の長手方向Xと直交する方向Yに移
動自在なばね付きノブ軸43aを有する位置決めノブ4
3とを有している。位置決め板42には、視野制限部材
6のスリット数および位置に対応して、長手方向Xに沿
って、ノブ軸43aの先端が嵌合する複数の切欠部42
aが設けられている。ばね力に抗して位置決めノブ43
を引き出してノブ軸43aの先端を位置決め板42から
離脱させた状態で、スリット支持部26を手動で左右に
動かして位置合わせをし、ノブ軸43aの先端をばね力
で所定の切欠部42aに嵌合させることにより、視野制
限部材6の位置決めを行う。
As shown in FIG. 3, the switching means 7 arranged outside the vacuum chamber 22 is fixed to the slit support portion 26, is arranged side by side, and is a positioning plate movable in the longitudinal direction X. And a positioning knob 4 having a spring-mounted knob shaft 43a attached to the mounting plate 32 and movable in a direction Y orthogonal to the longitudinal direction X of the positioning plate 42.
And 3. The positioning plate 42 has a plurality of notches 42 into which the tips of the knob shafts 43a are fitted along the longitudinal direction X in accordance with the number and positions of the slits of the visual field limiting member 6.
a is provided. Positioning knob 43 against spring force
With the tip of the knob shaft 43a detached from the positioning plate 42, the slit support portion 26 is manually moved left and right to perform alignment, and the tip of the knob shaft 43a is inserted into a predetermined notch portion 42a by a spring force. The fitting restricts the positioning of the visual field limiting member 6.

【0016】上記位置決め板41の複数の切欠部42の
それぞれの間隔と、センサ支持ブラケット37に取り付
けられるセンサ部36のフォトセンサのような複数のセ
ンサのそれぞれの間隔とは同一に設定されており、上記
位置決めされると、スリット支持部26に固定された遮
蔽板27がセンサ部36の各センサを遮蔽することによ
って、各スリットの位置を検出する。視野制限部材6の
開口面積が変化するとX線検出器4で検出されたX線強
度が変化するので、センサ部36からの検出信号に基づ
いて、図1の補正手段8が、X線検出器4で検出された
X線強度を、各スリットの開口面積に応じて補正するこ
とにより、本来のX線強度が得られる。すなわち、I0
を通常の開口面積(第1のスリット61の開口面積)の
ときのX線強度、Iを切換えたスリットの開口面積(第
2のスリット62の開口面積)のときのX線強度、Kを
開口面積に対応した補正係数としたとき、次式で補正す
る。 I=K・I0 この補正手段8からの検出信号aに基づき、多重波高分
析器5によって目的とするX線スペクトルが得られる。
こうして、視野制限部材6を切換えたとき、各スリット
の開口面積に応じてX線強度を自動的に補正することが
できる。
The respective intervals between the plurality of notches 42 of the positioning plate 41 and the respective intervals between a plurality of sensors such as a photosensor of the sensor portion 36 attached to the sensor support bracket 37 are set to be the same. When the positioning is performed, the shielding plate 27 fixed to the slit supporting portion 26 shields each sensor of the sensor portion 36 to detect the position of each slit. Since the X-ray intensity detected by the X-ray detector 4 changes when the opening area of the field-of-view limiting member 6 changes, the correction means 8 in FIG. By correcting the X-ray intensity detected in 4 according to the opening area of each slit, the original X-ray intensity can be obtained. That is, I 0
Is the X-ray intensity when the normal aperture area (the aperture area of the first slit 61), the X-ray intensity when the aperture area of the slit where I is switched (the aperture area of the second slit 62), and K is the aperture When a correction coefficient corresponding to the area is used, correction is performed using the following equation. I = K · I 0 A target X-ray spectrum is obtained by the multiplex height analyzer 5 based on the detection signal a from the correction means 8.
Thus, when the visual field limiting member 6 is switched, the X-ray intensity can be automatically corrected according to the opening area of each slit.

【0017】図3の第1のスリット61は、試料のエッ
ジ部から離れた(例えば10mm以上)所定の測定部位
を分析する場合に用いる。第2のスリット62は、エッ
ジ部近傍の測定部位を分析する場合に用いる。第3およ
び第4のスリット63,64は、それぞれ第1と第2の
スリット61,62と同様な分析に使用されるもので、
フィルタ65でシリコン(Si)のような軽元素の蛍光
X線をカットしてバックグラウンドを下げるのに用いら
れる。
The first slit 61 shown in FIG. 3 is used for analyzing a predetermined measurement site separated from the edge of the sample (for example, 10 mm or more). The second slit 62 is used when analyzing a measurement site near the edge. The third and fourth slits 63 and 64 are used for the same analysis as the first and second slits 61 and 62, respectively.
The filter 65 is used to cut a fluorescent X-ray of a light element such as silicon (Si) to lower the background.

【0018】つぎに、分析の際の操作について説明す
る。まず、試料50の表面(測定面)のエッジ部近傍を
除いた主要部を分析する場合、図2(a)に示すよう
に、切換手段7により視野制限部材6の第1のスリット
61に切り換えられる。この状態で、試料台70により
試料50がXY方向に移動され、多数の位置で蛍光X線
強度が測定される、いわゆるマッピング測定が行われ
る。これにより、試料50の主要部の汚染や欠陥がチェ
ックされる。
Next, the operation at the time of analysis will be described. First, when analyzing the main part of the surface (measurement surface) of the sample 50 except for the vicinity of the edge, as shown in FIG. 2A, the switching means 7 switches to the first slit 61 of the visual field limiting member 6. Can be In this state, the sample 50 is moved in the XY directions by the sample stage 70, and so-called mapping measurement in which the fluorescent X-ray intensity is measured at many positions is performed. Thus, contamination and defects of the main part of the sample 50 are checked.

【0019】エッジ部近傍の測定部位を分析する場合、
図2(b)に示すように、試料台70がXY方向に移動
されるとともに、図3の切換手段7により視野制限部材
6の第2のスリット62に切換えられる。この場合、試
料50のエッジ部54にかなり接近した近傍部分が測定
部位であっても、エッジ部54からの反射X線や散乱X
線のような外乱線B4が第2のスリット62により遮蔽
されて、X線検出器4の窓部4aに取り込まれない。
When analyzing a measurement site near the edge,
As shown in FIG. 2B, the sample stage 70 is moved in the X and Y directions, and is switched to the second slit 62 of the visual field limiting member 6 by the switching means 7 in FIG. In this case, even if the measurement site is located near the edge portion 54 of the sample 50, the reflected X-rays and scattered X-ray
A disturbance line B4 such as a line is shielded by the second slit 62 and is not taken into the window 4a of the X-ray detector 4.

【0020】例えば、一次X線B1のビーム幅26m
m、ビーム厚さ10μm、入射角α=0.09°で、直
径13mmの第1のスリット61を用いた場合、図2
(c)のように、測定中心で表される測定部位Mは、エ
ッジ部54から12mm以上離れないと、エッジ部54
からの外乱線B4が第1のスリット61を通って、X線
検出器4に入射するおそれがある。これに対し、直径5
mmの第2のスリット62を用いると、図2(d)のよ
うに、測定部位Mはエッジ部54から4mm位まで近接
させても、エッジ部54からの外乱線B4が第2のスリ
ット62を通って、X線検出器4に入射するのが阻止さ
れる。また、エッジ部54の近接以外で試料50の特定
の狭い領域についても分析したい場合、第2のスリット
62を用いることができる。
For example, the beam width of the primary X-ray B1 is 26 m
m, the beam thickness is 10 μm, the incident angle α is 0.09 °, and the first slit 61 having a diameter of 13 mm is used.
As shown in (c), the measurement site M represented by the measurement center must be separated from the edge 54 by 12 mm or more.
There is a possibility that a disturbance line B4 from the X-ray detector 4 enters the X-ray detector 4 through the first slit 61. In contrast, the diameter 5
When the second slit 62 of 2 mm is used, as shown in FIG. 2D, even when the measurement site M is brought close to the edge portion 54 by about 4 mm, the disturbance line B4 from the edge portion 54 is And is prevented from entering the X-ray detector 4. In addition, when it is desired to analyze a specific narrow region of the sample 50 other than the proximity of the edge portion 54, the second slit 62 can be used.

【0021】図5に、試料50がシリコンウエハの場合
において、エッジ部でのSi−Kα線について、直径1
3mmの第1のスリット61を用いた場合と、直径5m
mの第2のスリット62を用いた場合との比較を示す。
縦軸はSi−Kα線強度(cps)、横軸はエッジ部か
らの距離を示す。この図のように、第1のスリット61
(直径13mm)と比べて第2のスリット62(直径5
mm)を用いた場合、エッジ部近傍であっても、バック
グラウンドであるSi−Kα線の強度は小さくなってい
る。例えば、エッジから10mm離れた位置において、
直径5mmのスリットでの強度(図示82)は、直径1
3mmのスリットでの強度(図示81)よりかなり低減
している。こうして、試料50のエッジ部近傍での高精
度の分析が可能となる。
FIG. 5 shows that when the sample 50 is a silicon wafer, the diameter of the Si-Kα line at the edge is 1 mm.
The case where the first slit 61 of 3 mm is used and the case where the diameter is 5 m
A comparison with the case where the second slit 62 of m is used is shown.
The vertical axis indicates the Si-Kα line intensity (cps), and the horizontal axis indicates the distance from the edge. As shown in this figure, the first slit 61
(13 mm in diameter) compared to the second slit 62 (5 mm in diameter).
mm), the intensity of the background Si-Kα ray is low even in the vicinity of the edge portion. For example, at a position 10 mm away from the edge,
The strength (82 in the figure) of the slit having a diameter of 5 mm is 1 mm in diameter.
This is considerably lower than the strength at the slit of 3 mm (illustration 81). Thus, highly accurate analysis near the edge of the sample 50 is possible.

【0022】また、図6に、図5におけるエッジから1
0mm離れた位置で測定したX線スペクトルの一例を示
す。図6(a)は図5の図示81の測定位置で第1のス
リット61(直径13mm)を用いた場合、図6(b)
は図5の図示82の測定位置で第2のスリット62(直
径5mm)を用いた場合である。縦軸は相対強度、横軸
はエネルギー(keV)を示す。図6(a)では、Si
−KαパイルアップピークやW−Lβエスケープピーク
等のバックグラウンドが大きく、図6(b)では、これ
らのバックグラウンドが小さくなっている。したがっ
て、エッジ部近傍において、第2のスリット62を用い
た場合、第1のスリット61と比較してバックグラウン
ドを下げることができ、試料50のエッジ部近傍での高
精度の分析が可能となる。
FIG. 6 shows one edge from the edge in FIG.
An example of an X-ray spectrum measured at a position separated by 0 mm is shown. FIG. 6A shows a case where the first slit 61 (13 mm in diameter) is used at the measurement position 81 shown in FIG.
5 shows the case where the second slit 62 (5 mm in diameter) is used at the measurement position 82 shown in FIG. The vertical axis indicates relative intensity, and the horizontal axis indicates energy (keV). In FIG. 6A, Si
Backgrounds such as -Kα pile-up peak and W-Lβ escape peak are large, and in FIG. 6B, these backgrounds are small. Therefore, when the second slit 62 is used in the vicinity of the edge, the background can be reduced as compared with the first slit 61, and highly accurate analysis in the vicinity of the edge of the sample 50 becomes possible. .

【0023】この実施形態では、視野制限部材の各スリ
ットを直列に配置し、長手方向に進退させて切換えるス
ライド型であるが、視野制限部材を円板状に形成して、
各スリットを円周上に配置し、その軸心回りに回動させ
て切換えるロータリー型であってもよい。
In this embodiment, each of the slits of the field limiting member is arranged in series, and is a slide type in which the slits are moved forward and backward in the longitudinal direction to switch. However, the field limiting member is formed in a disk shape.
A rotary type in which each slit is arranged on a circumference and rotated around its axis to switch the slit may be used.

【0024】この実施形態では、視野制限部材6の切換
えを手動で行っているが、図3に示した切換手段7の位
置決め板42に駆動機構を設けて、X線分析装置全体の
制御装置(図示せず)から出力される切換信号に基づい
て自動的に切換えを行うようにしてもよい。
In this embodiment, the switching of the visual field limiting member 6 is manually performed. However, a drive mechanism is provided on the positioning plate 42 of the switching means 7 shown in FIG. Switching may be performed automatically based on a switching signal output from a not shown).

【0025】[0025]

【発明の効果】以上のように、本発明によれば、全反射
蛍光X線分析において、試料とX線検出器間に複数のス
リットを有する視野制限部材が切換え可能に配置され、
試料の側端面近傍を分析するとき、通常の分析に用いる
第1のスリットより小径の開口面積をもつ第2のスリッ
トに切換えて、X線検出器に試料の側端面からの蛍光X
線および散乱X線が取り込まれないように視野制限す
る。したがって、試料の側端面近傍での分析であって
も、試料の側端面からの蛍光X線および散乱X線がX線
検出器に取り込まれることがないので、側端面近傍も含
めた試料全体の分析が可能となる。また、この第2のス
リットにより試料の狭い特定箇所の分析を行うこともで
きる。
As described above, according to the present invention, in total reflection X-ray fluorescence analysis, a field limiting member having a plurality of slits is switchably arranged between a sample and an X-ray detector.
When analyzing near the side end face of the sample, the X-ray detector is switched to a second slit having an opening area smaller in diameter than the first slit used for normal analysis, and the X-ray detector detects the fluorescence X from the side end face of the sample.
The field of view is restricted so that no rays and scattered X-rays are captured. Therefore, even when the analysis is performed in the vicinity of the side end face of the sample, the fluorescent X-rays and scattered X-rays from the side end face of the sample are not taken into the X-ray detector. Analysis becomes possible. In addition, the second slit allows analysis of a narrow specific portion of the sample.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る全反射蛍光X線分析装
置を示す概略側面図である。
FIG. 1 is a schematic side view showing a total reflection X-ray fluorescence spectrometer according to one embodiment of the present invention.

【図2】(a)〜(d)は上記装置の要部を示す一部破
断した概略側面図である。
2 (a) to 2 (d) are schematic side views, partially broken away, showing main parts of the device.

【図3】上記装置の要部を示す概略平面図である。FIG. 3 is a schematic plan view showing a main part of the device.

【図4】上記装置の要部を示す概略正面図である。FIG. 4 is a schematic front view showing a main part of the device.

【図5】試料のエッジ部近傍のSi−Kα線を示す特性
図である。
FIG. 5 is a characteristic diagram showing a Si-Kα ray near an edge of a sample.

【図6】試料のエッジ部近傍のX線スペクトルの一例を
示す特性図である。
FIG. 6 is a characteristic diagram showing an example of an X-ray spectrum near an edge of a sample.

【図7】従来の全反射蛍光X線分析装置を示す概略構成
図である。
FIG. 7 is a schematic configuration diagram showing a conventional total reflection X-ray fluorescence spectrometer.

【図8】試料の側端面近傍の拡大断面図である。FIG. 8 is an enlarged sectional view near a side end surface of a sample.

【符号の説明】[Explanation of symbols]

2…X線源、4…X線検出器、6…視野制限部材、7…
切換手段、8…補正手段、50…試料、61…第1のス
リット、62…第2のスリット、B1…一次X線、B3
…蛍光X線。
2 X-ray source, 4 X-ray detector, 6 View limiting member, 7
Switching means, 8 correction means, 50 sample, 61 first slit, 62 second slit, B1 primary X-ray, B3
... X-ray fluorescence.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 X線源からの一次X線を試料表面に向か
って微小な所定の入射角で入射させ、前記試料表面に対
向させたX線検出器で前記一次X線を受けた試料からの
蛍光X線を検出する全反射蛍光X線分析方法であって、 前記試料とX線検出器間に、試料の所定の測定部位から
の蛍光X線をX線検出器に取り込むように視野制限する
第1のスリット、および第1のスリットよりも小径の開
口面積をもつ第2のスリットを含む複数のスリットを有
する視野制限部材を切換え可能に配置し、前記試料の側
端面近傍を測定するとき、前記X線検出器に前記試料の
側端面からの蛍光X線および散乱X線が取り込まれない
ように、前記第2のスリットにより視野制限する全反射
蛍光X線分析方法。
1. A primary X-ray from an X-ray source is incident on a sample surface at a minute predetermined angle of incidence, and the sample receives the primary X-ray from an X-ray detector facing the sample surface. A total reflection X-ray fluorescence analysis method for detecting X-ray fluorescence, wherein a field of view is restricted between the sample and the X-ray detector so that X-ray fluorescence from a predetermined measurement site of the sample is taken into the X-ray detector. A first slit to be formed, and a view restricting member having a plurality of slits including a second slit having an opening area smaller in diameter than the first slit are arranged so as to be switchable, and the vicinity of the side end surface of the sample is measured. A total reflection X-ray fluorescence analysis method for limiting the field of view by the second slit so that the X-ray detector does not take in the X-ray fluorescence and the scattered X-ray from the side end face of the sample.
【請求項2】 X線源からの一次X線を試料表面に向か
って微小な所定の入射角で入射させ、前記試料表面に対
向させたX線検出器で前記一次X線を受けた試料からの
蛍光X線を検出する全反射蛍光X線分析装置であって、 前記試料とX線検出器間に配置され、試料の所定の測定
部位からの蛍光X線をX線検出器に取り込むように視野
制限する第1のスリット、および第1のスリットよりも
小径の開口面積をもつ第2のスリットを含む複数のスリ
ットを有する視野制限部材と、 前記視野制限部材の各スリットを切換えて、前記試料の
側端面近傍を測定するとき、前記X線検出器に前記試料
の側端面からの蛍光X線および散乱X線が取り込まれな
いように、前記第2のスリットにより視野制限させる切
換手段とを備えた全反射蛍光X線分析装置。
2. A sample which receives primary X-rays from an X-ray source at a minute predetermined angle of incidence toward a sample surface and receives the primary X-rays from an X-ray detector opposed to the sample surface. A total reflection X-ray fluorescence analyzer for detecting X-ray fluorescence, wherein the X-ray fluorescence detector is disposed between the sample and the X-ray detector, and captures X-ray fluorescence from a predetermined measurement site of the sample into the X-ray detector. A field limiting member having a plurality of slits including a first slit for restricting a field of view and a second slit having an opening area smaller in diameter than the first slit; and switching each slit of the field of view restricting member to the sample. Switching means for restricting the field of view by the second slit so that the X-ray detector does not take in fluorescent X-rays and scattered X-rays from the side end face of the sample when measuring near the side end face of the sample. Total reflection X-ray fluorescence analyzer
【請求項3】 請求項2において、 前記X線検出器で検出されたX線強度を、前記視野制限
部材の各スリットの開口面積に応じて補正する補正手段
を備えた全反射蛍光X線分析装置。
3. The total reflection X-ray fluorescence analysis according to claim 2, further comprising a correction unit configured to correct the X-ray intensity detected by the X-ray detector in accordance with an opening area of each slit of the visual field limiting member. apparatus.
JP31651899A 1999-11-08 1999-11-08 Method and apparatus for total reflection x-ray fluorescence analysis Pending JP2001133420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31651899A JP2001133420A (en) 1999-11-08 1999-11-08 Method and apparatus for total reflection x-ray fluorescence analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31651899A JP2001133420A (en) 1999-11-08 1999-11-08 Method and apparatus for total reflection x-ray fluorescence analysis

Publications (1)

Publication Number Publication Date
JP2001133420A true JP2001133420A (en) 2001-05-18

Family

ID=18078011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31651899A Pending JP2001133420A (en) 1999-11-08 1999-11-08 Method and apparatus for total reflection x-ray fluorescence analysis

Country Status (1)

Country Link
JP (1) JP2001133420A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047451A (en) * 2006-08-18 2008-02-28 Jeol Ltd X-ray spectroscope
JP2008198570A (en) * 2007-02-15 2008-08-28 National Institute Of Advanced Industrial & Technology Time-of-flight type energy spectral device
JP2009133658A (en) * 2007-11-29 2009-06-18 Rigaku Corp Total reflection fluorescent x-ray analyzer
JP2011196725A (en) * 2010-03-17 2011-10-06 Sii Nanotechnology Inc Fluorescent x-ray film thickness meter and fluorescent x-ray film thickness measuring method
CN107941836A (en) * 2017-12-21 2018-04-20 长沙新材料产业研究院有限公司 A kind of X-ray absorption spectrometry device and measuring method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047451A (en) * 2006-08-18 2008-02-28 Jeol Ltd X-ray spectroscope
JP2008198570A (en) * 2007-02-15 2008-08-28 National Institute Of Advanced Industrial & Technology Time-of-flight type energy spectral device
JP2009133658A (en) * 2007-11-29 2009-06-18 Rigaku Corp Total reflection fluorescent x-ray analyzer
JP4514785B2 (en) * 2007-11-29 2010-07-28 株式会社リガク Total reflection X-ray fluorescence analyzer
JP2011196725A (en) * 2010-03-17 2011-10-06 Sii Nanotechnology Inc Fluorescent x-ray film thickness meter and fluorescent x-ray film thickness measuring method
CN107941836A (en) * 2017-12-21 2018-04-20 长沙新材料产业研究院有限公司 A kind of X-ray absorption spectrometry device and measuring method
CN107941836B (en) * 2017-12-21 2024-04-09 长沙新材料产业研究院有限公司 X-ray absorption spectrum measuring device and measuring method

Similar Documents

Publication Publication Date Title
US7583788B2 (en) Measuring device for the shortwavelength x ray diffraction and a method thereof
JP4796254B2 (en) X-ray array detector
US4169228A (en) X-ray analyzer for testing layered structures
US6453002B1 (en) Differential measurement of X-ray microfluorescence
US20110164730A1 (en) High-Resolution X-Ray Diffraction Measurement with Enhanced Sensitivity
US20070286344A1 (en) Target alignment for x-ray scattering measurements
JP2005106815A (en) Optical alignment of x-ray microanalyzer
JP5159068B2 (en) Total reflection X-ray fluorescence analyzer
JP5031215B2 (en) Multifunctional X-ray analysis system
DE19948382A1 (en) Large wafer area detector
JPH10206356A (en) Fluorescent x-ray analysis device
JP2002189004A (en) X-ray analyzer
JP2001133420A (en) Method and apparatus for total reflection x-ray fluorescence analysis
JP2000504422A (en) X-ray analyzer having two collimator masks
US6596994B1 (en) Beam position monitor
US7075073B1 (en) Angle resolved x-ray detection
KR101921726B1 (en) Sample collection device, sample collection method, and fluorescent X-ray analysis device using them
JP3918104B2 (en) X-ray fluorescence analyzer and X-ray fluorescence detector
JP2921910B2 (en) Total reflection X-ray fluorescence analyzer
JP3860641B2 (en) X-ray fluorescence analyzer
JPH02138854A (en) X-ray tomograph
JP2002005858A (en) Total reflection x-ray fluorescence analyzer
JP2554104Y2 (en) X-ray fluorescence analyzer
JPH05346411A (en) Fluorescent x-ray analyzer
JPH046902B2 (en)