JPH0727849B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor

Info

Publication number
JPH0727849B2
JPH0727849B2 JP61045347A JP4534786A JPH0727849B2 JP H0727849 B2 JPH0727849 B2 JP H0727849B2 JP 61045347 A JP61045347 A JP 61045347A JP 4534786 A JP4534786 A JP 4534786A JP H0727849 B2 JPH0727849 B2 JP H0727849B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
lead
layer
electrolytic capacitor
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61045347A
Other languages
Japanese (ja)
Other versions
JPS62203323A (en
Inventor
一美 内藤
隆 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61045347A priority Critical patent/JPH0727849B2/en
Publication of JPS62203323A publication Critical patent/JPS62203323A/en
Publication of JPH0727849B2 publication Critical patent/JPH0727849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、弁作用を有する金属の表面に酸化皮膜、二酸
化鉛の半導体層、カーボン層および/または金属層を順
次に設けた固体電解コンデンサであって、かつ該コンデ
ンサが熱処理されていることを特徴とするtanδ(誘電
正接)の改善された固体電解コンデンサに関する。
TECHNICAL FIELD The present invention relates to a solid electrolytic capacitor in which an oxide film, a lead dioxide semiconductor layer, a carbon layer and / or a metal layer are sequentially provided on the surface of a metal having a valve action. And a solid electrolytic capacitor with improved tan δ (dielectric loss tangent), characterized in that the capacitor is heat-treated.

従来の技術 本発明者等の一部は、先にコストが安く、熱分解反応を
利用せずに、しかもコンデンサ性能に悪影響を及ぼす触
媒、例えば銀触媒を使用せずに酸化皮膜層上に化学的析
出によって二酸化鉛の半導体層を設け、さらに二酸化鉛
の半導体層の上にカーボン層および金属層を順次に設け
た固体電解コンデンサを提案した。
2. Description of the Related Art Some of the inventors of the present invention have previously found that the cost is low, the thermal decomposition reaction is not used, and a catalyst that adversely affects the performance of the capacitor, such as a silver catalyst, is not used for the chemical reaction on the oxide film layer. We proposed a solid electrolytic capacitor in which a lead dioxide semiconductor layer was provided by selective deposition, and a carbon layer and a metal layer were sequentially provided on the lead dioxide semiconductor layer.

しかしながら、上記固体電解コンデンサは、高容量の場
合、tanδが必ずしも充分満足すべきものではなかっ
た。
However, in the case of the above-mentioned solid electrolytic capacitor having a high capacity, tan δ was not always sufficiently satisfactory.

発明が解決しようとする問題点 本発明の目的は、高容量でもtanδが小さい、弁作用を
有する金属の表面に酸化皮膜,二酸化鉛の半導体層,カ
ーボン層および/または金属層が順次形成された固体電
解コンデンサを提供することにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to form an oxide film, a semiconductor layer of lead dioxide, a carbon layer and / or a metal layer sequentially on the surface of a metal having a small tan δ even in a high capacity and having a valve action. It is to provide a solid electrolytic capacitor.

問題点を解決するための手段 本発明者等は、前記従来の固体電解コンデンサの欠点を
解決すべく鋭意研究した結果、固体電解コンデンサを特
定の温度で熱処理することにより、前記目的が有効に達
せられることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the drawbacks of the conventional solid electrolytic capacitors, and as a result, heat-treating the solid electrolytic capacitors at a specific temperature to effectively achieve the above object. The present invention has been completed and the present invention has been completed.

即ち、本願発明の要旨は、弁作用を有する金属の表面に
酸化皮膜層を形成し、その上に化学的析出法によって二
酸化鉛の半導体層を形成し、さらにカーボン層および/
または金属層を設けた後、40℃以上300℃以下の温度で
熱処理することを特徴とする固体電解コンデンサの製造
法である。
That is, the gist of the present invention is that an oxide film layer is formed on the surface of a metal having a valve action, and a semiconductor layer of lead dioxide is formed thereon by a chemical deposition method.
Alternatively, the method for producing a solid electrolytic capacitor is characterized in that after providing the metal layer, heat treatment is performed at a temperature of 40 ° C. or higher and 300 ° C. or lower.

本発明において使用される弁作用を有する金属とは、タ
ンタル,ニオブ,アルミニウム等であり、箔または焼結
体として得られる。
The metal having a valve action used in the present invention is tantalum, niobium, aluminum or the like, which is obtained as a foil or a sintered body.

本発明において、タンタル,ニオブ,アルミニウム等の
弁作用を有する金属の表面に酸化皮膜を形成する方法
は、当業界で公知の方法を採用することができる。ま
た、弁作用を有する金属の表面に酸化皮膜を設けて市販
されている高容量化成箔、例えば高圧用エッチングアル
ミ化成箔や低圧用エッチングアルミ化成箔を使用しても
よい。
In the present invention, as a method of forming an oxide film on the surface of a metal having a valve action such as tantalum, niobium, aluminum or the like, a method known in the art can be adopted. Alternatively, a commercially available high-capacity chemical conversion foil, such as a high-voltage etched aluminum chemical foil or a low-voltage etched aluminum chemical foil, having an oxide film formed on the surface of a metal having a valve action may be used.

酸化皮膜上に、二酸化鉛の半導体層を形成する方法とし
ては、例えば鉛イオンおよび過硫酸イオンを含む反応母
液を酸化皮膜層上で化学的酸化反応させる、いわゆる化
学的析出法が採用される。
As a method of forming the lead dioxide semiconductor layer on the oxide film, for example, a so-called chemical deposition method is employed in which a reaction mother liquor containing lead ions and persulfate ions is chemically oxidized on the oxide film layer.

酸化皮膜層上に二酸化鉛の半導体層を化学的析出によっ
て形成させるための反応母液としては、鉛イオンおよび
過硫酸イオンを含んだ水溶液が使用される。
An aqueous solution containing lead ions and persulfate ions is used as a reaction mother liquor for forming a lead dioxide semiconductor layer on the oxide film layer by chemical deposition.

鉛イオン種および過硫酸イオン種には特に制限はなく、
鉛イオン種を与える化合物の代表例としては、例えばク
エン酸鉛、酢酸鉛、塩基性酢酸鉛、ホウフッ化鉛、酢酸
鉛水和物等があげられる。一方、過硫酸イオン種を与え
る化合物の代表例としては、例えば過硫酸アンモニウ
ム、過硫酸カリ、過硫酸ナトリウム等があげられる。こ
れらの鉛イオン種および過硫酸イオン種を与える化合物
は、それぞれを二種以上混合して使用してもよい。
There are no particular restrictions on the lead ion species and persulfate ion species,
Representative examples of compounds that give lead ion species include lead citrate, lead acetate, basic lead acetate, lead borofluoride, lead acetate hydrate, and the like. On the other hand, typical examples of the compound that gives a persulfate ion species include ammonium persulfate, potassium persulfate, and sodium persulfate. Two or more kinds of these compounds giving the lead ion species and the persulfate ion species may be mixed and used.

反応母液中の鉛イオン濃度は、7モル/lから0.1モル/
l、好ましくは5モル/lから1.3モル/lの範囲内であるこ
とが望ましい。鉛イオンの濃度が7モル/lより高い場合
には、反応母液の粘度が高くなりすぎて使用困難とな
り、また、鉛イオンの濃度が0.1モル/lより低い場合に
は、反応母液中の鉛イオン濃度が薄すぎるため塗布回数
を多くしなければならないという難点がある。一方、反
応母液中の過硫酸イオン濃度は、鉛イオンに対してモル
比で5から0.5の範囲内であることが好ましい。過硫酸
イオンの濃度が鉛イオンに対してモル比で5より多い
と、未反応の過硫酸イオンが残るためコスト高となり、
また過硫酸イオンの濃度が鉛イオンに対してモル比で0.
5より少ないと、未反応の鉛イオンが残り電導性が悪く
なるので好ましくない。
Lead ion concentration in the reaction mother liquor is from 7 mol / l to 0.1 mol / l
It is desirable to be in the range of 1, preferably 5 to 1.3 mol / l. If the concentration of lead ions is higher than 7 mol / l, the viscosity of the reaction mother liquor becomes too high, which makes it difficult to use, and if the concentration of lead ions is lower than 0.1 mol / l, the lead mother liquor in the reaction mother liquor is reduced. Since the ion concentration is too low, there is a drawback that the number of times of coating must be increased. On the other hand, the concentration of persulfate ions in the reaction mother liquor is preferably within the range of 5 to 0.5 in terms of molar ratio with respect to lead ions. If the concentration of persulfate ion is more than 5 with respect to lead ion in molar ratio, unreacted persulfate ion remains, resulting in high cost.
Also, the concentration of persulfate ion is 0.
If it is less than 5, unreacted lead ions remain and the electrical conductivity deteriorates, which is not preferable.

反応母液は、鉛イオン種を与える化合物と過硫酸イオン
種を与える化合物を同時に水に溶解させて使用してもよ
く、または予め鉛イオン種を与える化合物と過硫酸イオ
ン種を与える化合物の水溶液をそれぞれ別個に調製して
おいて使用直前に混合して使用してもよい。
The reaction mother liquor may be used by dissolving a compound giving a lead ion species and a compound giving a persulfate ion species in water at the same time, or an aqueous solution of a compound giving a lead ion species and a compound giving a persulfate ion species in advance. They may be prepared separately and mixed immediately before use.

酸化皮膜層の上に二酸化鉛の半導体層を設けるには、酸
化皮膜を有する弁作用金属を反応母液(鉛イオンと過硫
酸イオンを含んだ水溶液)に浸漬するか、または酸化皮
膜を有する弁作用金属に反応母液を塗布して反応母液を
酸化皮膜に進入させ、放置した後、水洗い乾燥する方法
が採用される。
To provide a lead dioxide semiconductor layer on the oxide film layer, a valve action metal having an oxide film is immersed in a reaction mother liquor (an aqueous solution containing lead ions and persulfate ions), or a valve action compound having an oxide film is formed. A method in which a reaction mother liquor is applied to a metal, the reaction mother liquor is allowed to enter the oxide film, left to stand, and then washed with water and dried is adopted.

本発明においては、二酸化鉛の半導体層の一部は、弁金
属の箔または焼結体の酸化皮膜の細孔に進入している。
In the present invention, a part of the lead dioxide semiconductor layer penetrates into the pores of the valve metal foil or the oxide film of the sintered body.

次に、二酸化鉛の半導体層の上にカーボン層および/ま
た金属層を設ける。二酸化鉛の半導体層の上にカーボン
層を設ける方法は、従来公知の方法が採用される。ま
た、カーボン層の上に金属層を設ける方法としては、例
えば銀、アルミニウム、銅等を含んだペーストを塗布す
るか、または銀、アルミニウム、銅等を蒸着する方法が
あげられる。
Next, a carbon layer and / or a metal layer is provided on the lead dioxide semiconductor layer. As a method for providing the carbon layer on the lead dioxide semiconductor layer, a conventionally known method is adopted. As a method of providing the metal layer on the carbon layer, for example, a method of applying a paste containing silver, aluminum, copper or the like, or a method of depositing silver, aluminum, copper or the like can be mentioned.

かくして得られる固体電解コンデンサは、次に熱処理さ
れる。熱処理温度は、40℃以上300℃以下、好ましくは7
0℃以上300℃以下である。熱処理温度が40℃未満である
と、処理時間が極めて長くかかって実用的ではなく、ま
た熱処理温度が300℃より高い場合は、二酸化鉛の導電
体層が分解を引きおこすので好ましくない。
The solid electrolytic capacitor thus obtained is then heat treated. The heat treatment temperature is 40 ° C or higher and 300 ° C or lower, preferably 7
It is 0 ° C or higher and 300 ° C or lower. When the heat treatment temperature is lower than 40 ° C., the treatment time is extremely long, which is not practical, and when the heat treatment temperature is higher than 300 ° C., the lead dioxide conductor layer causes decomposition, which is not preferable.

熱処理時間は、熱処理時間によって異なるので一概には
決められないが、通常は数時間、好ましくは1〜5時間
の範囲内である。
The heat treatment time varies depending on the heat treatment time and cannot be determined unconditionally, but it is usually several hours, preferably 1 to 5 hours.

本発明における熱処理は、高容量化成箔(例えば低圧用
エッチングアルミ化成箔等)を使用し、この化成箔に二
酸化鉛の半導体層、カーボン層および/または金属層を
順次設けた固体電解コンデンサに特に効果的である。
The heat treatment in the present invention uses a high-capacity conversion foil (for example, a low-voltage etched aluminum conversion foil) and is particularly suitable for a solid electrolytic capacitor in which a lead dioxide semiconductor layer, a carbon layer and / or a metal layer are sequentially provided on the conversion foil. It is effective.

発明の効果 本発明の方法で製造される固体電解コンデンサは、従来
公知の固体電解コンデンサに比較して以下のような利点
を有している。
Effects of the Invention The solid electrolytic capacitor manufactured by the method of the present invention has the following advantages over the conventionally known solid electrolytic capacitors.

漏れ電流が小さい。Small leakage current.

高容量でもtanδが小さい。Tanδ is small even with high capacity.

実施例 以下、実施例および比較例をあげて本発明をさらに詳細
に説明する。なお、各例の固体電解コンデンサの特性値
を表に示した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The characteristic values of the solid electrolytic capacitors of each example are shown in the table.

実施例1 酢酸鉛の濃度が2.0モル/lの水溶液と過硫酸カリの濃度
が2.5モル/lの水溶液を容量比1:1の割合で混合して反応
母液を得た。この反応母液を直ちに長さ4cm,巾0.3cmの
低圧用エッチングアルミ化成箔(エチレングリコールと
アジピン酸アンモニウムの電解液を使用した場合の容量
が約8μF/cm2)層に塗布し、減圧下で3時間放置した
ところ、化成箔上に二酸化鉛層が形成した。次いで、二
酸化鉛層を水で充分洗浄した後、110℃で3時間減圧乾
燥した。二酸化鉛層の上にカーボンペーストを塗布して
乾燥した後、さらにその上に銀ペーストを塗布して乾燥
した。陰極にアルミニウム箔を使用し、樹脂封口して固
体電解コンデンサを作製した。
Example 1 A reaction mother liquor was obtained by mixing an aqueous solution having a lead acetate concentration of 2.0 mol / l and an aqueous solution having a potassium persulfate concentration of 2.5 mol / l at a volume ratio of 1: 1. Immediately apply this reaction mother liquor to a 4 cm long, 0.3 cm wide low-pressure etched aluminum conversion foil (capacity is approximately 8 μF / cm 2 when using an electrolyte solution of ethylene glycol and ammonium adipate) and apply it under reduced pressure. When left for 3 hours, a lead dioxide layer was formed on the formed foil. Then, the lead dioxide layer was thoroughly washed with water and then dried under reduced pressure at 110 ° C. for 3 hours. A carbon paste was applied on the lead dioxide layer and dried, and then a silver paste was further applied and dried. An aluminum foil was used as the cathode, and the resin was sealed to produce a solid electrolytic capacitor.

次いで、この固体電解コンデンサを110℃の恒温室で4
時間放置した。
Then, this solid electrolytic capacitor was placed in a thermostatic chamber at 110 ° C for 4 hours.
Left for hours.

比較例1 実施例1で110℃で熱処理をしなかった以外は、実施例
1と同様にして固体電解コンデンサを作製した。
Comparative Example 1 A solid electrolytic capacitor was produced in the same manner as in Example 1 except that heat treatment was not performed at 110 ° C. in Example 1.

実施例2 実施例1で二酸化鉛層の上にカーボン層を設けなかった
以外は、実施例1と同様にして固体電解コンデンサを作
製した。
Example 2 A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the carbon layer was not provided on the lead dioxide layer in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】弁作用を有する金属の表面に酸化皮膜層を
形成し、その上に化学的析出法によって二酸化鉛の半導
体層を形成し、さらにカーボン層および/または金属層
を設けた後、40℃以上300℃以下の温度で熱処理するこ
とを特徴とする固体電解コンデンサの製造法。
1. An oxide film layer is formed on the surface of a metal having a valve action, a lead dioxide semiconductor layer is formed thereon by a chemical deposition method, and a carbon layer and / or a metal layer is further provided. A method for producing a solid electrolytic capacitor, characterized by performing heat treatment at a temperature of 40 ° C or higher and 300 ° C or lower.
JP61045347A 1986-03-04 1986-03-04 Manufacturing method of solid electrolytic capacitor Expired - Lifetime JPH0727849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045347A JPH0727849B2 (en) 1986-03-04 1986-03-04 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045347A JPH0727849B2 (en) 1986-03-04 1986-03-04 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62203323A JPS62203323A (en) 1987-09-08
JPH0727849B2 true JPH0727849B2 (en) 1995-03-29

Family

ID=12716746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045347A Expired - Lifetime JPH0727849B2 (en) 1986-03-04 1986-03-04 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0727849B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471B2 (en) * 1974-06-28 1979-01-05
JPS52133561A (en) * 1976-05-04 1977-11-09 Tokyo Shibaura Electric Co Method of manufacturing solid state electrolytic capacitor
JPS52137662A (en) * 1976-05-14 1977-11-17 Tokyo Shibaura Electric Co Method of manufacturing solid state electrolytic capacitor

Also Published As

Publication number Publication date
JPS62203323A (en) 1987-09-08

Similar Documents

Publication Publication Date Title
US4648010A (en) Solid electrolytic capacitor and process for preparation thereof
JPH0727849B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0722078B2 (en) Manufacturing method of solid electrolytic capacitor
JP2637207B2 (en) Solid electrolytic capacitors
JPS62185307A (en) Solid electrolytic capacitor
JP2891506B2 (en) Method for manufacturing solid electrolytic capacitor
JP2596996B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0719721B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0642446B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0722079B2 (en) Manufacturing method of solid electrolytic capacitor
JPS62216211A (en) Solid electrolytic capacitor
JP2773499B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0337853B2 (en)
JPH0719722B2 (en) Solid electrolytic capacitor
JPH0719727B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0727843B2 (en) Solid electrolytic capacitor
JPH0719725B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62193112A (en) Solid electrolytic capacitor
JPH11251192A (en) Solid electrolytic capacitor and its manufacture
JPS62102511A (en) Solid electrolytic capacitor
JPH0727844B2 (en) Manufacturing method of solid electrolytic capacitor
JPS62216311A (en) Solid electrolytic capacitor
JPH0719729B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0719723B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0247818A (en) Manufacture of solid electrolytic capacitor