JPH0247818A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0247818A
JPH0247818A JP19959088A JP19959088A JPH0247818A JP H0247818 A JPH0247818 A JP H0247818A JP 19959088 A JP19959088 A JP 19959088A JP 19959088 A JP19959088 A JP 19959088A JP H0247818 A JPH0247818 A JP H0247818A
Authority
JP
Japan
Prior art keywords
metallic
oxide
solid electrolyte
alkoxide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19959088A
Other languages
Japanese (ja)
Inventor
Takashi Mochizuki
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP19959088A priority Critical patent/JPH0247818A/en
Publication of JPH0247818A publication Critical patent/JPH0247818A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To sharply improve film breakdown strength (leakage currents) so as to contribute to miniaturization and low loss advancement by forming an oxide film on the surface of a valve acting metallic electrode, and sticking organic metallic salt such as alkoxide, etc., onto the oxide film, and heating it in the wet atmosphere so as to form a solid electrolyte. CONSTITUTION:Though solid electrolyte excellent in heat resistance is formed by applying solution in which organic metallic salt such as alkoxide, etc., is dissolved in xylene, or the like onto the surface of a valve acting metallic electrode consisting of aluminum foils treated by chemical conversion, and doing heat treatment after setting, steam is sent in at the time of formative reaction when metallic alcoholate transforms into a metallic oxide on a dielectric film so as to make the metallic oxide to be formed a one which contains crystal water to prevent damage and deterioration of the dielectric film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体電解質の形成方法を改良した固体電解コン
デンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a solid electrolytic capacitor by improving the method of forming a solid electrolyte.

従来の技術 従来固体電解質の形成方法としては、酸化皮膜を有する
弁作用金属を硝酸マンガン溶液に浸漬させた後、加熱分
解処理を行い、二酸化マンガンとして電極上に析出させ
ていた。
Prior Art The conventional method for forming a solid electrolyte involves immersing a valve metal having an oxide film in a manganese nitrate solution, then subjecting it to thermal decomposition treatment, and depositing manganese dioxide on the electrode.

発明が解決しようとする問題点 しかしながら、二酸化マンガン層を電極上に形成させる
際に、一般に硝酸マンガン溶液に浸漬させた後、加熱分
解を行うため陽極酸化皮膜が1員傷を受け、5〜7回熱
分解、再化成を行う必要があった。また定格電圧に対し
3〜4倍の電圧で化成する必要があり、小型化に対し大
きなマイナス要因となっていた。
Problems to be Solved by the Invention However, when a manganese dioxide layer is formed on an electrode, it is generally immersed in a manganese nitrate solution and then thermally decomposed, so that the anodic oxide film is damaged by one member. It was necessary to perform thermal decomposition and reconstitution. Further, it is necessary to perform chemical conversion at a voltage three to four times higher than the rated voltage, which is a major negative factor in miniaturization.

問題点を解決するための手段 本発明は上記の問題点を解決するため、酸化皮膜に対し
、化学作用の少ないアルコキシドなどの有機金属塩を用
い、さらに固体電解質となる金属酸化物形成時の加熱処
理操作を水蒸気中で行うことにより酸化皮膜の劣化防止
効果をさらに高めたことを特徴とする固体電解コンデン
サの製造方法である。
Means for Solving the Problems In order to solve the above problems, the present invention uses an organic metal salt such as an alkoxide that has little chemical action on the oxide film, and further heats the metal oxide to form the solid electrolyte. This method of manufacturing a solid electrolytic capacitor is characterized in that the effect of preventing deterioration of the oxide film is further enhanced by performing the treatment operation in steam.

すなわち、弁作用金属電極の表面上に酸化皮膜を形成し
、該酸化皮膜上にアルコキシドなどの有機金属塩を付着
させ、加湿雰囲気中で加熱処理して固体電解質を形成す
ることを特徴とする固体電解コンデンサの製造方法であ
る。そして上記アルコキシドとしてマンガン又は錫、又
は鉛を含有する有機金属塩であることを特徴とする。
That is, a solid electrolyte is formed by forming an oxide film on the surface of a valve metal electrode, depositing an organic metal salt such as an alkoxide on the oxide film, and heat-treating it in a humid atmosphere to form a solid electrolyte. This is a method of manufacturing an electrolytic capacitor. The alkoxide is characterized in that it is an organic metal salt containing manganese, tin, or lead.

作用 アルコキシドなどの有機金属塩をキシレンなどに溶解し
た溶液を化成処理を施したアルミニウム箔からなる弁作
用金属電極の表面上に塗布し、嵌挿後に加熱処理を行う
ことにより熱分解し、耐熱性に優れた固体電解質が形成
できる。その時のアルコキシドの熱分解反応の一般式は
、次式で示される。
A solution of an organic metal salt such as a functional alkoxide dissolved in xylene or the like is applied onto the surface of a valve metal electrode made of chemically treated aluminum foil, and thermally decomposed by heat treatment after insertion, resulting in heat resistance. A solid electrolyte with excellent properties can be formed. The general formula for the thermal decomposition reaction of the alkoxide at that time is shown by the following formula.

M (OR) n   −一一一一→  MOnzz 
 +   RORここで、 M:金属元素 R:アルキル基などの有機物 しかしこの製法では誘電体である金属酸化皮膜上での反
応であるため、どうしても酸化皮膜との相互反応を誘発
させてしまう。一方においては上記の相互反応がないと
、固体電解質である金属酸化物と誘電体である酸化皮膜
との接合性が低下し、tanδの増大を招く。従って、
この製法ではtanδは良好であるが、皮膜耐圧の点で
改良する必要がある。
M (OR) n -1111→ MOnzz
+ ROR where, M: Metal element R: Organic substance such as an alkyl group However, since this manufacturing method involves a reaction on a metal oxide film, which is a dielectric, it inevitably induces an interaction with the oxide film. On the other hand, in the absence of the above-mentioned mutual reaction, the bonding property between the metal oxide, which is the solid electrolyte, and the oxide film, which is the dielectric, decreases, leading to an increase in tan δ. Therefore,
Although tan δ is good in this manufacturing method, it is necessary to improve the film breakdown voltage.

本発明者は種々検討を行った結果、誘電体皮膜上に金属
アルコラードが金属酸化物となる形成反応時に水蒸気を
送り込むと、形成される金属酸化物は結晶水を含んだも
のであることを見出し、二酸化マンガン、酸化錫、酸化
鉛共に結晶水が入ると、誘電体皮膜の損傷劣化が著しく
防止できることが明らかになった。加えて誘電体皮膜と
の結合性においても、結晶水のイオン交換体反応により
相互結合性が強まり、低損失化が実現できた。
As a result of various studies, the inventors of the present invention discovered that when water vapor is introduced into a dielectric film during the formation reaction in which a metal alcolade becomes a metal oxide, the metal oxide that is formed contains crystal water. It has become clear that when crystallization water enters into manganese dioxide, tin oxide, and lead oxide, damage and deterioration of the dielectric film can be significantly prevented. In addition, in terms of bonding with the dielectric film, the ion exchange reaction of the crystal water strengthened the mutual bonding, making it possible to reduce loss.

実施例 陽極用電極として表面倍率を約100倍にエツチングし
たアルミニウム箔に14V化成を行った。
EXAMPLE As an electrode for an anode, an aluminum foil etched to a surface magnification of approximately 100 times was subjected to 14V chemical conversion.

この電極箔を第1表に示す有機金属塩溶液中に浸漬し引
き上げ、125℃で5分間乾燥を行った後、350℃の
雰囲気で10分間焼成した。(従来例)同様に上記焼成
中に350℃飽和水蒸気を吹き込み加湿雰囲気で10分
間行った。(本発明法)従来法、本発明法共にこの浸漬
−乾燥−焼成を3回繰り返して行った。
This electrode foil was immersed in the organic metal salt solution shown in Table 1, pulled up, dried at 125°C for 5 minutes, and then baked in an atmosphere of 350°C for 10 minutes. (Conventional example) Similarly, saturated steam at 350° C. was blown during the above baking process for 10 minutes in a humidified atmosphere. (Method of the present invention) This dipping-drying-baking process was repeated three times for both the conventional method and the method of the present invention.

その後、コロイダルカーボンを塗布した後、銀ペースト
で陰極リードをとりつけ、エポキシ封止をおこないエー
ジングを行った。
After that, colloidal carbon was applied, a cathode lead was attached using silver paste, epoxy sealing was performed, and aging was performed.

第1表 第2表 コンデンサの定格はIOV、33μF品であり、製品特
性を第2表に示した。第2表中の数値は試料数10個の
平均値である。
Table 1 Table 2 The capacitor rating is IOV, 33 μF, and the product characteristics are shown in Table 2. The numerical values in Table 2 are the average values of 10 samples.

発明の効果 第2表に示したように本発明の製造方法による電解コン
デンサは、皮膜耐圧(漏れ電流)が大幅に改善されると
同時にtanδの大幅な減少を誘発させ、小型化低損失
化に大きく貢献することができる。また容易に量産化が
可能であり、工業的ならびに実用的価値大なるものであ
る。
Effects of the Invention As shown in Table 2, the electrolytic capacitor manufactured by the manufacturing method of the present invention significantly improves the film withstand voltage (leakage current) and at the same time induces a significant decrease in tan δ, resulting in miniaturization and low loss. You can make a big contribution. Moreover, it can be easily mass-produced and has great industrial and practical value.

Claims (1)

【特許請求の範囲】[Claims] 弁作用金属電極の表面上に酸化皮膜を形成し、該酸化皮
膜上にアルコキシドなどの有機金属塩を付着させ、加湿
雰囲気中で加熱処理して固体電解質を形成することを特
徴とする固体電解コンデンサの製造方法。
A solid electrolytic capacitor characterized in that an oxide film is formed on the surface of a valve metal electrode, an organic metal salt such as an alkoxide is attached on the oxide film, and a solid electrolyte is formed by heat treatment in a humid atmosphere. manufacturing method.
JP19959088A 1988-08-10 1988-08-10 Manufacture of solid electrolytic capacitor Pending JPH0247818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19959088A JPH0247818A (en) 1988-08-10 1988-08-10 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19959088A JPH0247818A (en) 1988-08-10 1988-08-10 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0247818A true JPH0247818A (en) 1990-02-16

Family

ID=16410378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19959088A Pending JPH0247818A (en) 1988-08-10 1988-08-10 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0247818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129907A (en) * 1988-11-09 1990-05-18 Nichicon Corp Manufacture of solid electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870856A (en) * 1971-12-28 1973-09-26
JPS59115516A (en) * 1982-12-22 1984-07-04 日本電気株式会社 Method of forming manganeze oxide cathode of solid electrolytic condenser
JPS62266818A (en) * 1986-05-14 1987-11-19 ニチコン株式会社 Solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870856A (en) * 1971-12-28 1973-09-26
JPS59115516A (en) * 1982-12-22 1984-07-04 日本電気株式会社 Method of forming manganeze oxide cathode of solid electrolytic condenser
JPS62266818A (en) * 1986-05-14 1987-11-19 ニチコン株式会社 Solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129907A (en) * 1988-11-09 1990-05-18 Nichicon Corp Manufacture of solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPS6351621A (en) Solid electrolytic capacitor and manufacture of the same
JPH0247818A (en) Manufacture of solid electrolytic capacitor
JPH02129907A (en) Manufacture of solid electrolytic capacitor
JPH0719728B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0722078B2 (en) Manufacturing method of solid electrolytic capacitor
JPS62185307A (en) Solid electrolytic capacitor
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
US3553087A (en) Method of manufacturing solid electrolytic capacitors
JP2731243B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06342740A (en) Manufacture of electrode foil for electrolytic capacitor
JPH0566004B2 (en)
KR100753618B1 (en) Method of Manufacturing a Solid Electrolytic Capacitor
JPH01321622A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH02276215A (en) Manufacture of solid electrolyte capacitor
JPH02119215A (en) Manufacture of solid electrolytic capacitor
JPH0358404A (en) Manufacture of solid electrolytic capacitor
JPH0727849B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPS62274615A (en) Manufacture of winding type solid electrolytic capacitor
JPS62124728A (en) Manufacture of solid electrolyte capacitor
JPS6045280B2 (en) Formation method of aluminum anodic oxide film
JPH0864480A (en) Method of forming electrode foil for electrolytic capacitors
JPS62216211A (en) Solid electrolytic capacitor
JPS62271413A (en) Solid electrolytic capacitor
JPS62273711A (en) Manufacture of winding type solid electrolytic capacitor