JPS62274615A - Manufacture of winding type solid electrolytic capacitor - Google Patents

Manufacture of winding type solid electrolytic capacitor

Info

Publication number
JPS62274615A
JPS62274615A JP61116087A JP11608786A JPS62274615A JP S62274615 A JPS62274615 A JP S62274615A JP 61116087 A JP61116087 A JP 61116087A JP 11608786 A JP11608786 A JP 11608786A JP S62274615 A JPS62274615 A JP S62274615A
Authority
JP
Japan
Prior art keywords
lead
solid electrolytic
electrolytic capacitor
manufacturing
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61116087A
Other languages
Japanese (ja)
Other versions
JPH0727846B2 (en
Inventor
一美 内藤
隆 池崎
正二 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nippon Chemi Con Corp filed Critical Showa Denko KK
Priority to JP61116087A priority Critical patent/JPH0727846B2/en
Priority to EP19900121262 priority patent/EP0421487A3/en
Priority to EP19920111509 priority patent/EP0509560A3/en
Priority to DE87304262T priority patent/DE3787119T2/en
Priority to EP87304262A priority patent/EP0247759B1/en
Priority to CN87103667A priority patent/CN1012236B/en
Priority to US07/051,787 priority patent/US4888666A/en
Priority to KR1019870005008A priority patent/KR900008434B1/en
Publication of JPS62274615A publication Critical patent/JPS62274615A/en
Priority to US07/372,174 priority patent/US4889536A/en
Publication of JPH0727846B2 publication Critical patent/JPH0727846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は巻回凰固体電解コンデンサの製造方法に関する
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a method of manufacturing a wound solid electrolytic capacitor.

従来の技術 固体電解コンデンサは、陽極を構成する弁金属基体底面
に誘電体である酸化物層を形成し、該酸化物層上に半導
体層及び導電体層を順次積層形成して構成される。
A conventional solid electrolytic capacitor is constructed by forming an oxide layer, which is a dielectric, on the bottom surface of a valve metal base constituting an anode, and sequentially laminating a semiconductor layer and a conductor layer on the oxide layer.

陽極を構成する弁金属としては、アルミニウム、メンタ
ル、ニオブ、チタン等の弁作用を有する金属が用いられ
、これらのうち、アルミニウム及びタンタルが多く採用
されている。陽極弁金属基体の形状は、多孔質焼結体、
板(箔)、線状等であシ、このうち板(箔)を渦巻状に
巻いたタイプのコンデンサは、小形大容量のコンデンサ
となシ得る。
As the valve metal constituting the anode, metals having a valve action such as aluminum, mental, niobium, and titanium are used, and among these, aluminum and tantalum are often used. The shape of the anode valve metal base is porous sintered body,
Capacitors can be made of plates (foils), wires, etc. Among these, capacitors of the type where plates (foils) are spirally wound can be made into small capacitors with large capacitance.

しかし、この渦巻状に巻いたタイプのコンデンサでも、
従来の電解液を用いた電解コンデンサや特開昭58−1
7609号公報に記載されているTCNQ塩を用いたコ
ンデンサの様に、2枚の電極箔をセパレーター紙を挾ん
で巻き込むタイプのコンデンサは、構成上から小容積化
に限度がありた。
However, even with this spirally wound type capacitor,
Electrolytic capacitors using conventional electrolytes and JP-A-58-1
A type of capacitor in which two electrode foils are wrapped around a separator paper, such as the capacitor using TCNQ salt described in Publication No. 7609, has a limit in reducing the volume due to its structure.

また、電解液やTCNQ塩を用いると、電気伝導度が1
OS”(m  以下と小さく、コンデンサの損失係数(
tanδ)やインピーダンス特性等の性能に良い影響を
及ぼさなかりた。
In addition, when an electrolyte or TCNQ salt is used, the electrical conductivity decreases to 1.
The loss coefficient of the capacitor (
It did not have a positive effect on performance such as tan δ) or impedance characteristics.

発明が解決しようとする問題点 本発明の目的は、従来の問題点を解決し、従来品よシさ
らに小型・小容積化が可能で、しかもコンデンサ性能の
曳好な巻回型固体電解コンデンサの製造方法を提供する
ことにある。
Problems to be Solved by the Invention The purpose of the present invention is to solve the conventional problems and to develop a wound-type solid electrolytic capacitor that can be made smaller and smaller in volume than the conventional product, and has improved capacitor performance. The purpose is to provide a manufacturing method.

問題点を解決するための手段 本発明によって上記目的を達成し得る壱回墓固体電解コ
ンデンサの製造方法が提供される。
Means for Solving the Problems The present invention provides a method for manufacturing a solid electrolytic capacitor that can achieve the above objects.

即ち、本発明は、光面に誘電体酸化物層を有する陽極弁
金属基体の前記誘電体酸化物層上に、二酸化鉛と硫酸鉛
を主成分とする半導体層及び導電体層を順次形成させて
積層体を作製し、次いで該積層体を渦巻状に巻回したこ
とを特徴とする巻回型固体電解コンデンサの製造方法に
関する。
That is, the present invention sequentially forms a semiconductor layer and a conductive layer mainly composed of lead dioxide and lead sulfate on the dielectric oxide layer of the anode valve metal base having the dielectric oxide layer on the optical surface. The present invention relates to a method for manufacturing a wound solid electrolytic capacitor, characterized in that a laminate is produced using a laminate, and then the laminate is spirally wound.

以下、本発明の巻回型固体電解コンデンサの製造方法に
ついて説明する。
Hereinafter, a method for manufacturing a wound solid electrolytic capacitor according to the present invention will be explained.

陽極として用いられる弁金属基体としては、アルミニウ
ム、タンタル、ニオブ、チタン、及びこれらを基質とす
る合金等弁作用を有する金属の何れを用いてもよい。こ
のうち、アルミニウムを使用するのが有利である。半導
体層及び導電体層を形成させる前の陽極基体の形状は、
通常は板状(箔、す?ン等を包含する。)である。
As the valve metal substrate used as the anode, any metal having a valve action may be used, such as aluminum, tantalum, niobium, titanium, and alloys using these as substrates. Of these, it is advantageous to use aluminum. The shape of the anode substrate before forming the semiconductor layer and conductor layer is as follows:
Usually, it is plate-shaped (including foil, string, etc.).

陽極基体表頁の酸化物層は、陽極基体衣層部分に設けら
れ九陽極基体自体の酸化物層でありてもよく、あるいは
陽極基体の表面上に設けられた他の誘電体酸化物の層で
あってもよい。このうち、陽極弁金属基体の酸化物から
成る層であることが望ましい。何れの場合にも、酸化物
層を設ける方法としては、従来公知の方法を用いること
ができる。例えば、陽極基体としてアルミニウム箔を用
いる場合、アルミニウム箔の表面を電気化学的にエツチ
ングし、さらに、ホウ酸及びホウ酸アンモニウムの水溶
液中で電気化学的に処理すれば、陽極基体であるアルミ
ニウム箔上にアルミナ誘電体から成る酸化物層が形成さ
れる。なお、陽極弁金属基体+Cは、酸化物層を設ける
前後に、かしめ付け、高周波接合等の方法によ)陽極リ
ード線が接続される。
The oxide layer on the anode substrate surface page may be an oxide layer of the anode substrate itself provided on the coating layer of the anode substrate, or may be an oxide layer of another dielectric oxide provided on the surface of the anode substrate. It may be. Among these, a layer made of an oxide of the anode valve metal base is preferable. In either case, a conventionally known method can be used to provide the oxide layer. For example, when using aluminum foil as the anode substrate, if the surface of the aluminum foil is electrochemically etched and then electrochemically treated in an aqueous solution of boric acid and ammonium borate, the aluminum foil as the anode substrate can be etched. An oxide layer of alumina dielectric is formed on the wafer. Note that an anode lead wire is connected to the anode valve metal base +C (by caulking, high-frequency bonding, etc.) before and after providing the oxide layer.

本発明において使用される半導体層は、二酸化鉛と硫酸
鉛を主成分とする層で構成される。
The semiconductor layer used in the present invention is composed of a layer containing lead dioxide and lead sulfate as main components.

半導体層を、本来半導体の役割を果たす二酸化鉛と絶縁
物質である硫酸鉛とを主成分とする層で構成すると、硫
酸鉛の配合によシ、コンデンサの漏れ電流値を低減せし
めることができる。一方、硫酸鉛の配合により半導体層
の電気伝導度が低くなるため、例えば損失係数が大きく
なるが、従来の固体電解コンデンサと比較しても高水準
の性能を維持・発現することが、本発明によシ見出され
た。従って、半導体層を二酸化鉛と硫酸鉛の混合物で構
成する場合、半導体層中の二酸化鉛の含量が10重量%
以上100重量%未満の範囲内であり、好ましくは二酸
化鉛10〜95重量%に対し硫酸鉛90〜5重量%とい
う広範囲の組成で良好なコンデンサ性能を維持・発現す
ることができるが、とりわけ、二酸化鉛20〜50重量
%に対し硫酸鉛80〜50重量%、さらには二酸化鉛2
5〜35重量%に対し硫酸鉛75〜65重量%の範囲で
、漏れ電流値と損失係数値のバランスがとシわけ良好で
ある。二酸化鉛が10重量%未満であると、導電性が悪
くなるため損失係数値が大きくなり、また容量が充分発
現しない。二酸化鉛が100重量%になると、漏れ電流
値が大きくなシ、コンデンサ作製後の後化成もしくはエ
ーゾング等に多量の時間を要しコスト的に不利である。
When the semiconductor layer is composed of a layer whose main components are lead dioxide, which originally plays the role of a semiconductor, and lead sulfate, which is an insulating material, the leakage current value of the capacitor can be reduced depending on the blend of lead sulfate. On the other hand, since the electrical conductivity of the semiconductor layer decreases due to the addition of lead sulfate, for example, the loss factor increases, but the present invention maintains and exhibits a high level of performance compared to conventional solid electrolytic capacitors. It was found out. Therefore, when the semiconductor layer is composed of a mixture of lead dioxide and lead sulfate, the content of lead dioxide in the semiconductor layer is 10% by weight.
Good capacitor performance can be maintained and exhibited over a wide range of compositions, preferably less than 100% by weight, preferably 10 to 95% by weight of lead dioxide and 90 to 5% by weight of lead sulfate. 20-50% by weight of lead dioxide, 80-50% by weight of lead sulfate, and even 2% lead dioxide.
In the range of 75 to 65% by weight of lead sulfate compared to 5 to 35% by weight, the balance between leakage current value and loss coefficient value is very good. If the content of lead dioxide is less than 10% by weight, conductivity deteriorates, resulting in a large loss factor and insufficient capacity. When the lead dioxide content is 100% by weight, the leakage current value becomes large and a large amount of time is required for post-forming or aging after capacitor fabrication, which is disadvantageous in terms of cost.

二酸化鉛と硫酸鉛を主成分とする半導体層は、例えば鉛
イオン及び過硫酸イオンを含んだ水溶液を反応母液とし
て、化学的析出によって形成することができる。
A semiconductor layer containing lead dioxide and lead sulfate as main components can be formed by chemical precipitation using, for example, an aqueous solution containing lead ions and persulfate ions as a reaction mother liquid.

反応母液中の鉛イオンの濃度は、0.1モル/lから飽
和溶解度を与える濃度まで、好ましくは0、5モル/l
から飽和溶解度を与える濃度までの範囲内である。鉛イ
オンの濃度が飽和溶解度を与える濃度より高い場合には
、増量添加によるメリットが認められない。
The concentration of lead ions in the reaction mother liquor is from 0.1 mol/l to a concentration giving saturation solubility, preferably 0.5 mol/l.
to the concentration that gives saturated solubility. If the concentration of lead ions is higher than the concentration that provides saturation solubility, no benefit is observed by adding an increased amount.

また、鉛イオンの濃度が0.1モル/lより低い場合に
は、反応母液中の鉛イオン濃度が薄すぎるため塗布回数
を多くしなければならないという難点がある。一方、反
応母液中の過硫酸イオン濃度は、鉛イオンに対してモル
比で0.05に対して0.05の範囲内である。過硫酸
イオンの濃度が鉛イオンに対してモル比で5よシ多いと
、未反応の過硫酸イオンが残るだめコスト高となり、ま
た過硫酸イオンの濃度が鉛イオンに対してモル比で0.
05より少ないと、未反応の鉛イオンが残シ電導性が悪
くなるので好ましくない。
Further, when the concentration of lead ions is lower than 0.1 mol/l, there is a problem in that the concentration of lead ions in the reaction mother liquor is too low and the number of applications must be increased. On the other hand, the persulfate ion concentration in the reaction mother liquor is within the range of 0.05 to 0.05 in terms of molar ratio to lead ions. If the concentration of persulfate ions is more than 5% in molar ratio to lead ions, unreacted persulfate ions will remain, resulting in high costs;
If it is less than 05, unreacted lead ions remain and the conductivity deteriorates, which is not preferable.

本発明においては、反応母液中に過硫酸イオンを含まな
い池の酸化剤を配合してもよい。酸化剤の配合量は、作
製したコンデンサの漏れ電流値と損失係数値をバランス
よく保つため、予備実験によって決定される。
In the present invention, an oxidizing agent containing no persulfate ions may be added to the reaction mother liquor. The blending amount of the oxidizing agent is determined through preliminary experiments in order to maintain a good balance between the leakage current value and the loss coefficient value of the manufactured capacitor.

鉛イオン種を与える化合物の代表例としては、クエン酸
鉛、過塩素酸鉛、硝酸鉛、酢酸鉛、塩基性酢酸鉛、塩素
酸鉛、リードサルファメイト、六フッ化ケイ素鉛、臭素
酸鉛、塩化鉛、臭化鉛等があげられる。これらの鉛イオ
ン種を与える化合物は2種以上混合して使用してもよい
。一方、過硫酸イオン種を与える化合物の代表例として
過硫酸カリ、過硫酸ナトリウム、過硫酸アンモニウム等
があげられる。これらの過硫酸イオン種を与える化合物
は、2種以上混合して使用してもよい。
Typical examples of compounds that provide lead ion species include lead citrate, lead perchlorate, lead nitrate, lead acetate, basic lead acetate, lead chlorate, lead sulfamate, lead silicon hexafluoride, lead bromate, Examples include lead chloride and lead bromide. Two or more of these compounds that provide lead ion species may be used in combination. On the other hand, typical examples of compounds that provide persulfate ion species include potassium persulfate, sodium persulfate, ammonium persulfate, and the like. Two or more of these compounds that provide persulfate ion species may be used in combination.

酸化剤としては、例えば過酸化水素、次亜塩素酸カルシ
ウム、亜塩素酸カルシウム、塩素酸カルシウム、過塩素
酸カルシウムなどがあげられる。
Examples of the oxidizing agent include hydrogen peroxide, calcium hypochlorite, calcium chlorite, calcium chlorate, and calcium perchlorate.

半導体層上に設けられる導電体層は、例えば導電ペース
トの固化、メッキ、金属蒸着、耐熱性の導電樹脂フィル
ムの形成等によシ設層することができる。導電イースト
としては、銀ペースト、銅被−スト、アルミペースト、
カーデンペースト、ニッケルペースト等が好ましいが、
これらは1種を用いても2種以上を用いてもよい。2種
以上を用いる場合、混合して設層してもよく、または別
々の層として重ねてもよい。導電ペーストを適用した後
、空気中に放置するか、または加熱して固化せしめる。
The conductor layer provided on the semiconductor layer can be formed by, for example, solidifying a conductive paste, plating, metal vapor deposition, forming a heat-resistant conductive resin film, or the like. As conductive yeast, silver paste, copper coating, aluminum paste,
Carden paste, nickel paste, etc. are preferred, but
These may be used alone or in combination of two or more. When two or more types are used, they may be mixed and layered, or they may be stacked as separate layers. After applying the conductive paste, it is left in the air or heated to solidify.

メッキとしては、ニッケルメッキ、銅メッキ等があげら
れる。また、蒸着金属としてはアルミニウム、銅等があ
げられる。
Examples of plating include nickel plating and copper plating. Further, examples of vapor-deposited metals include aluminum, copper, and the like.

陰極端子は、導電体層上に例えば導電ペーストを使用し
て取付けるか、まだは導電ペーストが固化した後に、そ
の上にハンダ付けする方法等が採用できる。
The cathode terminal can be attached to the conductor layer using, for example, a conductive paste, or it can be attached by soldering onto the conductive paste after it has solidified.

かくして陽極弁金属基体上に誘電体酸化物層、半導体層
及び導電体層を積層形成した積層体を渦巻状に成形する
には、従来の電解液を使用した電解コンデンサに使用さ
れる陰陽両極箔から成る巻回素子を作製する方法を利用
して前述した積層体のみを巻回する等の方法が用いられ
、例えば第1図に示した様な渦巻状とされる。巻き数、
巻き径、巻きピッチ等は、各々所望により決めることが
でき、特に制限はない。
In order to spirally form a laminate in which a dielectric oxide layer, a semiconductor layer, and a conductor layer are laminated on the anode valve metal base, it is necessary to use the negative and anode bipolar foils used in electrolytic capacitors using conventional electrolytes. A method is used in which only the above-mentioned laminate is wound using a method of manufacturing a wound element consisting of a laminate, for example, into a spiral shape as shown in FIG. Number of turns,
The winding diameter, winding pitch, etc. can be determined as desired and are not particularly limited.

以上述べた如く構成される本発明の巻回型固体電解コン
デンサは、例えば樹脂モールド、樹脂ケース、金属製の
外装ケース、樹脂のディッピング、ラミネートフィルム
による外装などの外装により各種用途の汎用コンデンサ
製品とすることができる。
The wound solid electrolytic capacitor of the present invention constructed as described above can be used as a general-purpose capacitor product for various uses by using an exterior such as a resin mold, a resin case, a metal exterior case, resin dipping, or a laminated film exterior. can do.

発明の効果 本発明の方法によって得られる巻回型固体電解コンデン
サは、従来の巻回型電解コンデンサに比べ、さらに小型
・小容積化が可能でしかもコンデンサ性能も良好である
Effects of the Invention The wound solid electrolytic capacitor obtained by the method of the present invention can be made smaller and smaller in volume than conventional wound electrolytic capacitors, and has good capacitor performance.

実施例 以下、実施例を示して、本発明をさらに詳しく説明する
。なお、各側の巻回凰固体電解コンデンサの特性値を表
1に示した。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples. Table 1 shows the characteristic values of the wound solid electrolytic capacitors on each side.

実施Pノリ 1 長さ5α、巾0.3 anのアルミニウム箔を陽極とし
、交流により箔の表面を電気化学的にエツチング処理し
た。次いで、エッチアルミ箔に陽極端子をかしめ付けし
た後、ホウ酸とホウ酸アンモニウムの水溶液中で電気化
学的に処理してアルミナ誘電体層を形成し、低圧用エツ
チングアルミ化成箔(約20μF/10crrL勺を得
た。
Implementation P Nori 1 An aluminum foil having a length of 5α and a width of 0.3 ann was used as an anode, and the surface of the foil was electrochemically etched by alternating current. Next, after caulking an anode terminal to the etched aluminum foil, an alumina dielectric layer is formed by electrochemical treatment in an aqueous solution of boric acid and ammonium borate, and a low-voltage etched aluminum chemically formed foil (approximately 20 μF/10 crrL) is formed. I got a prize.

酢酸鉛三水和物の3.8モル/l水溶液と過硫酸アンモ
ニウムの4.0モル/l水溶液を混合して反応母液を得
た。この反応母液に上記のエツチングアルミ化成箔を陽
極端子を除いて浸漬し、80℃で20分放置した。誘電
体層上に析出した半導体層を水で充分洗浄して未反応物
を除いた後、100℃で1時間減圧乾燥した。生成した
半導体層は、二酸化鉛と硫酸鉛から成り、二酸化鉛が約
25重!−チ含まれることを質量分析、X線分析、赤外
分光分析より確認した。
A reaction mother liquor was obtained by mixing a 3.8 mol/l aqueous solution of lead acetate trihydrate and a 4.0 mol/l aqueous solution of ammonium persulfate. The above-mentioned etched aluminum chemical foil was immersed in this reaction mother liquor, excluding the anode terminal, and left at 80° C. for 20 minutes. The semiconductor layer deposited on the dielectric layer was thoroughly washed with water to remove unreacted substances, and then dried under reduced pressure at 100° C. for 1 hour. The resulting semiconductor layer consists of lead dioxide and lead sulfate, and the lead dioxide weighs about 25 times! - It was confirmed by mass spectrometry, X-ray analysis, and infrared spectroscopy that it was contained.

次いで、半導体層にカーボンペーストを塗布して乾燥し
た。さらに、その上に銀ペーストを塗布して室温で乾燥
した。続いて、得られた積層体を渦巻き状に巻きあげて
コンデンサ素子を作製した0さらに、固化した銀波−ス
ト上に)・ンダ付けによって陰極端子を出し、樹脂封口
して巻回型固体電解コンデンサを作製した。
Next, carbon paste was applied to the semiconductor layer and dried. Further, a silver paste was applied thereon and dried at room temperature. Next, the obtained laminate was wound into a spiral shape to produce a capacitor element.Furthermore, the cathode terminal was exposed by soldering on the solidified silver wave strip, and the wound solid electrolytic capacitor was sealed with resin. was created.

実施例2 実施例1で半導体層形成の際の過硫酸アンモニウムの濃
度を0.4モル/lにした以外は、実施例1と同様にし
て巻回型固体電解コンデンサを作製した。このときの半
導体層は、二酸化鉛と硫酸鉛から成る組成物でありて、
二酸化鉛が約35重量%含′まれることを確認した。
Example 2 A wound solid electrolytic capacitor was produced in the same manner as in Example 1, except that the concentration of ammonium persulfate during the formation of the semiconductor layer in Example 1 was changed to 0.4 mol/l. The semiconductor layer at this time is a composition consisting of lead dioxide and lead sulfate,
It was confirmed that about 35% by weight of lead dioxide was contained.

実施例3 実施例1で半導体層形成の際の反応母液に、さらに過酸
化水素水を0.05モル/l加えた以外は、実施例1と
同様にして巻回型固体電解コンデンサを作製した。この
ときの半導体層は、二酸化鉛と硫酸鉛から成る組成物で
あって、二酸化鉛が約50重量%含まれることを確認し
た。
Example 3 A wound solid electrolytic capacitor was produced in the same manner as in Example 1, except that 0.05 mol/l of hydrogen peroxide was further added to the reaction mother liquor used in forming the semiconductor layer in Example 1. . It was confirmed that the semiconductor layer at this time was composed of lead dioxide and lead sulfate, and contained about 50% by weight of lead dioxide.

実施例4 実施例1で半導体層形成の際の反応母液に、さらに過酸
化水素水を0.2モル/l加えた以外は、実施例1と同
様にして巻回型固体電解コンデンサを作製した。このと
きの半導体層は、二酸化鉛と硫酸鉛から成る組成物であ
って、二酸化鉛が約94重量%含まれることを確認した
Example 4 A wound solid electrolytic capacitor was produced in the same manner as in Example 1, except that 0.2 mol/l of hydrogen peroxide was further added to the reaction mother liquor used in forming the semiconductor layer in Example 1. . It was confirmed that the semiconductor layer at this time was composed of lead dioxide and lead sulfate, and contained about 94% by weight of lead dioxide.

比較例1 実施例1と同様なエツチングアルミ化成箔を使用し、当
業界で公知の方法によシミ解液を用いた電解コンデンサ
を作製した。即ち、端子が各々付いた陽極箔(同上エツ
チングアルミ化成箔)、陰極箔及びセ・ぐレータ−から
成る素子を渦巻き状に巻きあげた後、この巻回素子にエ
チレングリコール−アジピン酸アンモニウム系の電解液
を含浸させアルミニウム製の外装ケース内に素子を収納
し開口部をゴム製の封口体で閉じて巻回型電解コンデン
サを作製した。
Comparative Example 1 Using the same etched aluminum foil as in Example 1, an electrolytic capacitor was fabricated using a stain removal solution by a method known in the art. That is, after winding up an element consisting of an anode foil (etched aluminum foil), a cathode foil, and a separator each with a terminal in a spiral, the wound element is coated with ethylene glycol-ammonium adipate. A wound type electrolytic capacitor was fabricated by impregnating the device with an electrolytic solution, storing the device in an aluminum exterior case, and closing the opening with a rubber sealing body.

比較例2 実施例1と同様なエツチングアルミ化成箔を使用し、特
開昭58−17609号公報に記載されている方法に従
ってTCNQ塩を半導体層とした固体電解コンデンサを
作製した。即ち、アルミニウム製の外装ケース内にイン
プロピルインキノリンとTCNQの錯塩を入れ加熱融解
させた。次いで、端子が各々付いた陽極箔、陰極箔及び
セパレーターから成る巻回素子を、あらかじめ予熱して
おいて前記した融解した状態のTCNQ錯体中に含浸さ
せすばやく冷却固化させた。開口部をゴム製の封口体で
閉じて巻回型電解コンデンサを作製した。
Comparative Example 2 Using the same etched aluminum foil as in Example 1, a solid electrolytic capacitor with TCNQ salt as a semiconductor layer was fabricated according to the method described in Japanese Patent Application Laid-open No. 17609/1983. That is, a complex salt of inpropyl inquinoline and TCNQ was placed in an aluminum exterior case and melted by heating. Next, a wound element consisting of an anode foil, a cathode foil, and a separator each having a terminal was preheated and impregnated into the molten TCNQ complex described above, and quickly cooled and solidified. A wound type electrolytic capacitor was produced by closing the opening with a rubber sealing body.

比較例3 実施例1で酢酸鉛三水和物の3.8モル/l水溶液の代
りにクエン酸鉛の0.7モル/l水溶液を使用し、過硫
酸アンモニウムの濃度を4.8モル/lにした反応母液
を使用した以外は、実施例1と同様にして巻回型固体電
解コンデンサを作製した。
Comparative Example 3 In Example 1, a 0.7 mol/l aqueous solution of lead citrate was used instead of the 3.8 mol/l aqueous solution of lead acetate trihydrate, and the concentration of ammonium persulfate was changed to 4.8 mol/l. A wound solid electrolytic capacitor was produced in the same manner as in Example 1, except that the reaction mother liquor obtained in Example 1 was used.

このときの半導体層は、二酸化鉛と硫酸鉛から成る組成
物であって、二酸化鉛が約5重量%含まれることを確認
した。
It was confirmed that the semiconductor layer at this time was composed of lead dioxide and lead sulfate, and contained about 5% by weight of lead dioxide.

表     1 *  120Hzでの値 **2C1/での値 ***  比較例1を1とした相対比較値Table 1 *Value at 120Hz **Value at 2C1/ *** Relative comparison value with comparative example 1 as 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による巻回型固体電解コンデンサを示
す概略図である。 1・・・積層体、     2・・・陽極端子、3・・
・陰極端子。
FIG. 1 is a schematic diagram showing a wound solid electrolytic capacitor according to the present invention. 1... Laminated body, 2... Anode terminal, 3...
・Cathode terminal.

Claims (5)

【特許請求の範囲】[Claims] (1)表面に誘電体酸化物層を有する陽極弁金属基体の
前記誘電体酸化物層上に、二酸化鉛と硫酸鉛を主成分と
する半導体層及び導電体層を順次形成させて積層体を作
製し、次いで該積層体を渦巻状に巻回したことを特徴と
する巻回型固体電解コンデンサの製造方法。
(1) On the dielectric oxide layer of the anode valve metal base having a dielectric oxide layer on the surface, a semiconductor layer and a conductor layer mainly composed of lead dioxide and lead sulfate are sequentially formed to form a laminate. 1. A method for manufacturing a wound solid electrolytic capacitor, comprising: manufacturing a solid electrolytic capacitor, and then spirally winding the laminate.
(2)誘電体酸化物層が、陽極弁金属の酸化物で構成さ
れる特許請求の範囲第(1)項記載の巻回型固体電解コ
ンデンサの製造方法。
(2) The method for manufacturing a wound solid electrolytic capacitor according to claim (1), wherein the dielectric oxide layer is made of an oxide of an anode valve metal.
(3)二酸化鉛と硫酸鉛を主成分とする半導体層が、鉛
イオン及び過硫酸イオンを含む反応母液から化学的に析
出された層である特許請求の範囲第(1)項記載の巻回
型固体電解コンデンサの製造方法。
(3) The winding according to claim (1), wherein the semiconductor layer mainly composed of lead dioxide and lead sulfate is a layer chemically precipitated from a reaction mother liquor containing lead ions and persulfate ions. A manufacturing method for type solid electrolytic capacitors.
(4)反応母液中の鉛イオンの濃度が0.1モル/lか
ら飽和溶解度を与える濃度までの範囲であり、旦つ過硫
酸イオンが鉛イオン1モルに対して0.05モルから5
モルまでの範囲である特許請求の範囲第(3)項記載の
巻回型固体電解コンデンサの製造方法。
(4) The concentration of lead ions in the reaction mother liquor ranges from 0.1 mol/l to the concentration that provides saturation solubility, and the persulfate ions range from 0.05 mol/l to 5 mol/l per mol of lead ions.
A method for manufacturing a wound solid electrolytic capacitor according to claim (3), wherein the amount is up to molar.
(5)半導体層中に、二酸化鉛が10重量%以上100
重量%未満の範囲で含まれる特許請求の範囲第(1)項
記載の巻回型固体電解コンデンサの製造方法。
(5) The semiconductor layer contains 10% by weight or more of lead dioxide.
A method for manufacturing a wound solid electrolytic capacitor according to claim (1), wherein the amount is less than % by weight.
JP61116087A 1986-05-20 1986-05-22 Manufacturing method of wound type solid electrolytic capacitor Expired - Lifetime JPH0727846B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP61116087A JPH0727846B2 (en) 1986-05-22 1986-05-22 Manufacturing method of wound type solid electrolytic capacitor
EP19900121262 EP0421487A3 (en) 1986-05-20 1987-05-13 Solid electrolytic capacitor
EP19920111509 EP0509560A3 (en) 1986-05-20 1987-05-13 Roll type solid electrolytic capacitor
DE87304262T DE3787119T2 (en) 1986-05-20 1987-05-13 Coil type electrolytic capacitor.
EP87304262A EP0247759B1 (en) 1986-05-20 1987-05-13 Roll type solid electrolytic capacitor
CN87103667A CN1012236B (en) 1986-05-20 1987-05-20 Roll type solid electrolytic capacitor
US07/051,787 US4888666A (en) 1986-05-20 1987-05-20 Roll type solid electrolytic capacitor
KR1019870005008A KR900008434B1 (en) 1986-05-20 1987-05-20 Roll tape solid electrolytic capacitor and process of the preparation thereof
US07/372,174 US4889536A (en) 1986-05-20 1989-06-27 Roll type solid electrolyte capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61116087A JPH0727846B2 (en) 1986-05-22 1986-05-22 Manufacturing method of wound type solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62274615A true JPS62274615A (en) 1987-11-28
JPH0727846B2 JPH0727846B2 (en) 1995-03-29

Family

ID=14678388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61116087A Expired - Lifetime JPH0727846B2 (en) 1986-05-20 1986-05-22 Manufacturing method of wound type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0727846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279623A (en) * 1986-05-28 1987-12-04 昭和電工株式会社 Solid electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412447A (en) * 1977-06-30 1979-01-30 Hitachi Condenser Solid electrolytic capacitor
JPS5615028A (en) * 1979-07-17 1981-02-13 Fujitsu Ltd Aluminum solid electrolytic condenser
JPS60153525U (en) * 1984-03-21 1985-10-12 日本通信工業株式会社 solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412447A (en) * 1977-06-30 1979-01-30 Hitachi Condenser Solid electrolytic capacitor
JPS5615028A (en) * 1979-07-17 1981-02-13 Fujitsu Ltd Aluminum solid electrolytic condenser
JPS60153525U (en) * 1984-03-21 1985-10-12 日本通信工業株式会社 solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279623A (en) * 1986-05-28 1987-12-04 昭和電工株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH0727846B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
KR900008433B1 (en) Solid electrolytic capacitor and process for preparation thereof
JPS62274615A (en) Manufacture of winding type solid electrolytic capacitor
JPH0727851B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6328026A (en) Manufacture of winding type solid electrolytic capacitor
JPS62271412A (en) Solid electrolytic capacitor
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPS62268122A (en) Solid electrolytic capacitor
JPS62271413A (en) Solid electrolytic capacitor
JPS62279623A (en) Solid electrolytic capacitor
JPS62273711A (en) Manufacture of winding type solid electrolytic capacitor
JPH0770438B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6347917A (en) Solid electrolytic capacitor
JPH02166715A (en) Solid electrolytic capacitor
JP2533911B2 (en) Solid electrolytic capacitor
JPS63111608A (en) Manufacture of solid electrolytic capacitor
JPS63166208A (en) Solid electrolytic capacitor
JPS6323307A (en) Solid electrolytic capacitor
JPS62277714A (en) Solid electrolytic capacitor
JPH0821523B2 (en) Solid electrolytic capacitor
JPS63207117A (en) Manufacture of solid electrolytic capacitor
JPS63152113A (en) Manufacture of solid electrolytic capacitor
JPH0766902B2 (en) Solid electrolytic capacitor
JPS63207116A (en) Solid electrolytic capacitor
JPH01292806A (en) Manufacture of solid electrolytic capacitor
JPH01161821A (en) Manufacture of solid electrolytic capacitor