JPS62271412A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPS62271412A
JPS62271412A JP61113538A JP11353886A JPS62271412A JP S62271412 A JPS62271412 A JP S62271412A JP 61113538 A JP61113538 A JP 61113538A JP 11353886 A JP11353886 A JP 11353886A JP S62271412 A JPS62271412 A JP S62271412A
Authority
JP
Japan
Prior art keywords
lead
solid electrolytic
electrolytic capacitor
semiconductor layer
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61113538A
Other languages
Japanese (ja)
Other versions
JPH0727845B2 (en
Inventor
一美 内藤
隆 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nippon Chemi Con Corp filed Critical Showa Denko KK
Priority to JP61113538A priority Critical patent/JPH0727845B2/en
Priority to EP19900121262 priority patent/EP0421487A3/en
Priority to EP19920111509 priority patent/EP0509560A3/en
Priority to DE87304262T priority patent/DE3787119T2/en
Priority to EP87304262A priority patent/EP0247759B1/en
Priority to CN87103667A priority patent/CN1012236B/en
Priority to US07/051,787 priority patent/US4888666A/en
Priority to KR1019870005008A priority patent/KR900008434B1/en
Publication of JPS62271412A publication Critical patent/JPS62271412A/en
Priority to US07/372,174 priority patent/US4889536A/en
Publication of JPH0727845B2 publication Critical patent/JPH0727845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は固体電解コンデンサに関する。[Detailed description of the invention] 3. Detailed description of the invention Industrial applications The present invention relates to solid electrolytic capacitors.

従来の技術 固体電解コンデンサは、陽極を構成する弁金属基体表面
に誘電体である酸化物層を形成し、該酸化物層上に半導
体層及び導電体層を順次積層形成して構成される。
A conventional solid electrolytic capacitor is constructed by forming an oxide layer, which is a dielectric, on the surface of a valve metal base constituting an anode, and sequentially laminating a semiconductor layer and a conductor layer on the oxide layer.

陽極を構成する弁金属としては、アルミニウム、メンタ
ル、ニオブ、チタン等の弁作用を有する金属が用いられ
、これらのうち、アルミニウム及びタンタルが多く採用
されている。陽極弁金属基体の形状は、多孔質焼結体、
板(箔)、線状等であシ、このうち板(箔)を渦巻状に
巻いたタイプのコンデンサは、小形大容量のコンデンサ
となシ得る。
As the valve metal constituting the anode, metals having a valve action such as aluminum, mental, niobium, and titanium are used, and among these, aluminum and tantalum are often used. The shape of the anode valve metal base is porous sintered body,
Capacitors can be made of plates (foils), wires, etc. Among these, capacitors of the type where plates (foils) are spirally wound can be made into small capacitors with large capacitance.

しかし、この渦巻状に巻いたタイプのコンデンサでも、
従来の電解液を用いた電解コンデンサや%開昭58−1
7609号公報に記載されているTCNQ塩を用いたコ
ンデンサの様に、2枚の電極箔をセパレーター紙を挾ん
で巻き込むタイプの;ンデンサは、構成上から小容積化
に限度があった。
However, even with this spirally wound type capacitor,
Electrolytic capacitors using conventional electrolytes and 1980-1
Like the capacitor using TCNQ salt described in Publication No. 7609, a type capacitor in which two electrode foils are rolled up with a separator paper in between has a limit in reducing the volume due to the structure.

また、電解液やTCNQ @を用いると、電気伝導度が
10 8.3  以下と小さく、コンデンサの損失係数
(mδ)やインビーメンス特性等の性能に良い影Vを及
はさなかった。
Further, when an electrolytic solution or TCNQ@ was used, the electrical conductivity was as low as 10 8.3 or less, and did not have a good effect on the performance such as the loss coefficient (mδ) or the in-beam characteristics of the capacitor.

発明が解決しようとする問題点 本発明の目的は、従来の問題点を解決し、従来品よシさ
らに小型・小容積化が可能でしかもコンデンサ性能の良
好な固体電解コンデンサを提供することにある。
Problems to be Solved by the Invention An object of the present invention is to solve the conventional problems and provide a solid electrolytic capacitor that can be made smaller and smaller in volume than conventional products, and has good capacitor performance. .

問題点を解決するための手段 本発明によって上記目的を達成し得る固体電解コンデン
サが提供される。
Means for Solving the Problems The present invention provides a solid electrolytic capacitor that can achieve the above objects.

即ち、本発明は1表面に酸化物層を有し渦巻状に巻かれ
た陽極弁金属基体の前記酸化物層上に、二酸化鉛と硫酸
鉛を主成分とする半導体層及び導電体層が順次形成され
ていることを特徴とする固体電解コンデンサに関する。
That is, in the present invention, a semiconductor layer and a conductor layer mainly composed of lead dioxide and lead sulfate are sequentially formed on the oxide layer of a spirally wound anode valve metal base having an oxide layer on one surface. The present invention relates to a solid electrolytic capacitor characterized in that:

以下、本発明の固体電解コンデンサについて説明する。The solid electrolytic capacitor of the present invention will be explained below.

陽極として用いられる弁金属基体としては、アルミニウ
ム、タンタル、ニオブ、チタン、及びこれらを基質とす
る合金等弁作用を有する金属の何れを用いてもよい。こ
のうち、アルミニウムを使用するのが有利である。渦巻
状に成形される前の陽極基体の形状は、通常は板状(箔
、リコン等を包含する。)である。
As the valve metal substrate used as the anode, any metal having a valve action may be used, such as aluminum, tantalum, niobium, titanium, and alloys using these as substrates. Of these, it is advantageous to use aluminum. The shape of the anode substrate before being formed into a spiral shape is usually a plate shape (including foil, recon, etc.).

陽極基体表面の酸化物層は、陽極基体表層部分に設けら
れた陽極基体自体の酸化物層であってもよく、あるいは
陽極基体の表面上に設けられた他の誘電体酸化物の層で
あってもよい。このうち、陽極弁金属自体の酸化物から
成る層であることが望ましい。何れの場合にも、酸化物
層を設ける方法としては、従来公知の方法を用いること
ができる。
The oxide layer on the surface of the anode substrate may be an oxide layer of the anode substrate itself provided on the surface layer of the anode substrate, or may be another dielectric oxide layer provided on the surface of the anode substrate. It's okay. Among these, a layer made of an oxide of the anode valve metal itself is preferable. In either case, a conventionally known method can be used to provide the oxide layer.

例えば、陽極基体としてアルミニウム箔を用いる場合、
アルミニウム箔の表面を電気化学的にエツチングし、さ
らにホウ酸及びホウ酸アンモニウムの水溶液中で電気化
付的に処理すれば陽極基体であるアルミニウム箔上にア
ルミナ誘電体から成る酸化物層が形成される。なお、陽
極弁金属基体には、−酸化物層を設ける前後に、かしめ
付け、高周波接合等の方法によシ陽極リード線が接続さ
れる。
For example, when using aluminum foil as the anode substrate,
If the surface of the aluminum foil is electrochemically etched and then electrolytically treated in an aqueous solution of boric acid and ammonium borate, an oxide layer consisting of an alumina dielectric is formed on the aluminum foil, which is the anode substrate. Ru. Note that an anode lead wire is connected to the anode valve metal base by caulking, high-frequency bonding, or the like before and after providing the -oxide layer.

陽極弁金属基体を渦巻状に成形するには、従来の電解液
を使用した電解コンデンサに使用される陰陽両極箔から
成る巻回素子を作製する方法において、陽極のみ巻回す
る等の方法が用いられ、例えば第1図に示した様な渦巻
状とされる。巻き数、巻き径、巻きピッチ等は、各々所
望によシ決めることができ、特に制限はない。このうち
、半導体層及び導電体層が酸化物層上にうまく形成でき
るように、予じめ間隔を考慮して陽極弁金属基体を巻く
ことが好ましい。
In order to form the anode valve metal base into a spiral shape, a method such as winding only the anode is used in the method of manufacturing a wound element consisting of cathode and anode foils used in conventional electrolytic capacitors using an electrolytic solution. For example, it has a spiral shape as shown in FIG. The number of windings, winding diameter, winding pitch, etc. can be determined as desired and are not particularly limited. Among these, it is preferable to wind the anode valve metal base with the spacing taken into consideration in advance so that the semiconductor layer and the conductor layer can be properly formed on the oxide layer.

なお、成形の際に、予め設けられている酸化物層にクラ
ックが生じた場合などに、再化成を行なうことができる
。再化成の方法は従来公知のいかなる方法によってもよ
い。例えば前述した様なアルミニウム箔に対するホウ酸
及びホウ酸アンモニウムの水溶液中での電気化学的処理
等が適用される。
In addition, in the case where cracks occur in the oxide layer provided in advance during molding, reformation can be performed. The reconstitution method may be any conventionally known method. For example, electrochemical treatment of aluminum foil in an aqueous solution of boric acid and ammonium borate as described above is applied.

本発明において使用される半導体層は、二酸化鉛と硫酸
鉛を主成分とする層で構成される。
The semiconductor layer used in the present invention is composed of a layer containing lead dioxide and lead sulfate as main components.

半導体層を、本来半導体の役割を果たす二酸化鉛と絶縁
物質である硫酸鉛とを主成分とする層で構成すると、硫
酸鉛の配合によシ、コンデンサの漏れ電流値を低減せし
めることができる。=方、硫酸鉛の配合によシ半導体層
の電気伝導度が低くなるため、例えば損失係数(−δ)
が大きくなるが。
When the semiconductor layer is composed of a layer whose main components are lead dioxide, which originally plays the role of a semiconductor, and lead sulfate, which is an insulating material, the leakage current value of the capacitor can be reduced depending on the blend of lead sulfate. On the other hand, since the electrical conductivity of the semiconductor layer decreases due to the addition of lead sulfate, for example, the loss factor (-δ)
Although it gets bigger.

従来の固体電解コンデンサと比較しても高水準の性能を
維持・発現することが、本発明によシ見出された。従っ
て、半導体層を二酸化鉛と硫酸鉛の混合物で構成する場
合、半導体層中の二酸化鉛の含量が1’O重量%以上1
00重iチ未満の範囲内であシ、好ましくは二酸化鉛1
0〜95重量係に対し硫酸鉛90〜5重景チという広範
囲の組成で良好なコンデンサ性能を維持・発現すること
ができるが、とシわけ、二酸化鉛20〜50重量%に対
し硫酸鉛80〜50重量%、さらには二酸化鉛25〜3
5重量%に対し硫酸鉛75〜65重量%の範囲で、漏れ
電流値と損失係数のバランスがとシわけ良好である。二
酸化鉛が10重量−未満であると、導電性が悪くなるた
めに損失係数が大きくなシ、また容量が充分発現しない
。二酸化鉛が100重量%になると、漏れ電流値が大き
くな)、コンデンサ作製後の後化成もしくはエージング
等に多量の時間を要し、コスト的に不利である。
It has been found that the present invention maintains and exhibits a high level of performance compared to conventional solid electrolytic capacitors. Therefore, when the semiconductor layer is composed of a mixture of lead dioxide and lead sulfate, the content of lead dioxide in the semiconductor layer is 1'O% by weight or more.
Within the range of less than 0.00 weight i, preferably lead dioxide 1
Good capacitor performance can be maintained and achieved over a wide range of compositions, such as 0 to 95% by weight of lead sulfate and 90 to 5% by weight of lead sulfate; ~50% by weight, even lead dioxide 25-3
In the range of 75 to 65% by weight of lead sulfate relative to 5% by weight, the balance between leakage current value and loss coefficient is particularly good. If the amount of lead dioxide is less than 10% by weight, conductivity becomes poor, resulting in a large loss factor and insufficient capacity. If the lead dioxide content is 100% by weight, the leakage current value becomes large), and a large amount of time is required for post-chemical formation or aging after capacitor production, which is disadvantageous in terms of cost.

二酸化鉛と硫酸鉛を主成分とする半導体層は、例えば鉛
イオン及び過硫酸イオンを含んだ水溶液を反応母液とし
て、化学的析出によって形成することができる。
A semiconductor layer containing lead dioxide and lead sulfate as main components can be formed by chemical precipitation using, for example, an aqueous solution containing lead ions and persulfate ions as a reaction mother liquid.

反応母液中の鉛イオンの濃度は、0.1モル/!から飽
和溶解度を与える濃度まで、好ましくは0.5モル/!
から飽和溶解度を与える濃度までの範囲内である。鉛イ
オンの濃度が飽和溶解度を与える濃度よシ高い場合には
、増量添加によるメリットが認められない。
The concentration of lead ions in the reaction mother liquor is 0.1 mol/! to a concentration that gives saturated solubility, preferably 0.5 mol/!
to the concentration that gives saturated solubility. If the concentration of lead ions is higher than the concentration that gives saturation solubility, no benefit can be seen by adding an increased amount.

また、鉛イオンの濃度が0.1モルμよシ低い場合には
、反応母液中の鉛イオン濃度が薄すぎるため塗布回数を
多くしなければならないという難点がある。一方、反応
母液中の過硫酸イオン濃度は、鉛イオンに対してモル比
で0.05から5の範囲内である。過硫酸イオンの濃度
が鉛イオンに対してモル比で5よシ多いと、未反応の過
硫酸イオンが残るためコスト高となシ、また過硫酸イオ
ンの濃度が鉛イオンに対してモル比で0.05より少な
いと、未反応の鉛イオンが残シ電導性が悪くなるので好
ましくない。
Furthermore, when the concentration of lead ions is lower than 0.1 mol μ, there is a problem that the number of applications must be increased because the concentration of lead ions in the reaction mother liquor is too low. On the other hand, the concentration of persulfate ions in the reaction mother liquor is within the range of 0.05 to 5 in molar ratio to lead ions. If the concentration of persulfate ions is more than 5% in molar ratio to lead ions, unreacted persulfate ions will remain, resulting in high costs. If it is less than 0.05, unreacted lead ions remain and the conductivity deteriorates, which is not preferable.

本発明においては、反応母液中に過硫酸イオンを含まな
い他の酸化剤を配合してもよい。酸化剤の配合量は、作
製したコンデンサの漏れ電流値と損失係数値とバランス
よく保つため、予備実験によって決定される。
In the present invention, other oxidizing agents that do not contain persulfate ions may be added to the reaction mother liquor. The amount of the oxidizing agent to be mixed is determined through preliminary experiments in order to maintain a good balance between the leakage current value and the loss coefficient value of the manufactured capacitor.

鉛イオン種を与える化合物の代表例としては、゛クエン
酸鉛、過塩素酸鉛、硝酸鉛、酢酸鉛、塩基性酢酸鉛、塩
素酸鉛、リードサルファメイト、六フッ化ケイ素鉛、臭
素酸鉛、塩化鉛、臭化鉛等があげられる。これらの鉛イ
オン種を与える化合物は2種以上混合して使用してもよ
い。一方、過り酸イオンSを与える化合物の代表例とし
ては、過硫酸カリ、過硫酸ナトリウム、過硫酸アンモ轟
つム等があげられる。これらの過硫酸イオン種を与える
化合物は、2種以上混合して使用してもよい〇酸化剤と
しては、例えば過酸化水素、次亜塩素酸カルシウム、亜
塩素酸カルシウム、塩素酸カルシウム、過塩素酸カルシ
ウムなどがあげられる。
Typical examples of compounds that provide lead ion species include lead citrate, lead perchlorate, lead nitrate, lead acetate, basic lead acetate, lead chlorate, lead sulfamate, lead silicon hexafluoride, and lead bromate. , lead chloride, lead bromide, etc. Two or more of these compounds providing lead ion species may be used in combination. On the other hand, representative examples of compounds that provide peracid ions S include potassium persulfate, sodium persulfate, ammonium persulfate, and the like. Two or more of these compounds that provide persulfate ion species may be used as a mixture. Examples of oxidizing agents include hydrogen peroxide, calcium hypochlorite, calcium chlorite, calcium chlorate, and perchlorate. Examples include calcium acid.

半導体層上に設けられる導電体層は、例えば導電ペース
トの固化、メッキ、金属蒸着、耐熱性の導電樹脂フィル
ムの形成等によシ設層することができる。導電ペースト
としては、銀ペースト、銅4−スト、アルミ4−スト、
カーデンペースト、千ツケルペースト等が好ましいが、
これらは1種を用いても2種以上を用いてもよい。2種
以上を用いる場合、混合して設層してもよく、または態
別の層として重ねてもよい。導電ペーストラ適用した後
、空気中に放置するか、または加熱して固化せしめる。
The conductor layer provided on the semiconductor layer can be formed by, for example, solidifying a conductive paste, plating, metal vapor deposition, forming a heat-resistant conductive resin film, or the like. As conductive paste, silver paste, copper 4-st, aluminum 4-st,
Carden paste, Sentsukeru paste, etc. are preferred, but
These may be used alone or in combination of two or more. When two or more types are used, they may be mixed and layered, or may be stacked as separate layers. After applying the conductive paste, it is left in the air or heated to solidify.

メッキとしては、ニッケルメッキ、銅メッキ等があげら
れる。また蒸着金属としてはアルミニウム、銅等があげ
られる。
Examples of plating include nickel plating and copper plating. Further, examples of vapor-deposited metals include aluminum, copper, and the like.

隘極端子は、導電体層上に例えば導電ペースト七使用し
て取付けるか、または導電(−ストが固化した後にその
上にハンダ付けする方法等が採用できる。
The end terminal can be attached to the conductive layer using, for example, a conductive paste, or soldered thereon after the conductive paste has solidified.

以上述べた如く構成される本発明の固体電解コンデンサ
は、例えば樹脂モールド、樹脂ケース、金84製の外装
ケース、樹脂のディッピング、ラミネートフィルムによ
る外装などの外装にょシ各種用途の汎用コンデンサ製品
とするととができる。
The solid electrolytic capacitor of the present invention constructed as described above can be used as a general-purpose capacitor product for various exterior applications such as a resin mold, a resin case, a gold 84 exterior case, resin dipping, and a laminated film exterior. I can do it.

発明の効果 本発明の固体電解コンデンサは、従来の電解コンデンサ
に比べ、さらに小型・小容積化が可能でしかもコンデン
サ性能も良好である。
Effects of the Invention The solid electrolytic capacitor of the present invention can be made smaller and smaller in volume than conventional electrolytic capacitors, and has good capacitor performance.

実施例 以下、5AM flJ を示して、本発明tさらに詳し
く説明する。なお、各列の固体電解コンデンサの特性値
を表1に示した。
EXAMPLES Hereinafter, the present invention will be explained in more detail by showing 5AM flJ. Note that the characteristic values of the solid electrolytic capacitors in each row are shown in Table 1.

実施例1 長さ10m、巾0.53のアルミニウム箔を陽極とし、
交流により箔の表面を電気化学的にエツチング処理した
。次いで、エツチングアルミ箔に陽極端子をかしめ付け
し、陽極リード線を接続した。
Example 1 An aluminum foil with a length of 10 m and a width of 0.53 was used as an anode,
The surface of the foil was electrochemically etched using alternating current. Next, the anode terminal was caulked to the etched aluminum foil, and the anode lead wire was connected.

続けて、ホウ酸とホウ酸アンモニウムの水溶液中で電気
化学的に処理してアルミナの酸化物層を形成し、低圧用
エツチングアルミ化成箔(約1、OpF10n2)を得
た。次いで、この化成箔を巻回した後、上記したホウ酸
とホウ酸アンモニウムの水溶液中で再化成全行なった。
Subsequently, an alumina oxide layer was formed by electrochemical treatment in an aqueous solution of boric acid and ammonium borate to obtain a low-pressure etched aluminum chemical foil (approximately 1, OpF10n2). Next, after winding this chemically formed foil, it was completely re-formed in the aqueous solution of boric acid and ammonium borate described above.

酢酸鉛三水和物の濃度が3.8モル/!の酢酸鉛三水和
物水溶液と過硫酸アンモニウムの濃度が4.0モル/!
の過硫酸アンモニウム水溶液を混合して反応母液を得た
。この反応母液に上記の巻回箔を浸漬し、80℃で20
分放置した。巻回路上に析出した半導体層を水で充分洗
浄して未反応物を除いた後、100℃で1時間減圧乾燥
した。生成した半導体層は二酸化鉛と硫酸鉛から成シ、
二酸化鉛が約25重量%含まれることt質量分析、X線
分析、赤外分光分析よシ確認した。
The concentration of lead acetate trihydrate is 3.8 mol/! The concentration of lead acetate trihydrate aqueous solution and ammonium persulfate is 4.0 mol/!
An aqueous ammonium persulfate solution was mixed to obtain a reaction mother liquor. The above-mentioned rolled foil was immersed in this reaction mother liquor and heated to 80℃ for 20 minutes.
I left it for a minute. The semiconductor layer deposited on the winding circuit was thoroughly washed with water to remove unreacted substances, and then dried under reduced pressure at 100° C. for 1 hour. The resulting semiconductor layer is made of lead dioxide and lead sulfate.
It was confirmed by mass spectrometry, X-ray analysis, and infrared spectroscopy that it contained about 25% by weight of lead dioxide.

次いで、二酸化鉛と硫酸鉛から成る半導体層を有する巻
回箔を銀ペースト浴に浸漬し、引き上げた後、風乾した
。固化した銀ペースト層は、巻回箔の半導体層上に形成
されていた。銅線を陰極リードとして、巻回箔に銀ペー
ストで接続した後、樹脂封口して固体電解コンデンサを
作製した。
The wound foil with the semiconductor layer made of lead dioxide and lead sulfate was then immersed in a silver paste bath, pulled out, and air-dried. A solidified silver paste layer was formed on the semiconductor layer of the wound foil. A copper wire was used as a cathode lead, connected to a wound foil using silver paste, and then sealed with resin to produce a solid electrolytic capacitor.

実施例2 実施例1で半導体層形成の際の過硫酸アンモニウムの濃
度を0.4モル/!にした以外は、実施例1と同様にし
て固体電解コンデンサを作製した。このときの半導体層
は、二酸化鉛と硫酸鉛から成る組成物であって、二酸化
鉛が約35重量%含まれることを確認した。
Example 2 In Example 1, the concentration of ammonium persulfate when forming the semiconductor layer was 0.4 mol/! A solid electrolytic capacitor was produced in the same manner as in Example 1 except that It was confirmed that the semiconductor layer at this time was composed of lead dioxide and lead sulfate, and contained about 35% by weight of lead dioxide.

実施例3 実施例1で半導体層形成の際に反応母液にさらvt に過酸化水素水を0.05モル/!加えた以外は、実施
例1と同様にして固体電解コンデンサを作製した。この
ときの半導体層は、二酸化鉛と硫酸鉛からなる組成物で
あって、二酸化鉛が約50重量%含まれることを確認し
た。
Example 3 In Example 1, when forming the semiconductor layer, 0.05 mol/! of hydrogen peroxide was added to the reaction mother liquor. A solid electrolytic capacitor was produced in the same manner as in Example 1 except for the addition of the following. It was confirmed that the semiconductor layer at this time was composed of lead dioxide and lead sulfate, and contained about 50% by weight of lead dioxide.

実施例4 実施例1で半導体層形成の際、反応母液にさらに過酸化
水素水0.2モル/!加えた以外は、実施例1と同様に
して固体電解コンデンサを作製した。
Example 4 When forming the semiconductor layer in Example 1, 0.2 mol/! of hydrogen peroxide solution was added to the reaction mother liquor. A solid electrolytic capacitor was produced in the same manner as in Example 1 except for the addition of the following.

このときの半導体層は、二酸化鉛と硫酸鉛から成る組成
物であって、二酸化鉛が約94重量%含まれることを確
認した。
It was confirmed that the semiconductor layer at this time was composed of lead dioxide and lead sulfate, and contained about 94% by weight of lead dioxide.

比較例1 実施例1と同様なエツチングアルミ化成箔を使用し、当
業界で公知の方法によシミ解液を用いた電解コンデンサ
を作製した。即ち、端子が各々付いた陽極箔(同上エツ
チングアルミ化成箔)、陰極箔及びセパレーターから成
る巻回素子に、エチレングリコールアジピン酸アンモニ
ウム系の電解液を含浸させ、アルミニウム製の外装ケー
ス内に素子を収納し、開口部をゴム製の封口体で閉じて
電解コンデンサを作製した。
Comparative Example 1 Using the same etched aluminum foil as in Example 1, an electrolytic capacitor was fabricated using a stain removal solution by a method known in the art. That is, a wound element consisting of an anode foil (etched aluminum foil), a cathode foil, and a separator each having a terminal is impregnated with an ethylene glycol ammonium adipate electrolyte, and the element is placed inside an aluminum exterior case. The capacitor was stored and the opening was closed with a rubber sealing member to produce an electrolytic capacitor.

比較例2 実施例1と同様なエツチングアルミ化成箔を使用し、特
開昭58−17609号公報に記載されている方法に従
ってTCNQ塩を導電体層とした固体電解コンデンサを
作製した。即ち、アルミニウム製の外装ケース内に、イ
ソプロピルイソキノリンとTCNQの錯塩を入れ加熱融
解させた。次いで、端子が各々ついた陽極箔、陰極箔及
びセパレーターからなる巻回素子を予じめ予熱しておい
て、前記した融解状態のTCNQ錯塩中に含浸させ、す
ばやく冷却固化させた。開口部をゴム製の封口体で閉じ
て電解コンデンサを作製した。
Comparative Example 2 Using the same etched aluminum foil as in Example 1, a solid electrolytic capacitor with a conductor layer made of TCNQ salt was produced according to the method described in Japanese Patent Application Laid-Open No. 17609/1983. That is, a complex salt of isopropylisoquinoline and TCNQ was placed in an aluminum exterior case and melted by heating. Next, a wound element consisting of an anode foil, a cathode foil, and a separator each having a terminal was preheated and impregnated into the above-mentioned molten TCNQ complex salt, and rapidly cooled and solidified. An electrolytic capacitor was produced by closing the opening with a rubber sealing body.

比較例3 実施例1で酢酸鉛三水和物の濃度が3.8モル/!の水
溶液を使用する代シにクエン酢鉛の濃度が0.7モル/
!のクエン酸鉛水溶液を使用し、過硫酸アンモニウムの
濃度を4.8モル/l/にした反応母液を使用した以外
は、実施例1と同様にして固体電解コンデンサを作製し
た。このときの半導体層は、二酸化鉛と硫酸鉛から成る
組成物であって、二酸化鉛が約5重i%含まれることを
確認した。
Comparative Example 3 In Example 1, the concentration of lead acetate trihydrate was 3.8 mol/! When using an aqueous solution, the concentration of lead citric acid was 0.7 mol/
! A solid electrolytic capacitor was produced in the same manner as in Example 1, except that an aqueous lead citrate solution was used and a reaction mother liquor containing ammonium persulfate at a concentration of 4.8 mol/l/l was used. It was confirmed that the semiconductor layer at this time was made of a composition consisting of lead dioxide and lead sulfate, and contained about 5% by weight of lead dioxide.

表   1 *120Hzでの値 本*10kHz       N 材*20vでの値 林ネ*比較例1を1とした相対比較値Table 1 *Value at 120Hz Book*10kHz N Material *Value at 20v Relative comparison value with Comparative Example 1 as 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、渦巻状に巻かれた陽極弁金属基体の斜視図で
ある。 1・・・陽極弁金属基体、2・・・陽極リード端子。
FIG. 1 is a perspective view of a spirally wound anode valve metal base. 1...Anode valve metal base, 2...Anode lead terminal.

Claims (4)

【特許請求の範囲】[Claims] (1)表面に酸化物層を有し渦巻状に巻かれた陽極弁金
属基体の前記酸化物層上に、二酸化鉛と硫酸鉛を主成分
とする半導体層及び導電体層が順次形成されていること
を特徴とする固体電解コンデンサ。
(1) A semiconductor layer and a conductor layer containing lead dioxide and lead sulfate as main components are sequentially formed on the oxide layer of a spirally wound anode valve metal base having an oxide layer on its surface. A solid electrolytic capacitor characterized by:
(2)二酸化鉛と硫酸鉛を主成分とする半導体層が、鉛
イオン及び過硫酸イオンを含む反応母液から化学的に析
出された層である特許請求の範囲第(1)項記載の固体
電解コンデンサ。
(2) The solid electrolyte according to claim (1), wherein the semiconductor layer containing lead dioxide and lead sulfate as main components is a layer chemically precipitated from a reaction mother liquor containing lead ions and persulfate ions. capacitor.
(3)反応母液中の鉛イオンの濃度が0.1モル/lか
ら飽和溶解度を与える濃度までの範囲であり、且つ過硫
酸イオンが鉛イオン1モルに対し0.05モルから5モ
ルまでの範囲である特許請求の範囲第(2)項記載の固
体電解コンデンサ。
(3) The concentration of lead ions in the reaction mother liquor ranges from 0.1 mol/l to the concentration that provides saturation solubility, and the persulfate ions range from 0.05 mol to 5 mol per mol of lead ions. The solid electrolytic capacitor according to claim (2), which is within the range.
(4)半導体層中に、二酸化鉛が10重量%以上100
重量%未満の範囲で含まれる特許請求の範囲第(1)項
記載の固体電解コンデンサ。
(4) 10% by weight or more of lead dioxide in the semiconductor layer
The solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is contained in a range of less than % by weight.
JP61113538A 1986-05-20 1986-05-20 Solid electrolytic capacitor Expired - Lifetime JPH0727845B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP61113538A JPH0727845B2 (en) 1986-05-20 1986-05-20 Solid electrolytic capacitor
EP19900121262 EP0421487A3 (en) 1986-05-20 1987-05-13 Solid electrolytic capacitor
EP19920111509 EP0509560A3 (en) 1986-05-20 1987-05-13 Roll type solid electrolytic capacitor
DE87304262T DE3787119T2 (en) 1986-05-20 1987-05-13 Coil type electrolytic capacitor.
EP87304262A EP0247759B1 (en) 1986-05-20 1987-05-13 Roll type solid electrolytic capacitor
CN87103667A CN1012236B (en) 1986-05-20 1987-05-20 Roll type solid electrolytic capacitor
US07/051,787 US4888666A (en) 1986-05-20 1987-05-20 Roll type solid electrolytic capacitor
KR1019870005008A KR900008434B1 (en) 1986-05-20 1987-05-20 Roll tape solid electrolytic capacitor and process of the preparation thereof
US07/372,174 US4889536A (en) 1986-05-20 1989-06-27 Roll type solid electrolyte capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61113538A JPH0727845B2 (en) 1986-05-20 1986-05-20 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62271412A true JPS62271412A (en) 1987-11-25
JPH0727845B2 JPH0727845B2 (en) 1995-03-29

Family

ID=14614858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61113538A Expired - Lifetime JPH0727845B2 (en) 1986-05-20 1986-05-20 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0727845B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412447A (en) * 1977-06-30 1979-01-30 Hitachi Condenser Solid electrolytic capacitor
JPS60153525U (en) * 1984-03-21 1985-10-12 日本通信工業株式会社 solid electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412447A (en) * 1977-06-30 1979-01-30 Hitachi Condenser Solid electrolytic capacitor
JPS60153525U (en) * 1984-03-21 1985-10-12 日本通信工業株式会社 solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH0727845B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
KR900008433B1 (en) Solid electrolytic capacitor and process for preparation thereof
JPS62271412A (en) Solid electrolytic capacitor
JPH0727851B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62274615A (en) Manufacture of winding type solid electrolytic capacitor
JPS6328026A (en) Manufacture of winding type solid electrolytic capacitor
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPS62279623A (en) Solid electrolytic capacitor
JPS62271413A (en) Solid electrolytic capacitor
JPS62268122A (en) Solid electrolytic capacitor
JPS62273711A (en) Manufacture of winding type solid electrolytic capacitor
JP2533911B2 (en) Solid electrolytic capacitor
JPS63111608A (en) Manufacture of solid electrolytic capacitor
JPH0770438B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62277714A (en) Solid electrolytic capacitor
JPH0821523B2 (en) Solid electrolytic capacitor
JPS63207116A (en) Solid electrolytic capacitor
JPS63166208A (en) Solid electrolytic capacitor
JPH02187008A (en) Manufacture of solid electrolytic capacitor
JPH01292806A (en) Manufacture of solid electrolytic capacitor
JPS6323307A (en) Solid electrolytic capacitor
JPH01161821A (en) Manufacture of solid electrolytic capacitor
JPH0727848B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63152113A (en) Manufacture of solid electrolytic capacitor
JPH0577283B2 (en)
JPH0695492B2 (en) Method for manufacturing solid electrolytic capacitor