JPH0727851B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JPH0727851B2
JPH0727851B2 JP62168535A JP16853587A JPH0727851B2 JP H0727851 B2 JPH0727851 B2 JP H0727851B2 JP 62168535 A JP62168535 A JP 62168535A JP 16853587 A JP16853587 A JP 16853587A JP H0727851 B2 JPH0727851 B2 JP H0727851B2
Authority
JP
Japan
Prior art keywords
lead
electrolytic capacitor
solid electrolytic
aging
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62168535A
Other languages
Japanese (ja)
Other versions
JPS6413714A (en
Inventor
一美 内藤
幸治 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62168535A priority Critical patent/JPH0727851B2/en
Publication of JPS6413714A publication Critical patent/JPS6413714A/en
Publication of JPH0727851B2 publication Critical patent/JPH0727851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体電解コンデンサの製造方法に関し、特に
二酸化鉛もしくは二酸化鉛と硫酸鉛からなる半導体層を
有する固体電解コンデンサ素子のエージング方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for aging a solid electrolytic capacitor element having a semiconductor layer made of lead dioxide or lead dioxide and lead sulfate.

〔従来の技術〕 一般に固体電解コンデンサ素子は、弁作用金属からなる
陽極基体に酸化皮膜層を形成し、この酸化皮膜層の外面
に対向電極として二酸化マンガン等の半導体層を形成し
ている。さらに接触抵抗を減じるために導電体層を設け
ている。上述した二酸化マンガン以外の半導体として二
酸化鉛は、その電導度が比較的高いため、高性能な固体
電解コンデンサを作製することが期待されたが、実現さ
れたものはなかった。このような中で、本発明者等は、
特願昭61-26952号、特願昭61-93451号等で、二酸化鉛も
しくは二酸化鉛と硫酸鉛からなる半導体層をもつ性能が
良好で工業的に実現可能な固体電解コンデンサもしくは
固体電解コンデンサの製造方法等を提案した。さらに、
この種の固体電解コンデンサのエージング方法として特
願昭61-120192号、特願昭61-121230号等で導電体層形成
後に化成処理を施すことを提案した。
[Prior Art] Generally, in a solid electrolytic capacitor element, an oxide film layer is formed on an anode substrate made of a valve metal, and a semiconductor layer such as manganese dioxide is formed as an opposite electrode on the outer surface of the oxide film layer. Further, a conductor layer is provided to reduce the contact resistance. Since lead dioxide, which is a semiconductor other than manganese dioxide described above, has a relatively high electric conductivity, it was expected to produce a high-performance solid electrolytic capacitor, but none was realized. In such a situation, the present inventors have
Japanese Patent Application No. 61-26952, Japanese Patent Application No. 61-93451, etc. discloses a solid electrolytic capacitor or a solid electrolytic capacitor which has a semiconductor layer of lead dioxide or lead dioxide and lead sulfate and has good performance and which can be industrially realized. Proposed manufacturing method. further,
As a method for aging this type of solid electrolytic capacitor, it has been proposed in Japanese Patent Application Nos. 61-120192 and 61-121230 to perform chemical conversion treatment after forming a conductor layer.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、工業的見地から、上述したエージング方
法よりさらに一層漏れ電流が少なくて、短時間でエージ
ングでき得る方法が望まれていた。
However, from an industrial point of view, there has been a demand for a method in which the leakage current is further smaller than that of the above-described aging method and the aging can be performed in a short time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の目的を達成するためになされたもの
で、本発明によれば弁作用を有する金属からなる陽極基
体の表面に、誘電体酸化皮膜層、二酸化鉛もしくは二酸
化鉛と硫酸鉛を主成分とする半導体層、導電体層を順次
形成してなる固体電解コンデンサの製造方法において、
前記半導体層を形成した後封止前に固体電解コンデンサ
素子を100℃乃至260℃の温度下でエージングする固体電
解コンデンサの製造方法にある。
The present invention has been made to achieve the above object. According to the present invention, a dielectric oxide film layer, lead dioxide or lead dioxide and lead sulfate are formed on the surface of an anode substrate made of a metal having a valve action. In a method for manufacturing a solid electrolytic capacitor, which is formed by sequentially forming a semiconductor layer having a main component and a conductor layer,
A method for producing a solid electrolytic capacitor, comprising aging the solid electrolytic capacitor element at a temperature of 100 ° C. to 260 ° C. after encapsulation after forming the semiconductor layer.

以下、本発明の固体電解コンデンサの製造方法について
説明する。
Hereinafter, a method for manufacturing the solid electrolytic capacitor of the present invention will be described.

本発明の固体電解コンデンサの陽極として用いられる弁
金属基体としては、例えば、アルミニウム、タンタル、
ニオブ、チタンおよびこれらを基質とする合金等、弁作
用を有する金属がいずれも使用できる。陽極基体表面の
酸化皮膜層は基体自体の酸化物層であってもよく、ある
いは基体の表面上に設けられた他の誘電体酸化物の層で
あってもよい。望ましくは弁金属自体の酸化物から成る
層である。
Examples of the valve metal substrate used as the anode of the solid electrolytic capacitor of the present invention include aluminum, tantalum,
Any metal having a valve action such as niobium, titanium and alloys having these as substrates can be used. The oxide film layer on the surface of the anode substrate may be an oxide layer of the substrate itself, or may be a layer of another dielectric oxide provided on the surface of the substrate. Preferably, it is a layer consisting of the oxide of the valve metal itself.

いずれの場合にも酸化物層を設ける方法としては、従来
公知の方法を用いることができる。
In any case, a conventionally known method can be used as a method for providing the oxide layer.

次に、本発明において使用する半導体層は二酸化鉛もし
くは、二酸化鉛と硫酸鉛を主成分として、従来公知の化
学的析出法、あるいは電気化学的析出法で作製するのが
好ましい。
Next, the semiconductor layer used in the present invention is preferably made of lead dioxide or lead dioxide and lead sulfate as main components by a conventionally known chemical deposition method or electrochemical deposition method.

化学的析出法としては、例えば、鉛含有化合物と酸化剤
を含んだ溶液(反応母液)から化学的に析出させる方法
が挙げられる。
Examples of the chemical deposition method include a method of chemically depositing a solution containing a lead-containing compound and an oxidizing agent (reaction mother liquor).

鉛含有化合物としては、例えば、オキシン、アセチルア
セトン、ピロメコン酸、サリチル酸、アリザリン、ポリ
酢酸ビニル、ポルフィリン系化合物、クラウン化合物、
クリプラテート化合物等のキレート形成性化合物に鉛の
原子が配位結合もしくはイオン結合している鉛含有化合
物、クエン酸鉛、酢酸鉛、塩基性酢酸鉛、塩化鉛、臭化
鉛、過塩素酸鉛、塩素酸鉛、リードサルファメイト、六
弗化ケイ素鉛、臭素酸鉛、ホウフッ化鉛、酢酸鉛水和
物、硝酸鉛等が挙げられる。これらの鉛含有化合物は、
反応母液に使用する溶剤によって適宜選択される。ま
た、これらの鉛含有化合物は2種以上混合して使用して
も良い。
Examples of the lead-containing compound include oxine, acetylacetone, pyromeconic acid, salicylic acid, alizarin, polyvinyl acetate, porphyrin compounds, crown compounds,
Lead-containing compounds in which lead atoms are coordinate-bonded or ionic-bonded to chelate-forming compounds such as criplatate compounds, lead citrate, lead acetate, basic lead acetate, lead chloride, lead bromide, lead perchlorate, Examples thereof include lead chlorate, lead sulfamate, lead silicon hexafluoride, lead bromate, lead borofluoride, lead acetate hydrate, and lead nitrate. These lead-containing compounds are
It is appropriately selected depending on the solvent used for the reaction mother liquor. Moreover, you may use these lead-containing compounds in mixture of 2 or more types.

反応母液中の鉛含有化合物の濃度は、飽和溶解度を与え
る濃度から0.05モル/lの範囲内であり、好ましくは飽和
溶解度を与える濃度から0.1モル/lの範囲内であり、よ
り好ましくは飽和溶解度を与える濃度から0.5モル/lの
範囲である。反応母液中の鉛含有化合物の濃度が0.05モ
ル/l未満では、性能の良好な固体電解コンデンサを得る
ことができない。また反応母液中の鉛含有化合物の濃度
が飽和溶解度を越える場合は、増量添加によるメリット
が認められない。
The concentration of the lead-containing compound in the reaction mother liquor is in the range of 0.05 mol / l from the concentration giving the saturated solubility, preferably in the range of 0.1 mol / l from the concentration giving the saturated solubility, more preferably the saturated solubility. From the concentration giving 0.5 mol / l. If the concentration of the lead-containing compound in the reaction mother liquor is less than 0.05 mol / l, a solid electrolytic capacitor with good performance cannot be obtained. Further, when the concentration of the lead-containing compound in the reaction mother liquor exceeds the saturation solubility, the merit of increasing the addition amount is not recognized.

酸化剤としては、例えば、キノン、クロラニル、ピリジ
ン−N−オキサイド、ジメチルスルフォキサイド、クロ
ム酸、過マンガン酸カリ、セレンオキサイド、酢酸水
銀、酸化バナジウム、塩素酸ナトリウム、塩化第二鉄、
過酸化水素、過酸化ベンゾイル、次亜塩素酸カルシウ
ム、過塩素酸カルシウム、塩素酸カルシウム、過塩素酸
カルシウム等が挙げられる。これらの酸化剤は、使用す
る溶剤によって適宜に選択すればよい。また酸化剤は、
2種以上混合して使用してもよい。
Examples of the oxidizing agent include quinone, chloranil, pyridine-N-oxide, dimethylsulfoxide, chromic acid, potassium permanganate, selenium oxide, mercury acetate, vanadium oxide, sodium chlorate, ferric chloride,
Examples thereof include hydrogen peroxide, benzoyl peroxide, calcium hypochlorite, calcium perchlorate, calcium chlorate, calcium perchlorate and the like. These oxidizing agents may be appropriately selected depending on the solvent used. The oxidant is
You may mix and use 2 or more types.

酸化剤の使用割合は、鉛含有化合物の使用モル量の5〜
0.1倍モルの範囲内であることが好ましい。酸化剤の使
用割合が鉛化合物の使用モル量の5倍モルより多い場合
は、コスト的にメリットはなく、また0.1倍モルより少
ない場合は、性能の良好な固体電解コンデンサが得られ
ない。
The proportion of the oxidizing agent used is 5 to 5 times the molar amount of the lead-containing compound used.
It is preferably in the range of 0.1 times by mole. If the proportion of the oxidizing agent used is more than 5 times the mole amount of the lead compound used, there is no cost advantage, and if it is less than 0.1 times the mole amount, a solid electrolytic capacitor with good performance cannot be obtained.

二酸化鉛を主成分とする半導体層を形成する方法として
は、例えば鉛含有化合物を溶かした溶液と酸化剤を溶か
した溶液を混合して反応母液を調製した後、反応母液に
前記した酸化皮膜を有する化成箔を浸漬して化学的に析
出させる方法が挙げられる。
As a method of forming a semiconductor layer containing lead dioxide as a main component, for example, a reaction mother liquor is prepared by mixing a solution in which a lead-containing compound is dissolved and a solution in which an oxidizing agent is dissolved, and then the reaction mother liquor is coated with the above-described oxide film. There is a method of immersing the formed chemical foil and chemically depositing it.

一方、電気化学的析出法としては、例えば、本発明者等
が先に提案した高濃度の鉛イオンを含んだ電解液中で電
解酸化により二酸化鉛を析出させる方法等が挙げられる
(特願昭61-26952)。
On the other hand, as the electrochemical deposition method, for example, a method proposed by the present inventors to deposit lead dioxide by electrolytic oxidation in an electrolytic solution containing high-concentration lead ions can be cited (Japanese Patent Application No. Sho. 61-26952).

また、半導体層を本来、半導体の役割を果たす二酸化鉛
と絶縁物質である硫酸鉛を主成分とする層で構成すると
硫酸鉛の配合により、コンデンサの漏れ電流値を低減せ
しめることができる。一方、硫酸鉛の配合により半導体
層の電気伝導度が低くなるため損失係数値が大きくなる
が、従来の固体電解コンデンサと比較しても高水準の性
能を維持発現することができる。従って、半導体層を、
二酸化鉛と硫酸鉛の混合物で構成する場合、二酸化鉛を
10重量部以上100重量部未満に対して硫酸鉛を90重量部
以下という広範囲の組成で良好なコンデンサ性能を維
持、発現することができるが、好ましくは二酸化鉛20〜
50重量部に対して硫酸鉛80〜50重量部、より好ましくは
二酸化鉛25〜35重量部に対して硫酸鉛75〜65重量部の範
囲で漏れ電流値と損失係数値のバランスがとりわけ良好
となる。二酸化鉛が10重量部未満であると導電性が悪く
なるために損失係数値が大きくなり、また容量が充分出
現しない。
Further, when the semiconductor layer is composed of a layer containing lead dioxide which originally functions as a semiconductor and lead sulfate which is an insulating material as a main component, the leakage current value of the capacitor can be reduced by blending lead sulfate. On the other hand, the compounding of lead sulfate lowers the electric conductivity of the semiconductor layer and thus increases the loss coefficient value, but a high level of performance can be maintained and expressed even when compared with the conventional solid electrolytic capacitor. Therefore, the semiconductor layer is
If it is composed of a mixture of lead dioxide and lead sulfate,
It is possible to maintain and develop good capacitor performance in a wide range of composition of 90 parts by weight or less of lead sulfate with respect to 10 parts by weight or more and less than 100 parts by weight, but preferably 20 to 20 parts by weight of lead dioxide.
The balance between the leakage current value and the loss coefficient value is particularly good in the range of 80 to 50 parts by weight of lead sulfate to 50 parts by weight, more preferably 75 to 65 parts by weight of lead sulfate to 25 to 35 parts by weight of lead dioxide. Become. If the amount of lead dioxide is less than 10 parts by weight, the electroconductivity deteriorates, the loss factor value increases, and the capacity does not appear sufficiently.

二酸化鉛と硫酸鉛を主成分とする半導体層は、例えば、
鉛イオン及び過硫酸イオンを含んだ水溶液を反応母液と
して化学的析出によって形成することができる。また、
過硫酸イオンを含まない適当な酸化剤を加えてもよい。
The semiconductor layer mainly composed of lead dioxide and lead sulfate is, for example,
An aqueous solution containing lead ions and persulfate ions can be formed by chemical precipitation as a reaction mother liquor. Also,
A suitable oxidizing agent that does not contain persulfate ions may be added.

母液中の鉛イオン濃度は、飽和溶解度を与える濃度から
0.05モル/l、好ましくは飽和溶解度を与える濃度から0.
1モル/l、より好ましくは飽和溶解度を与える濃度から
0.5モル/lの範囲内である。鉛イオンの濃度が飽和溶解
度より高い場合には、増量添加によるメリットがない。
また、鉛イオンの濃度が0.05モル/lより低い場合には、
母液中の鉛イオン濃度が薄すぎるため半導体析出回数を
多くしなければならないという難点がある。
The concentration of lead ion in the mother liquor is calculated from
0.05 mol / l, preferably from a concentration giving a saturated solubility of 0.
1 mol / l, more preferably from a concentration that gives saturated solubility
Within the range of 0.5 mol / l. If the concentration of lead ions is higher than the saturation solubility, there is no merit by increasing the amount.
When the concentration of lead ions is lower than 0.05 mol / l,
The lead ion concentration in the mother liquor is too low, so that the number of semiconductor depositions must be increased.

一方、母液中の過硫酸イオン濃度は鉛イオンに対してモ
ル比で5から0.05の範囲内である。過硫酸イオンの濃度
が鉛イオンに対してモル比で5より多いと、未反応の過
硫酸イオンが残るためコスト高となり、また過硫酸イオ
ンの濃度が鉛イオンに対してモル比で0.05より少ない
と、未反応の鉛イオンが残り導電性が悪くなるので好ま
しくない。
On the other hand, the concentration of persulfate ions in the mother liquor is in the range of 5 to 0.05 in terms of molar ratio with respect to lead ions. If the concentration of persulfate ion is more than 5 with respect to the lead ion, unreacted persulfate ion remains, resulting in higher cost, and the concentration of persulfate ion is less than 0.05 with respect to the lead ion. If so, unreacted lead ions remain and the conductivity deteriorates, which is not preferable.

鉄イオン種を与える化合物としては、例えば、クエン酸
鉛、過塩素酸鉛、硝酸鉛、酢酸鉛、塩基性酢酸鉛、塩素
酸鉛、リードサルファメイト、六弗化ケイ素鉛、臭素酸
鉛、塩化鉛、臭化鉛等が挙げられる。これらの鉛イオン
種を与える化合物は2種以上混合して使用してもよい。
一方、過硫酸イオン種を与える化合物としては、例え
ば、過硫酸カリ、過硫酸ナトリウム、過硫酸アンモニウ
ム等が挙げられる。これらの過硫酸イオン種を与える化
合物は、2種以上混合して使用してもよい。
Examples of compounds that give iron ion species include lead citrate, lead perchlorate, lead nitrate, lead acetate, basic lead acetate, lead chlorate, lead sulfamate, lead hexafluoride, lead bromate, and chloride. Examples thereof include lead and lead bromide. Two or more kinds of compounds that give these lead ion species may be mixed and used.
On the other hand, examples of the compound that gives a persulfate ion species include potassium persulfate, sodium persulfate, and ammonium persulfate. Two or more kinds of these compounds giving the persulfate ion species may be mixed and used.

一方、酸化剤としては、例えば、過酸化水素、次亜塩素
酸カルシウム、亜塩素酸カルシウム、塩素酸カルシウ
ム、過塩素酸カルシウム等が挙げられる。
On the other hand, examples of the oxidizing agent include hydrogen peroxide, calcium hypochlorite, calcium chlorite, calcium chlorate, calcium perchlorate, and the like.

次に、上述のようにして形成された半導体層の上には、
金属層またはカーボン層を形成するか、あるいは、カー
ボン層を形成した上に金属層を形成することによって導
電体層が形成される。半導体層の上にカーボン層形成す
る方法は格別限定されず、従来公知の方法、例えば、カ
ーボンペーストを塗布する方法が採用される。カーボン
層の上に金属層を設ける方法としては、例えば、銀、ニ
ッケル、銅、銀コート銅等を含んだペーストまたは、本
発明者等が既に特願昭61-266092号で提案したペースト
を塗布する方法、または銀、ニッケル、銅等をメッキ又
は蒸着する方法が挙げられる。このようにして作製され
た固体電解コンデンサ素子は、樹脂ケースや金属ケース
に収納したり、樹脂モールドして、フェノール樹脂やエ
ポキシ樹脂で封止される。
Next, on the semiconductor layer formed as described above,
The conductor layer is formed by forming the metal layer or the carbon layer, or by forming the metal layer on the carbon layer. The method of forming the carbon layer on the semiconductor layer is not particularly limited, and a conventionally known method, for example, a method of applying a carbon paste is adopted. As a method for providing a metal layer on the carbon layer, for example, a paste containing silver, nickel, copper, silver-coated copper, or the like, or a paste already proposed by the present inventors in Japanese Patent Application No. 61-266092 is applied. Or a method of plating or vapor depositing silver, nickel, copper or the like. The solid electrolytic capacitor element thus manufactured is housed in a resin case or a metal case, or is resin-molded and sealed with a phenol resin or an epoxy resin.

以上述べた方法で作製された固体電解コンデンサ素子
は、封止を行う前に100℃から260℃の温度下で所定の電
圧と時間でエージングを行う。エージング時間は固体電
解コンデンサ素子の容量によっても変化するが、一般に
は1時間以内である。この温度条件の下でエージングを
行うと漏れ電流を大巾に減少させることができるが、こ
れは通電によって酸化皮膜層の欠陥部分に集中した電流
によって発生するジュール熱と固体電解コンデンサ素子
中に存在する微量の水分によって欠陥部分の修復反応を
行うときに、この固体電解コンデンサ素子の周囲温度を
100℃乃至260℃にすることによって、前述した修復反応
を活性化するものと考察される。また、エージング時の
周囲温度を100℃未満にするとエーシング時間が長くな
って工業的に不利であり、逆に260℃を越すとエージン
グによって固体電解コンデンサの性能が悪くなる。
The solid electrolytic capacitor element manufactured by the method described above is aged at a predetermined voltage and time at a temperature of 100 to 260 ° C. before sealing. The aging time varies depending on the capacity of the solid electrolytic capacitor element, but is generally within 1 hour. Aging under this temperature condition can greatly reduce the leakage current, but this is due to the Joule heat generated by the current concentrated in the defective portion of the oxide film layer due to energization and the presence in the solid electrolytic capacitor element. The ambient temperature of the solid electrolytic capacitor element can be controlled when a defective portion is repaired by a small amount of water.
It is considered that the temperature of 100 to 260 ° C. activates the above-mentioned repair reaction. Further, if the ambient temperature during aging is less than 100 ° C, the aging time becomes long, which is industrially disadvantageous. On the contrary, if it exceeds 260 ° C, the performance of the solid electrolytic capacitor deteriorates due to aging.

また一方、この固体電解コンデンサ素子のエージング方
法として、まず固体電解コンデンサ素子を、周囲温度80
℃以上100℃未満、相対湿度75%から100%の条件下で第
1回目のエージングを行い、続いて周囲温度を上昇させ
て100℃以上260℃以下の温度下で第2回目のエージング
を行うこともできる。この方法は、エージングの工程が
2回となるが、やはり漏れ電流の少ない固体電解コンデ
ンサを作製することができる。
On the other hand, as an aging method for this solid electrolytic capacitor element, first, the solid electrolytic capacitor element is set at an ambient temperature of 80
The first aging is performed under the conditions of ℃ or more and less than 100 ℃ and relative humidity of 75% to 100%, and then the second aging is performed by raising the ambient temperature and at the temperature of 100 ℃ or more and 260 ℃ or less. You can also In this method, the aging step is performed twice, but a solid electrolytic capacitor with a small leakage current can be manufactured.

〔実施例〕〔Example〕

以下、実施例および比較例を示して、本発明をさらに詳
しく説明する。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 長さ2cm、幅0.5cmのアルミニウム箔を陽極とし、交流に
より箔の表面を電気化学的にエッチング処理した後、エ
ッチングアルミニウム箔に陽極端子をかしめ付けし、陽
極リード線を接続した。次いで、ホウ酸とホウ酸アンモ
ニウムの水溶液中で電気化学的に処理してアルミナの酸
化皮膜を形成し、低圧用エッチングアルミニウム化成箔
(約10μF/cm2)を得た。この化成箔を巻回した後化成
箔の陽極端子リード線以外の部分を酢酸鉛三水和物1.0
モル/l水溶液に浸漬した。この化成箔を陽極側に、通常
の、エッチングされていないアルミニウム箔を陰極側と
して、15Vで電解酸化を行った。1時間後、化成箔上に
形成された二酸化鉛からなる半導体層を水洗して未反応
物を除いた後、乾燥した。次に半導体層上に銀ペースト
で導電体層を形成し、陰極を取出した。その後、周囲温
度125℃、電圧15Vで30分間エージングを行った。その後
封止を行って固体電解コンデンサを作製した。
Example 1 An aluminum foil having a length of 2 cm and a width of 0.5 cm was used as an anode, the surface of the foil was electrochemically etched by an alternating current, and then an anode terminal was caulked to the etched aluminum foil, and an anode lead wire was connected. Then, it was electrochemically treated in an aqueous solution of boric acid and ammonium borate to form an oxide film of alumina to obtain a low-pressure etched aluminum chemical conversion foil (about 10 μF / cm 2 ). After winding this formed foil, the lead foil trihydrate 1.0
It was immersed in a mol / l aqueous solution. This formed foil was used as the anode side and a normal, non-etched aluminum foil was used as the cathode side, and electrolytic oxidation was performed at 15V. After 1 hour, the semiconductor layer made of lead dioxide formed on the chemical conversion foil was washed with water to remove unreacted materials, and then dried. Next, a conductor layer was formed on the semiconductor layer with silver paste, and the cathode was taken out. Then, aging was performed at an ambient temperature of 125 ° C. and a voltage of 15 V for 30 minutes. Then, sealing was performed to produce a solid electrolytic capacitor.

実施例2 実施例1と同様な化成箔を、酢酸鉛三水和物2.4モル/l
の水溶液と過硫酸アンモニウム4モル/lの水溶液の混合
液に浸漬し80℃で30分反応させた。生じた半導体層を水
洗し未反応物を除去し、その後、実施例1と同様にして
導電体層を形成した。陰極を取出した後周囲温度150
℃、電圧15Vで20分間エージングを行った。ついで封止
を行って固体電解コンデンサを作製した。尚、半導体層
は、二酸化鉛が約25wt%、硫酸鉛が約75wt%からなるこ
とをX線分析および赤外分光分析により確認した。
Example 2 The same formed foil as in Example 1 was mixed with lead acetate trihydrate 2.4 mol / l.
The mixture was immersed in a mixed solution of the above aqueous solution of 4 mol / l of ammonium persulfate and reacted at 80 ° C. for 30 minutes. The generated semiconductor layer was washed with water to remove unreacted materials, and then a conductor layer was formed in the same manner as in Example 1. Ambient temperature 150 after removing the cathode
Aging was performed for 20 minutes at a temperature of 15 V and a temperature of 15 ° C. Then, sealing was performed to produce a solid electrolytic capacitor. It was confirmed by X-ray analysis and infrared spectroscopic analysis that the semiconductor layer consisted of about 25 wt% lead dioxide and about 75 wt% lead sulfate.

実施例3 実施例2で周囲温度100℃、電圧15Vで2時間エージング
を行った以外は実施例2と同様にして固体電解コンデン
サを作製した。
Example 3 A solid electrolytic capacitor was produced in the same manner as in Example 2 except that aging was carried out at an ambient temperature of 100 ° C. and a voltage of 15 V for 2 hours.

実施例4 実施例2で周囲温度260℃、電圧15Vで3分間エージング
を行った以外は実施例2と同様にして固体電解コンデン
サを作製した。
Example 4 A solid electrolytic capacitor was produced in the same manner as in Example 2 except that aging was performed in Example 2 at an ambient temperature of 260 ° C. and a voltage of 15 V for 3 minutes.

実施例5 実施例2で、まず、周囲温度90℃、相対湿度90%の条件
下で、電圧15Vで5分間エージングを行い、更に温度を
上昇させて周囲温度125℃、電圧15Vで15分間エージング
を行った以外は実施例2と同様にして固体電解コンデン
サを作製した。
Example 5 In Example 2, first, aging was performed at a voltage of 15 V for 5 minutes under the conditions of an ambient temperature of 90 ° C. and a relative humidity of 90%, and the temperature was further raised to aging at an ambient temperature of 125 ° C. and a voltage of 15 V for 15 minutes. A solid electrolytic capacitor was produced in the same manner as in Example 2 except that the above procedure was performed.

比較例1 実施例1で周囲温度80℃、電圧15Vで5時間エージング
を行った以外は実施例1と同様にして固体電解コンデン
サを作製した。
Comparative Example 1 A solid electrolytic capacitor was produced in the same manner as in Example 1 except that aging was performed in Example 1 at an ambient temperature of 80 ° C. and a voltage of 15 V for 5 hours.

比較例2 実施例1で周囲温度270℃、電圧15Vで3分間エージング
を行った以外は実施例1と同様にして固体電解コンデン
サを作製した。
Comparative Example 2 A solid electrolytic capacitor was produced in the same manner as in Example 1 except that aging was performed in Example 1 at an ambient temperature of 270 ° C. and a voltage of 15 V for 3 minutes.

比較例3 実施例2で、まず周囲温度60℃、相対湿度90%の条件下
で、電圧15Vで5分間エージングを行い、更に温度を上
昇させて周囲温度80℃、相対湿度10%、電圧15Vで5時
間エージングを行った以外は実施例2と同様にして固体
電解コンデンサを作製した。
Comparative Example 3 In Example 2, first, aging was performed at a voltage of 15 V for 5 minutes under the conditions of an ambient temperature of 60 ° C. and a relative humidity of 90%, and the temperature was further raised to an ambient temperature of 80 ° C., a relative humidity of 10% and a voltage of 15 V. A solid electrolytic capacitor was produced in the same manner as in Example 2 except that aging was performed for 5 hours.

比較例4 実施例2で、まず周囲温度60℃、相対湿度90%の条件下
で、電圧15Vで5分間エージングを行い、更に温度を上
昇させて周囲温度270℃、電圧15Vで3分間エージングを
行った以外は実施例2と同様にして固体電解コンデンサ
を作製した。
Comparative Example 4 In Example 2, first, aging was performed at a voltage of 15 V for 5 minutes under the conditions of an ambient temperature of 60 ° C. and a relative humidity of 90%, and the temperature was further raised to aging at an ambient temperature of 270 ° C. and a voltage of 15 V for 3 minutes. A solid electrolytic capacitor was produced in the same manner as in Example 2 except that the steps were performed.

以上実施例1〜5、比較例1〜4において作製した固体
電解コンデンサの特性値を一括して第1表に示す。
Table 1 collectively shows the characteristic values of the solid electrolytic capacitors produced in Examples 1 to 5 and Comparative Examples 1 to 4.

〔発明の効果〕 以上説明したように、本発明によれば、導電体層を形成
した後に、二酸化鉛もしくは二酸化鉛と硫酸鉛を主成分
とする半導体層を有する固体電解コンデンサ素子封止前
口を100℃乃至260℃の温度でエージングすることによっ
て極めて漏れ電流の少ない固体電解コンデンサを作製す
ることができ、しかもエージングに要する時間が短いの
で工業的利用価値が大きい。
[Effects of the Invention] As described above, according to the present invention, a solid electrolytic capacitor element encapsulation front opening having a semiconductor layer containing lead dioxide or lead dioxide and lead sulfate as a main component after forming a conductor layer. Aging at a temperature of 100 ° C. to 260 ° C. makes it possible to manufacture a solid electrolytic capacitor with a very small leakage current, and since the time required for aging is short, it has great industrial utility value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】弁作用を有する金属からなる陽極基体の表
面に、誘電体酸化皮膜層、二酸化鉛もしくは二酸化鉛と
硫酸鉛を主成分とする半導体層、および導電体層を順次
形成してなる固体電解コンデンサの製造方法において、
前記導電体層を形成した後、封止前に前記固体電解コン
デンサ素子を100℃乃至260℃の温度でエージングするこ
とを特徴とする固体電解コンデンサの製造方法。
1. A dielectric oxide film layer, a lead dioxide or a semiconductor layer containing lead dioxide and lead sulfate as main components, and a conductor layer are sequentially formed on the surface of an anode substrate made of a metal having a valve action. In the method of manufacturing a solid electrolytic capacitor,
A method for manufacturing a solid electrolytic capacitor, comprising aging the solid electrolytic capacitor element at a temperature of 100 ° C. to 260 ° C. after forming the conductor layer and before sealing.
JP62168535A 1987-07-08 1987-07-08 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JPH0727851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62168535A JPH0727851B2 (en) 1987-07-08 1987-07-08 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62168535A JPH0727851B2 (en) 1987-07-08 1987-07-08 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS6413714A JPS6413714A (en) 1989-01-18
JPH0727851B2 true JPH0727851B2 (en) 1995-03-29

Family

ID=15869820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62168535A Expired - Lifetime JPH0727851B2 (en) 1987-07-08 1987-07-08 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0727851B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744131B2 (en) * 1989-04-20 1995-05-15 三洋電機株式会社 Method for manufacturing solid electrolytic capacitor
US6165623A (en) 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
US6051044A (en) 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
US7110244B2 (en) 2001-04-12 2006-09-19 Showa Denko K.K. Production process for niobium capacitor
US7005445B2 (en) 2001-10-22 2006-02-28 The Research Foundation Of State University Of New York Protein kinase and phosphatase inhibitors and methods for designing them
US7106575B2 (en) * 2004-08-26 2006-09-12 Sanyo Electric Co., Ltd. Solid electrolytic capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106456A (en) * 1977-02-28 1978-09-16 Fujitsu Ltd Ageing method of solid electrolytic capacitor
JPS5412447A (en) * 1977-06-30 1979-01-30 Hitachi Condenser Solid electrolytic capacitor
JPS54127564A (en) * 1978-03-28 1979-10-03 Matsushita Electric Ind Co Ltd Method of producing solid electrolytic condenser

Also Published As

Publication number Publication date
JPS6413714A (en) 1989-01-18

Similar Documents

Publication Publication Date Title
KR900008433B1 (en) Solid electrolytic capacitor and process for preparation thereof
US4758929A (en) Solid electrolyte capacitor and process for preparation thereof
JPH0727851B2 (en) Method for manufacturing solid electrolytic capacitor
JP2533911B2 (en) Solid electrolytic capacitor
JPH0777181B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0695492B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0770438B2 (en) Method for manufacturing solid electrolytic capacitor
JPH07120610B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0577283B2 (en)
JPH0198212A (en) Solid electrolytic capacitor
JPH0727848B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6347917A (en) Solid electrolytic capacitor
JPH0770445B2 (en) Solid electrolytic capacitor
JPH0821522B2 (en) Solid electrolytic capacitor
JPH0821523B2 (en) Solid electrolytic capacitor
JPH0770439B2 (en) Method for manufacturing solid electrolytic capacitor
JPH084058B2 (en) Solid electrolytic capacitor
JPH0777185B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63111608A (en) Manufacture of solid electrolytic capacitor
JPH0648672B2 (en) Manufacturing method of wound type solid electrolytic capacitor
JPS63283116A (en) Manufacture of solid electrolytic capacitor
JPH0640538B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0727846B2 (en) Manufacturing method of wound type solid electrolytic capacitor
JPH0648673B2 (en) Manufacturing method of wound type solid electrolytic capacitor
JPH0727847B2 (en) Method for manufacturing solid electrolytic capacitor