JPS63283116A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPS63283116A
JPS63283116A JP11707987A JP11707987A JPS63283116A JP S63283116 A JPS63283116 A JP S63283116A JP 11707987 A JP11707987 A JP 11707987A JP 11707987 A JP11707987 A JP 11707987A JP S63283116 A JPS63283116 A JP S63283116A
Authority
JP
Japan
Prior art keywords
lead
semiconductor layer
solid electrolytic
electrolytic capacitor
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11707987A
Other languages
Japanese (ja)
Inventor
Kazumi Naito
一美 内藤
Haruyoshi Watabe
晴義 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11707987A priority Critical patent/JPS63283116A/en
Publication of JPS63283116A publication Critical patent/JPS63283116A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To enable even the capacity of a solid electrolytic capacitor element using synthetic foil in the same dimension to be increased by forming a semiconductor layer under vibration with ultrasonic. CONSTITUTION:The surface of a foil is electrochemically etched by AC assuming an aluminium foil in length of 2 cm and width of 0.5 cm as an anode and then an anode terminal is caulked to the etching aluminium foil for connection. The etching aluminium foil is immersed in a mother liquer of reaction comprising water solution of 2.4 mole/l of lead acetic acid tri-hydrate mixed with another water solution of 4 mole/l of persulfuric acid ammonium and then the reacting solution is vibrated by application of ultrasonic waves whose output is 60 W and frequency is 45 kHz at 90 deg.C for one minute. A lead dioxide produced on a dielectric oxide film layer and a semiconductor layer are washed to clean up not yet reacted element and then the aluminum foil is subjected to suction drying at 120 deg.C. Finally, a cathode is taken out using a paste for resin sealing process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、陽極基体への半導体層の含浸率が良好で、性
能の優れた固体電解コンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a solid electrolytic capacitor with a good impregnation rate of a semiconductor layer into an anode substrate and excellent performance.

[従来の技術〕 一般に固体電解コンデンサの素子は、弁作用金属からな
る陽極基体に酸化皮膜層を形成し、この酸化皮膜層の外
面に対向電極として二酸化マンガンなどの半導体層を形
成し、さらに銀ペースト等の導電体層を形成して接触抵
抗を減少している。
[Prior art] In general, a solid electrolytic capacitor element is made by forming an oxide film layer on an anode substrate made of a valve metal, forming a semiconductor layer such as manganese dioxide as a counter electrode on the outer surface of this oxide film layer, and then forming a semiconductor layer made of manganese dioxide or the like as a counter electrode. A conductive layer such as paste is formed to reduce contact resistance.

[発明が解決しようとする問題点コ しかしながら、陽極基体への半導体層の含浸は、かなり
困難な様相を呈し、たとえば、前述した二酸化マンガン
を半導体層とした固体電解コンデンサの場合、その含浸
回数は、普通、5回から10回前後である。しかも、含
浸回数が増加すると共に、酸化皮膜層の劣化が顕著にな
るため、酸化皮膜層の修復を行う工程が必要である。こ
のような多段階の工程を有する固体電解コンデンサの製
造コストは、明らかに高価なものとなるため、半導体層
の含浸回数の少ない製造方法が切望されていた。
[Problems to be Solved by the Invention] However, it is quite difficult to impregnate the anode substrate with a semiconductor layer. , usually around 5 to 10 times. Moreover, as the number of times of impregnation increases, the deterioration of the oxide film layer becomes significant, so a step of repairing the oxide film layer is required. Since the manufacturing cost of a solid electrolytic capacitor that involves such a multi-step process is obviously high, a manufacturing method that requires fewer impregnations of the semiconductor layer has been desired.

[問題点を解決するための手段] 本発明は、上記の目的を達成するためになされたもので
、その要旨は、弁作用を有する金属からなる陽極基体の
表面に、誘電体酸化皮膜、半導体層、導電体層を順次形
成してなる固体電解コンデンサの製造方法において、前
記半導体層を、超音波の振動下で形成することを特徴と
する固体電解コンデンサの製造方法にある。また、前記
の半導体層は二酸化鉛、或は二酸化鉛と硫酸鉛を主成分
とする層であるのが望ましい。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and the gist thereof is to provide a dielectric oxide film, a semiconductor, and In the method for manufacturing a solid electrolytic capacitor, the semiconductor layer is formed under ultrasonic vibration. Further, the semiconductor layer is preferably a layer containing lead dioxide or lead dioxide and lead sulfate as main components.

[発明の具体的構成および作用] 以下、本発明の固体電解コンデンサの製造方法について
説明する。
[Specific Structure and Effects of the Invention] The method for manufacturing a solid electrolytic capacitor of the present invention will be described below.

本発明の固体電解コンデンサの陽極として用いられる弁
金属基体としては、例えば、アルミニウム、タンタル、
ニオブ、チタン及びこれらを基質とする合金等、弁作用
を有する金属がいずれも使用できる。
Examples of the valve metal substrate used as the anode of the solid electrolytic capacitor of the present invention include aluminum, tantalum,
Any metal with a valve action can be used, such as niobium, titanium, and alloys based on these.

陽極基体表面の酸化皮膜層は、陽極基体表層部分に設け
られた陽極基体自体の酸化物層であってもよく、あるい
は、陽極基体の表面上に設けられた他の誘電体酸化物の
層であってもよいが、特に陽極弁金属自体の酸化物から
なる層であることが望ましい。いずれの場合にも酸化物
層を設ける方法としては、従来公知の方法を用いること
ができる。
The oxide film layer on the surface of the anode substrate may be an oxide layer of the anode substrate itself provided on the surface layer of the anode substrate, or another dielectric oxide layer provided on the surface of the anode substrate. However, it is particularly desirable that the layer be made of an oxide of the anode valve metal itself. In either case, a conventionally known method can be used to provide the oxide layer.

また、本発明において使用する半導体層の組成及び作製
方法に特に制限はないが、コンデンサの性能を高めるた
めには二酸化鉛、もしくは二酸化鉛と硫酸鉛を主成分と
して、従来公知の化学的析出法、或は電気化学的析出法
で作製するのが好ましい。
Although there are no particular limitations on the composition and manufacturing method of the semiconductor layer used in the present invention, in order to improve the performance of the capacitor, lead dioxide or lead dioxide and lead sulfate may be used as main components, and conventionally known chemical precipitation methods may be used. , or preferably by an electrochemical deposition method.

化学的析出法としては、例えば、鉛含有化合物と酸化剤
を含んだ溶液から化学的に析出させる方法が挙げられる
Examples of the chemical precipitation method include a method of chemically precipitating from a solution containing a lead-containing compound and an oxidizing agent.

鉛含有化合物としては、例えばオキシン、アセチルアセ
トン、ピロメコン酸、サリチル酸、アリザリン、ポリ酢
酸ビニル、ポルフィリン系化合物、クラウン化合物、ク
リプテート化合物等のキレート形成性化合物に鉛の原子
が配位結合もしくはイオン結合している鉛含有化合物、
クエン酸鉛、酢酸鉛、塩基性酢酸鉛、塩化鉛、臭化鉛、
過塩素酸鉛、塩素酸鉛、リードサルファメイト、六弗化
ケイ素鉛、臭素酸鉛、ホウフッ化鉛、酢酸鉛水和物、硝
酸鉛等が挙げられる。これらの鉛含有化合物は、反応母
液に使用する溶剤によって適宜選択される。
Examples of lead-containing compounds include those in which a lead atom has a coordinate bond or an ionic bond with a chelate-forming compound such as oxine, acetylacetone, pyromeconic acid, salicylic acid, alizarin, polyvinyl acetate, porphyrin compounds, crown compounds, and cryptate compounds. lead-containing compounds,
Lead citrate, lead acetate, basic lead acetate, lead chloride, lead bromide,
Examples include lead perchlorate, lead chlorate, lead sulfamate, lead silicon hexafluoride, lead bromate, lead borofluoride, lead acetate hydrate, and lead nitrate. These lead-containing compounds are appropriately selected depending on the solvent used for the reaction mother liquor.

また、これらの鉛含有化合物は2種以上混合して使用し
ても良い。
Further, two or more of these lead-containing compounds may be used in combination.

反応母液中の鉛含有化合物の濃度は、飽和溶解度を与え
る濃度から0.05モル/gの範囲であり、好ましくは
飽和溶解度を与える濃度から0.1モル/gの範囲内で
あり、より好ましくは飽和溶解度を与える濃度から0.
5モル/gの範囲である。
The concentration of the lead-containing compound in the reaction mother liquor is within the range of 0.05 mol/g from the concentration that provides saturated solubility, preferably within the range of 0.1 mol/g from the concentration that provides saturated solubility, and more preferably is 0.0 from the concentration that gives saturation solubility.
It is in the range of 5 mol/g.

反応母液中の鉛含有化合物の濃度が0.055モル/未
満では、性能の良好な固体電解コンデンサを得ることが
できない。また反応母液中の鉛含有化合物の濃度が飽和
溶解度を越える場合は、増量添加によるメリットが認め
られない。
If the concentration of the lead-containing compound in the reaction mother liquor is less than 0.055 mol/mol, a solid electrolytic capacitor with good performance cannot be obtained. Further, if the concentration of the lead-containing compound in the reaction mother liquor exceeds the saturation solubility, no merit can be observed by adding an increased amount.

酸化剤としては、例えばキノン、クロラニル、ピリジン
−N−オキサイド、ジメチルスルフォキサイド、クロム
酸、過マンガン酸カリ、セレンオキサイド、酢酸水銀、
酸化バナジウム、塩素酸ナトリウム、塩化第二鉄、過酸
化水素、過酸化ベンゾイル、次亜塩素酸カルシウム、亜
塩素酸カルシウム、塩素酸カルシウム、過塩素酸カルシ
ウム等が挙げられる。これらの酸化剤は、使用する溶剤
によって適宜に選択すればよい。また酸化剤は、2種以
上混合して使用してもよC)。
Examples of the oxidizing agent include quinone, chloranil, pyridine-N-oxide, dimethyl sulfoxide, chromic acid, potassium permanganate, selenium oxide, mercury acetate,
Examples include vanadium oxide, sodium chlorate, ferric chloride, hydrogen peroxide, benzoyl peroxide, calcium hypochlorite, calcium chlorite, calcium chlorate, and calcium perchlorate. These oxidizing agents may be appropriately selected depending on the solvent used. In addition, two or more oxidizing agents may be used in combination C).

酸化剤の使用割合は、鉛含有化合物の使用モル量の5〜
0.1倍モルの範囲内であることが好ましい。酸化剤の
使用割合が鉛化合物の使用モル量の5′倍モルより多い
場合は、コスト的にメリットはなく、また0、1倍モル
より少ない場合は、性能の良好な固体電解コンデンサが
得られない。
The ratio of the oxidizing agent used is 5 to 5 molar amount of the lead-containing compound used.
It is preferably within the range of 0.1 times the mole. If the ratio of the oxidizing agent used is more than 5' times the molar amount of the lead compound used, there is no cost advantage, and if it is less than 0 or 1 times the molar amount of the lead compound used, a solid electrolytic capacitor with good performance cannot be obtained. do not have.

二酸化鉛を主成分とする半導体層を形成する方法として
は、例えば鉛含有化合物を溶かした溶液と酸化剤を溶か
した溶液を混合して反応母液を調製した後、反応母液に
前記した酸化皮膜を設けた陽極基体を浸漬して化学的に
析出させる方法が挙げられる。
As a method for forming a semiconductor layer containing lead dioxide as a main component, for example, a reaction mother liquor is prepared by mixing a solution containing a lead-containing compound and a solution containing an oxidizing agent, and then the above-mentioned oxide film is added to the reaction mother liquor. A method of chemically depositing the anode by immersing the anode substrate therein can be mentioned.

一方、電気化学的析出法としては、例えば本発明者等が
先に提案した高濃度の鉛イオンを含んだ電解液中で電解
酸化により二酸化鉛を析出させる方法等が挙げられる(
特願昭61−26952号)。
On the other hand, examples of electrochemical deposition methods include a method previously proposed by the present inventors in which lead dioxide is deposited by electrolytic oxidation in an electrolytic solution containing a high concentration of lead ions (
(Japanese Patent Application No. 61-26952).

また、半導体層を、本来、半導体の役割を果たす二酸化
鉛と絶縁物質である硫酸鉛を主成分とする層で構成する
と硫酸鉛の配合により、コンデンサの漏れ電流値を低減
せしめることができる。一方、硫酸鉛の配合により半導
体層の電気伝導度が低くなるため損失係数値が大きくな
るが、従来の固体電解コンデンサと比較しても高水準の
性能を維持発現することができる。従って、半導体層を
、二酸化鉛と硫酸鉛の混合物で構成する場合、二酸化鉛
を10重世部以上100重量部未満に対して硫酸鉛を9
0重量部以下という広範囲の組成で良好なコンデンサの
性能を維持発現することができるが、好ましくは二酸化
鉛20〜50重世部に対して硫酸鉛80〜50重量部、
より好ましくは二酸化鉛25〜35重n部に対して硫酸
鉛75〜65重量部の範囲で漏れ電流値と損失係数値の
バランスが良好となる。二酸化鉛が10重足部未満であ
ると導電性が悪くなるために損失係数が大きくなり、ま
た容伍が充分得られない。
Furthermore, if the semiconductor layer is composed of a layer whose main components are lead dioxide, which originally plays the role of a semiconductor, and lead sulfate, which is an insulating material, the leakage current value of the capacitor can be reduced by adding lead sulfate. On the other hand, although the inclusion of lead sulfate lowers the electrical conductivity of the semiconductor layer and increases the loss factor value, it is possible to maintain and exhibit a high level of performance compared to conventional solid electrolytic capacitors. Therefore, when the semiconductor layer is composed of a mixture of lead dioxide and lead sulfate, 10 parts by weight or more of lead dioxide and less than 100 parts by weight and 9 parts by weight of lead sulfate.
Good capacitor performance can be maintained over a wide range of compositions of 0 parts by weight or less, but preferably 80 to 50 parts by weight of lead sulfate to 20 to 50 parts by weight of lead dioxide;
More preferably, a good balance between the leakage current value and the loss coefficient value can be achieved in the range of 75 to 65 parts by weight of lead sulfate to 25 to 35 parts by weight of lead dioxide. If the amount of lead dioxide is less than 10 parts, the conductivity will be poor, the loss factor will be large, and sufficient capacity will not be obtained.

二酸化鉛と硫酸鉛を主成分とする半導体層は、例えば、
鉛イオン及び過硫酸イオンを含んだ水溶液を反応母液と
して化学的析出によって形成することができる。又、過
硫酸イオンを含まない適当な酸化剤を加えてもよい。
For example, a semiconductor layer whose main components are lead dioxide and lead sulfate is
It can be formed by chemical precipitation using an aqueous solution containing lead ions and persulfate ions as a reaction mother liquor. Additionally, a suitable oxidizing agent that does not contain persulfate ions may be added.

母液中の鉛イオン濃度は、飽和溶解度を与える濃度から
0.05モル/g1好ましくは飽和溶解度を与える濃度
から0.1モル/Ω、より好ましくは飽和溶解度を与え
る濃度から0.5モル/gの範囲内である。鉛イオンの
濃度が飽和溶解度より高い場合には、増量添加によるメ
リットがない。また、鉛イオンの濃度が0.05モル/
gより低い場合には、母液中の鉛イオンが薄すぎるため
反応回数を多くしなければならないという難点がある。
The lead ion concentration in the mother liquor is 0.05 mol/g from the concentration that gives saturated solubility, preferably 0.1 mol/Ω from the concentration that gives saturated solubility, more preferably 0.5 mol/g from the concentration that gives saturated solubility. is within the range of If the concentration of lead ions is higher than the saturation solubility, there is no benefit from adding an increased amount. In addition, the concentration of lead ions is 0.05 mol/
If it is lower than g, lead ions in the mother liquor are too dilute, so there is a problem that the number of reactions must be increased.

一方、母液中の過硫酸イオン濃度は鉛イオンに対してモ
ル比で5から0.05の範囲内である。過硫酸イオンの
濃度が鉛イオンに対してモル比で5より多いと、未反応
の過硫酸イオンが残るためコスト高となり、また過硫酸
イオンの濃度が鉛イオンに対してモル比で0.05より
少ないと、未反応の鉛イオンが残り導電性が悪くなるの
で好ましくない。
On the other hand, the concentration of persulfate ions in the mother liquor is within the range of 5 to 0.05 in molar ratio to lead ions. If the concentration of persulfate ions is more than 5 in molar ratio to lead ions, unreacted persulfate ions remain, resulting in high costs, and the concentration of persulfate ions is 0.05 in molar ratio to lead ions. If the amount is less, unreacted lead ions remain and conductivity deteriorates, which is not preferable.

鉛イオン種を与える化合物としては、例えばクエン酸鉛
、過塩素酸鉛、硝酸鉛、酢酸鉛、塩基性酢酸鉛、塩素酸
鉛、リードサルファメイト、六弗化ケイ素鉛、臭素酸鉛
、塩化鉛、臭化鉛等が挙げられる。これらの鉛イオン種
を与える化合物は2種以上混合して使用してもよい。一
方、過硫酸イオン種を与える化合物としては、例えば、
過硫酸カリ、過硫酸ナトリウム、過硫酸アンモニウム等
が挙げられる。これらの過硫酸イオン種を与える化合物
は、2種以上混合して使用してもよい。
Examples of compounds that provide lead ion species include lead citrate, lead perchlorate, lead nitrate, lead acetate, basic lead acetate, lead chlorate, lead sulfamate, lead silicon hexafluoride, lead bromate, and lead chloride. , lead bromide, etc. Two or more of these compounds providing lead ion species may be used in combination. On the other hand, as compounds that provide persulfate ion species, for example,
Examples include potassium persulfate, sodium persulfate, ammonium persulfate, and the like. Two or more of these compounds that provide persulfate ion species may be used in combination.

一方、酸化剤としては、例えば、過酸化水素、次亜塩素
酸カルシウム、亜塩素酸カルシウム、塩素酸カルシウム
、過塩素酸カルシウム等が挙げられる。
On the other hand, examples of the oxidizing agent include hydrogen peroxide, calcium hypochlorite, calcium chlorite, calcium chlorate, and calcium perchlorate.

以上述べた半導体層を化学的析出法で作製する時には、
鉛含有化合物を溶かした溶液と酸化剤を溶かした溶液と
を混合した反応母液中に酸化皮膜を有する陽極基体を浸
漬し、この反応母液を超音波で振動させながら酸化皮膜
層上に半導体層を形成させる必要がある。また、電気化
学的析出法で作製する時にも同様に高濃度の鉛イオンを
含んだ電解液を超音波で振動させながら半導体層を形成
させる。
When producing the semiconductor layer described above by chemical precipitation method,
An anode substrate having an oxide film is immersed in a reaction mother liquor that is a mixture of a solution containing a lead-containing compound and a solution containing an oxidizing agent, and a semiconductor layer is formed on the oxide film layer while the reaction mother liquor is vibrated with ultrasonic waves. need to be formed. Furthermore, when manufacturing by electrochemical deposition, a semiconductor layer is similarly formed while vibrating an electrolytic solution containing a high concentration of lead ions using ultrasonic waves.

超音波の出力および周波数については、使用する弁金属
基体の種類、酸化皮膜層の厚み、半導体層の種類等によ
り変化するので一般に予備実験によって決定される。ま
た、半導体層を形成する間、超音波の振動を間欠的に与
えてもよい。半導体層を形成する温度は半導体層が形成
できる温度以上であり、また、その時間は半導体層を形
成する時間以上必要であるが、超音波の振動によって酸
化皮膜の過度の劣化を防ぐために、とりわけ、高温で短
時間に行うことが好ましい。
The output and frequency of the ultrasonic waves vary depending on the type of valve metal base used, the thickness of the oxide film layer, the type of semiconductor layer, etc., and are generally determined by preliminary experiments. Further, while forming the semiconductor layer, ultrasonic vibrations may be applied intermittently. The temperature to form the semiconductor layer is higher than the temperature at which the semiconductor layer can be formed, and the time required is longer than the time required to form the semiconductor layer, but in order to prevent excessive deterioration of the oxide film due to ultrasonic vibration, It is preferable to carry out the process at high temperature for a short time.

本発明において半導体層に設けられる導電体層としては
、たとえば本発明者等が特願a6eo−193184号
、特願昭81−192499号、特願昭61−2660
92号等で提案した導電体層が挙げられる。この中で、
とりわけ特願昭61−266092号で提案した、金属
粉と金属酸化物粉を主成分とする導電ペーストを導電体
層としたものが、良好である。
In the present invention, the conductor layer provided in the semiconductor layer is disclosed in Japanese Patent Application No. A6EO-193184, Japanese Patent Application No. 1981-192499, Japanese Patent Application No. 61-2660, for example.
Examples include the conductor layer proposed in No. 92 and the like. In this,
Particularly good is the one proposed in Japanese Patent Application No. 61-266092, in which the conductive layer is made of a conductive paste containing metal powder and metal oxide powder as main components.

以上述べた本発明による固体電解コンデンサ素子は、例
えば、樹脂モールド、樹脂ケース、金属製の外装ケース
、樹脂のディッピングラミネートフィルムによる外装等
により、各種用途の汎用コンデンサ製品とすることがで
きる。
The solid electrolytic capacitor element according to the present invention described above can be made into a general-purpose capacitor product for various uses by, for example, being molded with a resin, a resin case, a metal outer case, an outer case with a resin dipping laminated film, or the like.

なお、前述のように半導体層として、二酸化鉛もしくは
二酸化鉛と硫酸鉛を主成分とする固体電解コンデンサに
ついて言及したが、本発明はこれら以外の半導体層(例
えば、二酸化マンガン等)を有する固体電解コンデンサ
の製造にも適用できることは自明である。
As mentioned above, solid electrolytic capacitors containing lead dioxide or lead dioxide and lead sulfate as the main components as semiconductor layers have been mentioned, but the present invention also covers solid electrolytic capacitors having semiconductor layers other than these (for example, manganese dioxide, etc.). It is obvious that this method can also be applied to the manufacture of capacitors.

[実 施 例] 以下、実施例、比較例を示して、本発明を説明する。[Example] Hereinafter, the present invention will be explained by showing Examples and Comparative Examples.

実施例 1 長さ2cm、幅0.5cmのアルミニウム箔を陽極とし
、交流により箔の表面を電気化学的にエツチング処理し
た後、エツチングアルミニウム箔に陽極端子をかしめ付
けし、陽極端子を接続した。次いで、ホウ酸とホウ酸ア
ンモニウムの水溶液中で電気化学的に処理してアルミナ
の酸化皮膜を形成し、低圧用エツチングアルミニウム化
成箔(約1.0μF/cJ)を得た。ついで、酢酸鉛三
水和物2.4モル/gの水溶液と過硫酸アンモニウム4
モル/ρの水溶液を混合した反応母液に浸漬し、出力6
0W1周波数45kHzの超音波の振動をこの反応母液
に加えつつ90℃で1分間反応させた。誘電体酸化皮膜
層上に生じた二酸化鉛と硫酸鉛からなる半導体層を水洗
して未反応物を洗浄した後、120℃で減圧乾燥した。
Example 1 An aluminum foil having a length of 2 cm and a width of 0.5 cm was used as an anode, and after the surface of the foil was electrochemically etched using alternating current, an anode terminal was caulked to the etched aluminum foil to connect the anode terminal. Next, an alumina oxide film was formed by electrochemical treatment in an aqueous solution of boric acid and ammonium borate to obtain etched aluminum chemical foil for low pressure (approximately 1.0 μF/cJ). Next, an aqueous solution of 2.4 mol/g of lead acetate trihydrate and ammonium persulfate 4
It is immersed in a reaction mother liquor mixed with an aqueous solution of mol/ρ, and the output is 6.
While applying ultrasonic vibrations of 0W1 frequency of 45 kHz to this reaction mother liquor, the reaction was carried out at 90° C. for 1 minute. The semiconductor layer made of lead dioxide and lead sulfate formed on the dielectric oxide film layer was washed with water to remove unreacted substances, and then dried under reduced pressure at 120°C.

生成した半導体層は二酸化鉛と硫酸鉛から成り、二酸化
鉛が約25重世%含まれることを質量分析、X線分析、
赤外分光分析により確認した。
The generated semiconductor layer is composed of lead dioxide and lead sulfate, and mass spectrometry,
Confirmed by infrared spectroscopy.

次いで、この半導体層上に銀粉30部、二酸化鉛60部
、アクリル樹脂10部からなるペーストを塗布して乾燥
した後、このペーストを使って陰極を取り出し、樹脂封
口して固体電解コンデンサを作製した。
Next, a paste consisting of 30 parts of silver powder, 60 parts of lead dioxide, and 10 parts of acrylic resin was applied onto this semiconductor layer, and after drying, the cathode was taken out using this paste and sealed with resin to produce a solid electrolytic capacitor. .

実施例 2 実施例1で、超音波の振動を出力35W、周波数41k
llzに代えた以外は、実施例1と同様にして固体電解
コンデンサを作製した。
Example 2 In Example 1, the ultrasonic vibration output was 35W and the frequency was 41K.
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that llz was used instead.

実施例 3 実施例1と同様な化成箔を陽極とし、陰極に通常のエツ
チングを施していないアルミ箔を使用して、1.2モル
/gの酢酸鉛水溶液中で電解酸化を行った。この時の印
加電圧は15Vであり、電解酸化中、出力35W、周波
数41kHzの超音波の振動を電解液に加えた。二酸化
鉛層が析出した化成箔を水中に30分間放置した後、1
20℃で減圧乾燥した。
Example 3 Electrolytic oxidation was carried out in a 1.2 mol/g lead acetate aqueous solution using the same chemically formed foil as in Example 1 as an anode and an aluminum foil that had not been subjected to ordinary etching as a cathode. The applied voltage at this time was 15 V, and ultrasonic vibrations with an output of 35 W and a frequency of 41 kHz were applied to the electrolytic solution during electrolytic oxidation. After leaving the chemical foil with the lead dioxide layer deposited in water for 30 minutes,
It was dried under reduced pressure at 20°C.

引き続き、実施例1と同様な方法で導電体層を形成した
後、固体電解コンデンサを作製した。
Subsequently, a conductor layer was formed in the same manner as in Example 1, and then a solid electrolytic capacitor was produced.

比較例 1 実施例1で超音波の振動を反応母液に加えなかった以外
は実施例1と同様にして固体電解コンデンサを作製した
Comparative Example 1 A solid electrolytic capacitor was produced in the same manner as in Example 1 except that ultrasonic vibration was not applied to the reaction mother liquor.

比較例 2 実施例3で超音波の振動を電解液に加えなかった以外は
実施例3と同様にして固体電解コンデンサを作製した。
Comparative Example 2 A solid electrolytic capacitor was produced in the same manner as in Example 3 except that ultrasonic vibration was not applied to the electrolyte.

第1表に、実施例1〜3、比較例1,2において作製し
た各々5点の固体電解コンデンサの平均の性能値を一括
して示す。
Table 1 shows the average performance values of the five solid electrolytic capacitors produced in Examples 1 to 3 and Comparative Examples 1 and 2.

第   1   表 [発明の効果コ 本発明の固体電解コンデンサの製造方法によれば、超音
波の振動を加えながら半導体層を形成させるので、半導
体層が誘電体酸化皮膜に良く含浸し、含浸率が増大する
。従って同一寸法の化成箔を用いた固体電解コンデンサ
素子でも、その容量を大幅に増全することができ、小型
の固体電解コンデンサ素子でも容量の大きな固体電解コ
ンデンサを作製することができる。
Table 1 [Effects of the Invention] According to the method for manufacturing a solid electrolytic capacitor of the present invention, since the semiconductor layer is formed while applying ultrasonic vibration, the semiconductor layer is well impregnated into the dielectric oxide film, and the impregnation rate is low. increase Therefore, the capacity of a solid electrolytic capacitor element using chemically formed foil of the same size can be greatly increased, and a solid electrolytic capacitor with a large capacity can be manufactured even with a small solid electrolytic capacitor element.

Claims (1)

【特許請求の範囲】 1、弁作用を有する金属からなる陽極基体の表面に、誘
電体酸化皮膜、半導体層、導電体層を順次形成してなる
固体電解コンデンサの製造方法において、前記半導体層
を超音波の振動下で形成することを特徴とする固体電解
コンデンサの製造方法。 2、半導体層が二酸化鉛を主成分とする層である特許請
求の範囲第1項記載の固体電解コンデンサの製造方法。 3、半導体層が二酸化鉛と硫酸鉛を主成分とする層であ
る特許請求の範囲第1項記載の固体電解コンデンサの製
造方法。
[Claims] 1. A method for manufacturing a solid electrolytic capacitor in which a dielectric oxide film, a semiconductor layer, and a conductive layer are sequentially formed on the surface of an anode substrate made of a metal having a valve action, wherein the semiconductor layer is A method for manufacturing a solid electrolytic capacitor, the method comprising forming the solid electrolytic capacitor under ultrasonic vibration. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the semiconductor layer is a layer containing lead dioxide as a main component. 3. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the semiconductor layer is a layer containing lead dioxide and lead sulfate as main components.
JP11707987A 1987-05-15 1987-05-15 Manufacture of solid electrolytic capacitor Pending JPS63283116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11707987A JPS63283116A (en) 1987-05-15 1987-05-15 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11707987A JPS63283116A (en) 1987-05-15 1987-05-15 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63283116A true JPS63283116A (en) 1988-11-21

Family

ID=14702874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11707987A Pending JPS63283116A (en) 1987-05-15 1987-05-15 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63283116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508846B2 (en) * 2000-01-17 2003-01-21 Sanyo Electric Co., Ltd. Process and apparatus for fabricating solid electrolytic capacitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508846B2 (en) * 2000-01-17 2003-01-21 Sanyo Electric Co., Ltd. Process and apparatus for fabricating solid electrolytic capacitors

Similar Documents

Publication Publication Date Title
KR900008433B1 (en) Solid electrolytic capacitor and process for preparation thereof
JPH0727851B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63283116A (en) Manufacture of solid electrolytic capacitor
JPH0770438B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63152113A (en) Manufacture of solid electrolytic capacitor
JPS6347917A (en) Solid electrolytic capacitor
JPS63207117A (en) Manufacture of solid electrolytic capacitor
JPS62268122A (en) Solid electrolytic capacitor
JP2533911B2 (en) Solid electrolytic capacitor
JPH07120610B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0695492B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0821522B2 (en) Solid electrolytic capacitor
JPH0821523B2 (en) Solid electrolytic capacitor
JPH0777181B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0770439B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63207116A (en) Solid electrolytic capacitor
JPH0648673B2 (en) Manufacturing method of wound type solid electrolytic capacitor
JPH0727846B2 (en) Manufacturing method of wound type solid electrolytic capacitor
JPS63312618A (en) Manufacture of solid-state electrolytic capacitor
JPH0577283B2 (en)
JPH0640538B2 (en) Method for manufacturing solid electrolytic capacitor
JPH01248608A (en) Manufacture of solid electrolytic capacitor
JPS63111608A (en) Manufacture of solid electrolytic capacitor
JPS6323307A (en) Solid electrolytic capacitor
JPH0727845B2 (en) Solid electrolytic capacitor