JPH0642446B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JPH0642446B2
JPH0642446B2 JP26372785A JP26372785A JPH0642446B2 JP H0642446 B2 JPH0642446 B2 JP H0642446B2 JP 26372785 A JP26372785 A JP 26372785A JP 26372785 A JP26372785 A JP 26372785A JP H0642446 B2 JPH0642446 B2 JP H0642446B2
Authority
JP
Japan
Prior art keywords
lead
solid electrolytic
electrolytic capacitor
dielectric film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26372785A
Other languages
Japanese (ja)
Other versions
JPS62124728A (en
Inventor
一美 内藤
隆 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP26372785A priority Critical patent/JPH0642446B2/en
Publication of JPS62124728A publication Critical patent/JPS62124728A/en
Publication of JPH0642446B2 publication Critical patent/JPH0642446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、誘電体皮膜層上に化学的析出により二酸化鉛
層を形成させた性能の良好な固体電解コンデンサの製造
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a solid electrolytic capacitor having good performance in which a lead dioxide layer is formed on a dielectric film layer by chemical deposition.

従来の技術 例えば特公昭58-21414号公報に記載されるように、二酸
化鉛を電導性物質として用いた固体電解コンデンサは知
られている。しかしながら、上記した従来の固体電解コ
ンデンサは、二酸化鉛を誘電体皮膜層上に形成させる方
法が鉛イオンを含んだ反応母液を熱分解して形成させる
方法であるため、誘電体皮膜(酸化皮膜)が熱的に亀裂
したり、さらには発生ガスによって化学的に損傷すると
いう問題がある。そのため、この固体電解コンデンサに
電圧を印加した際、その誘電体皮膜の欠陥部に電流が集
中し、絶縁破壊を起こす恐れがある。従って、その耐電
圧の信頼性を増すために、化成電圧を定格電圧の3〜5
倍にせねばならず、所定の容量を得るためには、表面積
の大きな大型の陽極体を使用せざるを得ないという問題
がある。
2. Description of the Related Art A solid electrolytic capacitor using lead dioxide as a conductive substance is known, as described in, for example, Japanese Patent Publication No. 58-21414. However, in the conventional solid electrolytic capacitor described above, since the method of forming lead dioxide on the dielectric film layer is a method of thermally decomposing the reaction mother liquor containing lead ions, the dielectric film (oxide film) is formed. Has a problem that it is thermally cracked and is chemically damaged by the generated gas. Therefore, when a voltage is applied to this solid electrolytic capacitor, current may concentrate on the defective portion of the dielectric film, causing dielectric breakdown. Therefore, in order to increase the reliability of the withstand voltage, the formation voltage should be 3 to 5 of the rated voltage.
However, there is a problem in that a large anode body having a large surface area must be used in order to obtain a predetermined capacity.

このような欠点を防止するために、例えば特開昭54-124
47号公報に記載されているように、まず、硝酸マンガン
を熱分解して酸化皮膜層上に二酸化マンガン層を形成さ
せた後、これを極めて低濃度の鉛イオンと過硫酸イオン
を含んだ液につけ、化学的析出によって二酸化マンガン
層の上に二酸化鉛層を設ける方法が知られている。しか
しながら、この方法は、二酸化マンガン層を形成させる
際に熱反応を行なうために、誘電体皮膜の熱的亀裂およ
び発生ガスによる化学的損傷は避け難い。
In order to prevent such a defect, for example, JP-A-54-124
As described in Japanese Patent Publication No. 47, first, manganese nitrate is thermally decomposed to form a manganese dioxide layer on the oxide film layer, and then a solution containing lead ions and persulfate ions at an extremely low concentration is formed. In addition, a method of providing a lead dioxide layer on the manganese dioxide layer by chemical deposition is known. However, since this method causes a thermal reaction when forming the manganese dioxide layer, thermal cracking of the dielectric film and chemical damage due to generated gas are unavoidable.

また、特公昭49-29374号公報に記載されているように、
誘電体皮膜層上に二酸化鉛層を化学的析出によって形成
させる方法が知られている。しかしながら、この方法
は、二酸化鉛を化学的に析出させるに際して、触媒とし
て銀イオンを必要とするため、銀または銀の化合物が誘
電体皮膜表面に付着した形となり、絶縁抵抗が低下する
という問題がある。
In addition, as described in Japanese Patent Publication No. 49-29374,
It is known to form a lead dioxide layer on the dielectric film layer by chemical deposition. However, this method requires silver ions as a catalyst when chemically precipitating lead dioxide, so that there is a problem that silver or a compound of silver is attached to the surface of the dielectric film, and the insulation resistance is reduced. is there.

かかる観点から、本発明者等は、熱分解反応を利用せず
に、しかもコンデンサ性能に悪影響を及ぼす銀イオンの
ような触媒を使用せずに、誘電体皮膜層上に二酸化鉛の
電導性物質層を鉛イオンと過硫酸イオンを含んだ反応母
液から、化学的析出によって形成させた固体電解コンデ
ンサの製造方法を提案した(特願昭60-193185号)。
From this point of view, the present inventors have made use of a conductive material of lead dioxide on the dielectric film layer without utilizing a thermal decomposition reaction and without using a catalyst such as silver ion which adversely affects the performance of the capacitor. We proposed a method for producing a solid electrolytic capacitor whose layer was formed by chemical deposition from a reaction mother liquor containing lead ions and persulfate ions (Japanese Patent Application No. 60-193185).

しかしながら、この方法で得られる固体電解コンデンサ
は、二酸化鉛を誘電体皮膜層上に形成させる方法が鉛イ
オンを与える化合物と過硫酸イオンを与える化合物を予
め混合して反応母液を調製してから、誘電体皮膜層上に
塗布するか、または誘電体皮膜をこの反応母液に浸漬し
て形成させる方法であるため、二酸化鉛の電導性物質層
の電導度やコンデンサの誘電正接の値が必ずしも十分満
足すべきものではなかった。
However, the solid electrolytic capacitor obtained by this method, the method of forming lead dioxide on the dielectric film layer is pre-mixed with a compound giving a lead ion and a compound giving a persulfate ion to prepare a reaction mother liquor, Since it is a method of coating on the dielectric film layer or dipping the dielectric film in this reaction mother liquor, the conductivity of the lead dioxide conductive material layer and the value of the dielectric loss tangent of the capacitor are not always satisfactory. It shouldn't be.

近年、ある種の応用分野では、固体電解コンデンサの電
導性物質層の電導度をさらに向上させ、誘電正接の値を
小さくすることが望まれている。
In recent years, in some application fields, it has been desired to further improve the conductivity of the conductive material layer of the solid electrolytic capacitor and reduce the value of the dielectric loss tangent.

発明が解決しようとする問題点 本発明の目的は、コストが安く、熱分解反応を利用せず
に、しかもコンデンサ性能に悪影響を及ばす触媒、例え
ば銀触媒を使用せずに誘電体皮膜層上に二酸化鉛を化学
的析出によって形成させる誘電正接の小さい固体電解コ
ンデンサの製造方法を提供することにある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to reduce the cost, to utilize a thermal decomposition reaction, and without using a catalyst that adversely affects the performance of a capacitor, such as a silver catalyst, on a dielectric film layer. Another object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor having a small dielectric loss tangent, which is obtained by chemically forming lead dioxide.

問題点を解決するための手段 本発明者等は、前記従来技術の欠点を解決すべく種々検
討した結果、酸化剤を含んだ溶液と鉛含有化合物を含ん
だ溶液の塗布順序を規定して化学的に析出させた二酸化
鉛を電導性物質層とすることにより、前記目的が極めて
有効に達せられ、性能の良好な固体電解コンデンサが得
られることを見出し、本発明に至った。
Means for Solving the Problems As a result of various studies to solve the above-mentioned drawbacks of the prior art, the present inventors have defined a coating order of a solution containing an oxidant and a solution containing a lead-containing compound, and defined a chemical order. The present invention has been found out that the above-mentioned object can be achieved extremely effectively and a solid electrolytic capacitor having good performance can be obtained by using lead oxide that is deposited as a conductive material layer.

即ち、本発明に従えば、二酸化鉛を電導性物質とする固
体電解コンデンサを製造するにあたり、誘電体皮膜層上
に酸化剤を含んだ溶液を塗布し、次いで鉛含有化合物を
含んだ溶液を塗布して、該誘電体皮膜層上に二酸化鉛を
化学的析出により形成させることを特徴とする固体電解
コンデンサの製造方法をが提供される。
That is, according to the present invention, in producing a solid electrolytic capacitor using lead dioxide as a conductive substance, a solution containing an oxidizing agent is applied on the dielectric film layer, and then a solution containing a lead-containing compound is applied. Then, there is provided a method for producing a solid electrolytic capacitor, characterized in that lead dioxide is formed on the dielectric film layer by chemical deposition.

本発明における誘電体皮膜とは、当業界で周知であるア
ルミニウム、タンタル、ニオブ等の弁金属の箔または焼
結体の酸化皮膜を意味し、公知の方法で得ることができ
る。
The dielectric film in the present invention means an oxide film of a valve metal foil such as aluminum, tantalum, niobium or a sintered body, which is well known in the art, and can be obtained by a known method.

誘電体皮膜上に二酸化鉛の電導性物質を化学的析出によ
って形成させるための一方の成分は、酸化剤を含んだ溶
液である。
One component for forming a lead dioxide conductive material on the dielectric film by chemical deposition is a solution containing an oxidant.

酸化剤を含んだ溶液を調製するために使用される溶剤
は、酸化剤を溶解するものであればいずれでもよく、一
般には水または有機溶媒が使用される。
The solvent used to prepare the solution containing the oxidizing agent may be any solvent that dissolves the oxidizing agent, and generally water or an organic solvent is used.

酸化剤の代表例としては、例えばキノン、クロラニル、
ピリジン-N-オキサイド、ジメチルスルフォキサイド、
クロム酸、過マンガン酸カリ、セレンオキシド、酢酸水
銀、酸化バナジウム、塩素酸ナトリウム、過酸化水素、
過硫酸ナトリウム、過硫酸カリ、過硫酸アンモニウム、
塩化第2鉄等があげられる。これらの酸化剤は、2種以
上使用してもよい。酸化剤は、使用する溶剤によって適
宜に選択すればよい。酸化剤の使用割合は、引き続いて
使用する鉛含有化合物を含んだ溶液中の鉛含有化合物の
モル量の3〜0.3倍モルの範囲内であることが好まし
い。酸化剤の使用割合が鉛含有化合物の使用モル量の3
倍モルより多いと、未反応の酸化剤が残るためコスト高
となり、また0.3倍モルより少ない場合は、未反応の鉛
含有化合物が残り電導性が悪くなるので好ましくない。
Typical examples of the oxidizing agent include quinone, chloranil,
Pyridine-N-oxide, dimethyl sulfoxide,
Chromic acid, potassium permanganate, selenium oxide, mercury acetate, vanadium oxide, sodium chlorate, hydrogen peroxide,
Sodium persulfate, potassium persulfate, ammonium persulfate,
Examples include ferric chloride. You may use 2 or more types of these oxidizing agents. The oxidizing agent may be appropriately selected depending on the solvent used. The use ratio of the oxidizing agent is preferably within the range of 3 to 0.3 times the molar amount of the lead-containing compound in the solution containing the lead-containing compound to be used subsequently. The ratio of the oxidizing agent used is 3 of the molar amount of the lead-containing compound used.
When the amount is more than twice the molar amount, the unreacted oxidizing agent remains, resulting in high cost, and when the amount is less than 0.3 times the molar amount, the unreacted lead-containing compound remains and the electrical conductivity is deteriorated, which is not preferable.

誘電体皮膜上に二酸化鉛の電導性物質を化学的析出によ
って形成させるために使用される他の一方の成分は、鉛
含有化合物を含んだ溶液である。
The other component used to form lead dioxide conductive material on the dielectric film by chemical deposition is a solution containing a lead-containing compound.

鉛含有化合物を含んだ溶液を調製するために使用される
溶剤は、鉛含有化合物を溶解するものであればいずれで
もよく、一般には水または有機溶媒が使用される。
The solvent used for preparing the solution containing the lead-containing compound may be any solvent as long as it dissolves the lead-containing compound, and generally water or an organic solvent is used.

使用される鉛含有化合物の代表例としては、例えばオキ
シン、アセチルアセトン、ピロメコン酸、サリチル酸、
アリザリン、ポリ酢酸ビニル、ポルフィリン系化合物、
クラウン化合物、クリプテート化合物等のキレート形成
性化合物に鉛原子が配位結合もしくはイオン結合してい
る鉛含有化合物、クエン酸鉛、酢酸鉛、塩基性酢酸鉛、
ホウフッ化鉛、酢酸鉛水和物、硝酸鉛等があげられる。
これらの鉛含有化合物は、2種以上使用してもよい。鉛
含有化合物は、使用する溶剤によって適宜選択される。
鉛含有化合物の使用濃度は、飽和溶解度を与える濃度か
ら0.05モル/の範囲内であることが好ましい。鉛含
有化合物を含んだ溶液中の鉛含有化合物の濃度が0.05
モル/より低い場合には、鉛含有化合物の濃度が薄す
ぎるため塗布回数を多くしなければならないという難点
がある。また、鉛含有化合物を含んだ溶液中の鉛含有化
合物の濃度が飽和溶解度を超える場合は、増量添加によ
るメリットが認められない。
Representative examples of lead-containing compounds used include, for example, oxine, acetylacetone, pyromeconic acid, salicylic acid,
Alizarin, polyvinyl acetate, porphyrin compounds,
Lead-containing compounds in which lead atoms are coordinate-bonded or ionic-bonded to chelate-forming compounds such as crown compounds and cryptate compounds, lead citrate, lead acetate, basic lead acetate,
Examples thereof include lead borofluoride, lead acetate hydrate and lead nitrate.
Two or more kinds of these lead-containing compounds may be used. The lead-containing compound is appropriately selected depending on the solvent used.
The concentration of the lead-containing compound used is preferably within the range of 0.05 mol / concentration from the concentration giving the saturated solubility. The concentration of the lead-containing compound in the solution containing the lead-containing compound is 0.05
If it is lower than mol / mol, the concentration of the lead-containing compound is too low, so that it is necessary to increase the number of times of coating. Further, when the concentration of the lead-containing compound in the solution containing the lead-containing compound exceeds the saturation solubility, the merit of increasing the addition amount is not recognized.

本発明の固体電解コンデンサの製造方法は、誘電体皮膜
を有するアルミニウム、タンタル、ニオブ等の弁作用金
属に、酸化剤を含んだ溶液を塗布した後、鉛含有化合物
を含んだ溶液を塗布して、それぞれの溶液を誘電体皮膜
に進入させ放置した後、洗浄し、乾燥する。放置すると
きの温度は、一概には決められないが、一般には常温か
ら100℃の温度が好ましい。また、誘電体皮膜を有する
弁作用金属を前記溶液に順次浸漬して、上記と同様な方
法で製造してもよい。本発明における塗布とは、この浸
漬方法をも含めて塗布という。
The method for producing a solid electrolytic capacitor of the present invention comprises applying a solution containing an oxidant to a valve metal such as aluminum having a dielectric film, tantalum, or niobium, and then applying a solution containing a lead-containing compound. After each solution is allowed to enter the dielectric film and left to stand, it is washed and dried. The temperature for leaving it is not generally determined, but generally a temperature of room temperature to 100 ° C. is preferable. Alternatively, the valve action metal having the dielectric film may be sequentially dipped in the solution to be manufactured by the same method as described above. The coating in the present invention is called coating including this dipping method.

本発明においては、鉛含有化合物を含んだ溶液を塗布し
た後、酸化剤を含んだ溶液を塗布しても性能の良好な固
体電解コンデンサが得られない。
In the present invention, even if the solution containing the lead-containing compound is applied and then the solution containing the oxidant is applied, a solid electrolytic capacitor having good performance cannot be obtained.

発明の効果 本発明の方法によって製造される固体電解コンデンサ
は、従来公知の固体電解コンデンサに比較して以下のよ
うな利点を有している。
Effects of the Invention The solid electrolytic capacitor manufactured by the method of the present invention has the following advantages as compared with the conventionally known solid electrolytic capacitors.

高温に加熱することなく、誘電体皮膜層上に二酸化鉛
層を形成できるので、陽極の誘電体皮膜を損傷する恐れ
がなく、補修のための陽極酸化(再化成)を行なう必要
もない。そのため、定格電圧を従来の数倍にあげること
ができ、同容量、同定格電圧のコンデンサを得るのに、
従来のものに比較して形状を小型化できる。
Since the lead dioxide layer can be formed on the dielectric coating layer without heating to a high temperature, there is no risk of damaging the dielectric coating of the anode and there is no need to perform anodic oxidation (reformation) for repair. Therefore, the rated voltage can be raised several times higher than before, and to obtain a capacitor with the same capacity and rated voltage,
The shape can be made smaller than the conventional one.

漏れ電流が小さい。Small leakage current.

高耐圧のコンデンサを作製することができる。A high breakdown voltage capacitor can be manufactured.

二酸化鉛の電導度が7×10-1〜101s・cm-1と十分
に高いためインピーダンスが低い。
The electrical conductivity of lead dioxide is 7 × 10 −1 to 10 1 s · cm −1, which is sufficiently high so that the impedance is low.

高周波数特性が良い。Good high frequency characteristics.

実施例 以下、実施例および比較例をあげて本発明をさらに詳細
に説明する。なお、各例の固体電解コンデンサの特性値
を表に示した。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The characteristic values of the solid electrolytic capacitors of each example are shown in the table.

実施例1 厚さ100μmのアルミニウム箔(純度99.99%)を陽極と
し、直流および交流の交互使用により、箔の表面を電気
化学的にエッチングして平均細孔径2μmで、比表面積
を12m2/gとした。次いで、このエッチング処理した
アルミニウム箔をホウ酸アンモニウムの液中で電気化学
的に処理してアルミニウム箔上に誘電体の薄層(アルミ
ナ)を形成した。
Example 1 An aluminum foil having a thickness of 100 μm (purity 99.99%) was used as an anode, and the surface of the foil was electrochemically etched by alternating use of direct current and alternating current to have an average pore diameter of 2 μm and a specific surface area of 12 m 2 / g. And Next, this etched aluminum foil was electrochemically treated in a solution of ammonium borate to form a thin layer (alumina) of a dielectric material on the aluminum foil.

過硫酸アンモニウムの濃度が2.0モル/の過硫酸アン
モニウム水溶液を前記した誘電体薄層に塗布し、次いで
酢酸鉛の濃度が1.5モル/の酢酸鉛水溶液を塗布し、
90℃で40分放置したところ、誘電体薄層上に二酸化
鉛層が形成された。二酸化鉛層を水で充分洗浄した後、
110℃で3時間減圧乾燥した。二酸化鉛層の上にカー
ボンペーストを塗布して乾燥した後、さらにその上に銀
ペーストを塗布して乾燥した。次いで、リード線を半田
付けした後、モールド外装して固体電解コンデンサを作
製した。
An aqueous solution of ammonium persulfate having a concentration of 2.0 mol / ammonium persulfate is applied to the above-mentioned dielectric thin layer, and then an aqueous solution of lead acetate having a concentration of 1.5 mol / mole of lead acetate is applied,
When left at 90 ° C. for 40 minutes, a lead dioxide layer was formed on the thin dielectric layer. After thoroughly washing the lead dioxide layer with water,
It was dried under reduced pressure at 110 ° C. for 3 hours. A carbon paste was applied on the lead dioxide layer and dried, and then a silver paste was further applied and dried. Next, the lead wire was soldered and then packaged to form a solid electrolytic capacitor.

実施例2 実施例1で過硫酸アンモニウム水溶液の代わりにセレン
オキシド濃度が0.3モル/のセレンオキシドのアルコ
ール溶液を使用し、酢酸鉛水溶液の代わりに鉛オキシン
濃度が0.2モル/の鉛オキシンのクロロホルム溶液を
使用した以外は、実施例1と同様にして固体電解コンデ
ンサを作製した。
Example 2 In Example 1, an alcohol solution of selenium oxide having a selenium oxide concentration of 0.3 mol / min was used in place of the ammonium persulfate aqueous solution, and a lead oxine concentration of 0.2 mol / lead was used instead of the lead acetate aqueous solution. A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the chloroform solution of was used.

比較例1 実施例1と同じ誘電体層をもったアルミニウム箔に、従
来公知の硝酸鉛の熱分解によって二酸化鉛を形成させて
固体電解コンデンサを作製した。
Comparative Example 1 A solid electrolytic capacitor was prepared by forming lead dioxide on an aluminum foil having the same dielectric layer as that of Example 1 by thermal decomposition of conventionally known lead nitrate.

比較例2 実施例2でセレンオキシドのアルコール溶液と鉛オキシ
ンのクロロホルム溶液の二液を混合して直ちに誘電体皮
膜に塗布した以外は、実施例2と同様にして固体電解コ
ンデンサを作製した。
Comparative Example 2 A solid electrolytic capacitor was produced in the same manner as in Example 2 except that the alcohol solution of selenium oxide and the chloroform solution of lead oxine in Example 2 were mixed and immediately applied to the dielectric film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】二酸化鉛を電導性物質とする固体電解コン
デンサを製造するにあたり、誘電体皮膜層上に酸化剤を
含んだ溶液を塗布し、次いで鉛含有化合物を含んだ溶液
を塗布して、該誘電体皮膜層上に二酸化鉛を化学的析出
により形成させることを特徴とする固体電解コンデンサ
の製造方法。
1. A method for producing a solid electrolytic capacitor using lead dioxide as a conductive substance, a solution containing an oxidizing agent is applied on a dielectric film layer, and then a solution containing a lead-containing compound is applied, A method for producing a solid electrolytic capacitor, characterized in that lead dioxide is formed on the dielectric film layer by chemical deposition.
JP26372785A 1985-11-26 1985-11-26 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JPH0642446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26372785A JPH0642446B2 (en) 1985-11-26 1985-11-26 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26372785A JPH0642446B2 (en) 1985-11-26 1985-11-26 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62124728A JPS62124728A (en) 1987-06-06
JPH0642446B2 true JPH0642446B2 (en) 1994-06-01

Family

ID=17393461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26372785A Expired - Lifetime JPH0642446B2 (en) 1985-11-26 1985-11-26 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0642446B2 (en)

Also Published As

Publication number Publication date
JPS62124728A (en) 1987-06-06

Similar Documents

Publication Publication Date Title
US4648010A (en) Solid electrolytic capacitor and process for preparation thereof
JPH0727851B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0642446B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0722078B2 (en) Manufacturing method of solid electrolytic capacitor
JP2637207B2 (en) Solid electrolytic capacitors
JPH0640537B2 (en) Solid electrolytic capacitor
JPH0722079B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0722080B2 (en) Manufacturing method of solid electrolytic capacitor
JPS62256423A (en) Solid electrolytic capacitor
JPH0770438B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0719725B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6323309A (en) Manufacture of winding type solid electrolytic capacitor
JPH0719727B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0719723B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0719729B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0616465B2 (en) Solid electrolytic capacitor
JPH07120610B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0719724B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0337853B2 (en)
JPS62216211A (en) Solid electrolytic capacitor
JPS6298716A (en) Manufacture of solid electrolytic capacitor
JPH0727849B2 (en) Manufacturing method of solid electrolytic capacitor
JPS62193112A (en) Solid electrolytic capacitor
JPS62277714A (en) Solid electrolytic capacitor
JPH0727843B2 (en) Solid electrolytic capacitor