JPH0727531A - Inspection region recognizing method for appearance shape inspecting device - Google Patents
Inspection region recognizing method for appearance shape inspecting deviceInfo
- Publication number
- JPH0727531A JPH0727531A JP5196904A JP19690493A JPH0727531A JP H0727531 A JPH0727531 A JP H0727531A JP 5196904 A JP5196904 A JP 5196904A JP 19690493 A JP19690493 A JP 19690493A JP H0727531 A JPH0727531 A JP H0727531A
- Authority
- JP
- Japan
- Prior art keywords
- inspection
- threshold value
- section
- land
- inspection target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
- G01N21/95684—Patterns showing highly reflecting parts, e.g. metallic elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Image Analysis (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Image Processing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、プリント配線板上の電
子部品はんだ付け接合部の外観形状や外観状態の良否判
定を行う検査装置に関するものである。検査対象角度が
相違する多段構造をした複数組の照明器を用い、対象へ
の照射光を切り替えて得られる複数の映像信号を各画素
ごとに対象面角度を表現するコード信号に生成し、その
コードパターン分布から立体形状の良否を判定する外観
検査装置において、検査領域は事前に行われるティーチ
ングによりランドに一致した形で設定されていた。本発
明は、この検査範囲を各段照明による映像信号から検査
に必要な検査領域をより正確に検出することを目的と
し、検出されたランドだけコード生成することにより、
外観検査における良否判定精度や、検査速度の向上を図
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection device for judging the appearance shape and appearance state of an electronic component soldered joint on a printed wiring board. Using multiple sets of illuminators with a multi-stage structure with different inspection target angles, multiple video signals obtained by switching the irradiation light to the target are generated into code signals expressing the target surface angle for each pixel, and the In the appearance inspection apparatus that determines the quality of a three-dimensional shape from the code pattern distribution, the inspection area is set in a shape that matches the land by the teaching performed in advance. The present invention aims to more accurately detect the inspection area necessary for inspection from the image signal by each stage illumination in this inspection range, and by generating the code only for the detected land,
It is intended to improve the accuracy of quality judgment in appearance inspection and the inspection speed.
【0002】[0002]
【従来の技術】はんだ接合部に代表される微細な対象部
品の自動外観検査装置として既に多様な方式のものが開
発されているが、その効果的な一手段として、多段照明
による検査方式が周知である。その概要は以下の通りで
ある。図10に多段照明式はんだ検査装置の基本システ
ム構成を示す。検査対象5に対する光投射角度が相違す
る多段構造の照明器10からの光は検査対象5から反射
し、テレビカメラ15で受ける。この照明10を切替え
ることにより得られる複数組の映像信号20が、対象面
の輝度分布パターンの形で画像記憶装置25に記憶され
る。この複数組の記憶内容に基づき認識処理部45が対
象の立体形状の認識ならびに良否判定を実行する。な
お、認識処理部45は、必要に応じてテーブル制御信号
55により駆動装置65を介して移動テーブル70を検
査に適した位置に順次移動させ、処理動作を行わせる。
例えば検査対象をICリードのはんだ付けと仮定した場
合、テレビカメラの画面内にはICの複数本のリードが
含まれるが、その各々について順次検査ウインド(すな
わち、検査領域)が設定されはんだ付けの良否判定が行
われる。検査ウインドの設定位置は、事前にプリント配
線板にある基準点より得られるランド位置の座標をティ
ーチング情報として装置に記憶させ、検査を行う度に通
常はんだ付けランドに一致した形で設定される。この検
査ウインド内の各画素毎に複数の輝度情報を利用して検
査対象物の良否判定が行われる。2. Description of the Related Art Various types of automatic visual inspection devices for fine target parts typified by solder joints have already been developed. As an effective means therefor, a multi-stage illumination inspection method is well known. Is. The outline is as follows. FIG. 10 shows a basic system configuration of a multi-stage lighting type solder inspection device. Light from the illuminator 10 having a multi-stage structure with different light projection angles with respect to the inspection target 5 is reflected from the inspection target 5 and received by the television camera 15. A plurality of sets of video signals 20 obtained by switching the illumination 10 are stored in the image storage device 25 in the form of the luminance distribution pattern of the target surface. The recognition processing unit 45 executes recognition of the three-dimensional shape of the target and determination of quality based on the stored contents of the plurality of sets. The recognition processing unit 45 sequentially moves the moving table 70 to a position suitable for the inspection via the drive device 65 by the table control signal 55 as needed, and causes the processing operation.
For example, if it is assumed that the inspection target is the soldering of the IC leads, a plurality of leads of the IC are included in the screen of the television camera, and an inspection window (that is, an inspection area) is sequentially set for each of the leads and soldering is performed. A pass / fail judgment is made. The setting position of the inspection window is set in advance in such a manner that the coordinates of the land position obtained from the reference point on the printed wiring board are stored in the device as teaching information in advance and the inspection land is usually matched with the soldering land. The quality of the inspection object is determined by using a plurality of pieces of luminance information for each pixel in the inspection window.
【0003】[0003]
【発明が解決しようとする課題】このように、多段照明
式の外観検査装置は、検査範囲の設定を事前に行われる
ティーチング情報に基づき、通常図7、図11に示すよ
うにはんだ付けのランド11に一致した形で設定され
る。しかし、従来の検査範囲設定では、図8、図12で
示すように検査範囲に対して、ランド位置がずれ、レジ
スト部をはんだと認識する場合がある。なお、図7、図
8は、はんだ付部の斜視図、図11、図12はウインド
とランドとの関係を示す図である。図7、図8、図11
そして図12において、6はICのリード、7はリード
とランドを接合するはんだフィレット、8はプリント配
線板上のランド、11はティーチング情報による検査範
囲すなわち、ウインド、101は検査範囲内の画素部分
である。As described above, the multi-stage illumination type visual inspection apparatus usually uses soldering lands as shown in FIGS. 7 and 11 based on teaching information for setting the inspection range in advance. It is set in a form consistent with 11. However, in the conventional inspection range setting, as shown in FIGS. 8 and 12, the land position may deviate from the inspection range and the resist portion may be recognized as solder. 7 and 8 are perspective views of the soldering portion, and FIGS. 11 and 12 are views showing the relationship between the window and the land. 7, 8, and 11
In FIG. 12, 6 is an IC lead, 7 is a solder fillet that joins the lead and land, 8 is a land on the printed wiring board, 11 is an inspection range based on teaching information, that is, a window, and 101 is a pixel portion within the inspection range. Is.
【0004】これは、一般に検査を行う場合、基準点を
1画素も間違わず正確に認識する能力が無い、プリント
配線板を搬送するときの振動、また基板の歪と、はんだ
付け検査では、同一条件の検査は困難なため、事前に与
えた検査範囲では、パッドと正確に一致した検査範囲に
ならないことがある。すると、ランド周囲のレジスト部
が検査範囲に入り、はんだ形状を誤った形で認識する。
以上述べた問題点を解決し、より性能の高い外観検査を
実現するためには形状認識判定処理をランド内のみにす
るため、検査範囲をランドと正確に一致させなければな
らない。This is because, in general, when performing an inspection, there is no ability to accurately recognize even one pixel as a reference point, vibration when a printed wiring board is conveyed, and distortion of a substrate and soldering inspection are the same. Since it is difficult to inspect the conditions, the inspection range given in advance may not be an inspection range that exactly matches the pad. Then, the resist portion around the land enters the inspection range, and the solder shape is recognized in an incorrect form.
In order to solve the above-mentioned problems and to realize a higher-performance visual inspection, the shape recognition determination process is performed only within the land, and therefore the inspection range must exactly match the land.
【0005】[0005]
【課題を解決するための手段】前記問題点を解決するた
め、本発明では、検査領域認識部を設けこの検査領域認
識部は、しきい値算出部としきい値判定部の2つの機能
から構成する。しきい値算出部は、レジストやプリント
配線板の各映像信号を採取し、その総和に一定の付加値
を与え、パッドとレジストを分けるしきい値の算出を行
う。これは、レジストや、プリント配線板は、平らであ
るが、光を散乱する性質を持っており、入射角がいずれ
にせよテレビカメラには散乱光しか受けないため、各映
像信号は微小なものになる。これに対してランド部は、
ランド、はんだとも光反射率が高いため、各段いずれか
の照明による映像信号が強くなるからである。In order to solve the above problems, according to the present invention, an inspection area recognizing unit is provided, and the inspection area recognizing unit is composed of two functions of a threshold value calculating unit and a threshold value judging unit. To do. The threshold value calculation unit collects each video signal of the resist and the printed wiring board, gives a constant additional value to the sum, and calculates a threshold value for separating the pad and the resist. This is because the resist and the printed wiring board are flat, but they have the property of scattering light, and since the TV camera receives only scattered light at any angle of incidence, each video signal is very small. become. On the other hand, the land part
This is because both the land and the solder have high light reflectance, so that the video signal from any one of the illuminations at each stage becomes strong.
【0006】[0006]
【作用】しきい値判定部は、しきい値算出部で算出した
敷居値より、入力された各映像信号の総和が高い映像信
号であればランドであると判断し、ランド位置を正確に
決定しコード生成を行わせようとするものである。[Function] The threshold value determination unit determines that the land position is accurately determined if the video signal has a higher total sum of the input video signals than the threshold value calculated by the threshold value calculation unit, and determines the land position accurately. It is intended to generate code.
【0007】[0007]
【実施例】図1に本発明の一実施例を示す。これは図1
0に示した従来の基本システムの画像記憶装置25とコ
ード生成部35の間に検査領域認識部90を加えたもの
である。また、図2はこの検査領域認識部90の構成を
示すブロック図である。両図において、5は検査対象
(ICリードのはんだ接合部を含む)、10は照明器、
15はテレビカメラなど受光センサ、20は受光センサ
出力、25は映像パターン記憶部、30は映像パターン
出力、35はコード生成部、40はコード生成部出力
(コードパターン)、45は認識処理部、50は照明制
御信号、55はテーブル制御信号、60は照明切替え装
置、65はテーブル駆動装置、70は移動テーブル、9
0はランド領域認識部、91はしきい値算出部、92は
しきい値判定部である。初めに、従来から知られている
多段照明による検査方式について簡単に説明する。検査
対象5への光投射角度が相違する多段構造の照明器10
から検査対象5により反射した光をテレビカメラ15で
受ける。この照明10を上、下切替えることにより得ら
れる複数組の映像信号20が、対象面の輝度分布パター
ンの形で画像記憶装置25に記憶される。この複数組の
記憶内容に基づきコード生成部35が対象面の角度分布
を示すコード分布パターンを生成し、さらにこれを利用
して認識処理部45が対象の立体形状の認識ならびに良
否判定を実行する。このような多段照明による検査方式
を用いた自動外観検査装置の公知例として例えば、特開
昭61−41906、特開平4−301549、特開平
4−343046、特開平4−346011等がある。
さて、認識処理部45は、図3に示すよう必要に応じて
テーブル制御信号55により駆動装置65を介して移動
テーブル70を検査に適した位置に順次移動させ、照明
制御信号50を介して照明切替え装置60により照明を
切替える。更に認識処理部45は、検査対象範囲にウイ
ンド−を設定し、輝度分布映像をコード分布に変換(ウ
インド−各画素単位でコード化)し、コード分布パター
ンから対象の立体形状を認識し良否判定処理動作を行わ
せる制御部でもある。例えば検査対象物5が図9に示す
ようなICである場合、照明器10からの投射光と、検
査対象5であるICリードのはんだフィレットの関係を
図4に示す。図4において、6はICのリードの断面形
状を、また7は同じくリードとプリント配線板9上のラ
ンド8とを電気的に接合するはんだフィレットの断面を
示している。検査対象をICリードのはんだ付けと仮定
した場合の、この一連の処理過程を図3に示す。テレビ
カメラの画面内にはICの複数本のリードが含まれる
が、その各々について順次検査ウインドが設定されはん
だ付けの良否判定が行われる。検査ウインドの設定位置
は、事前にプリント配線板にある基準点より得られるラ
ンド位置の座標をティーチング情報として装置に記憶さ
せ、検査を行う度に通常はんだ付けランドに一致した形
で設定される。この検査ウインド−内の各画素毎に複数
の輝度情報を利用して対象面の角度を記述するコード信
号が生成され、このコード分布パターンから対象の立体
形状把握と対象の良否判定が行われる。検査対象5がテ
レビカメラ15の画面内に入ると、各映像信号20を採
取し、ランド領域認識部90に入る。ここで図4による
10−1、10−3、10−5、および10−7による
入射光に対して反射光をそれぞれ、S1、S3、S5、
およびS7とする。そのしきい値算出部91で検査対象
の周囲にある、プリント配線板上のS1からS7までの
映像信号レベルを総和した値をS0として、このS0を
ランドとレジストを分ける暫定のしきい値とする。この
暫定しきい値s0に基板の種類より設定される判別定数
tを加えてしきい値sを決定する。通常判別定数tはs
0の1/2の値にする。しきい値sが決定すると、しき
いち値判定部92で従来の検査範囲である図5のCから
Dまでより幅が広い、AからBまでの範囲で映像信号レ
ベルを検査する。検査方法は、Aより各画素ごと映像信
号レベルの総和s0を算出し、しきい値sと比較する。
そして、しきい値sより映像信号レベルが大きくなる座
標N1を認識してBに向けて進む。次にしきい値sより
映像信号レベルが小さくなる座標N2を認識する。この
工程をAからBまでの映像信号レベルの変動をグラフ化
すると図6に示す通りになる。この動作により実際のラ
ンド領域P1からP2が認識したランド領域N1からN
2と一致したことになる。このように、しきいち値判定
部92で一連の動作をすることによりN1からN2まで
が実際のランド範囲となる。よって、ランド領域認識部
90で得られたランド領域をコード生成部35へ渡しラ
ンド領域内のみでコード生成を行うことが出来るように
なる。FIG. 1 shows an embodiment of the present invention. This is Figure 1
The inspection area recognition unit 90 is added between the image storage device 25 and the code generation unit 35 of the conventional basic system shown in FIG. FIG. 2 is a block diagram showing the structure of the inspection area recognition unit 90. In both figures, 5 is an inspection target (including a solder joint portion of the IC lead), 10 is an illuminator,
Reference numeral 15 is a light receiving sensor such as a television camera, 20 is a light receiving sensor output, 25 is a video pattern storage unit, 30 is a video pattern output, 35 is a code generation unit, 40 is a code generation unit output (code pattern), 45 is a recognition processing unit, 50 is a lighting control signal, 55 is a table control signal, 60 is a lighting switching device, 65 is a table drive device, 70 is a moving table, 9
Reference numeral 0 is a land area recognition unit, 91 is a threshold value calculation unit, and 92 is a threshold value determination unit. First, a conventionally known inspection method using multi-stage illumination will be briefly described. Illuminator 10 having a multi-stage structure in which the light projection angles to the inspection target 5 are different
The television camera 15 receives the light reflected by the inspection object 5 from the. A plurality of sets of video signals 20 obtained by switching the illumination 10 up and down are stored in the image storage device 25 in the form of a luminance distribution pattern on the target surface. The code generation unit 35 generates a code distribution pattern indicating the angle distribution of the target surface based on the stored contents of the plurality of sets, and the recognition processing unit 45 uses the code distribution pattern to recognize the three-dimensional shape of the target and determine the quality. . Known examples of the automatic appearance inspection apparatus using such an inspection system using multi-stage illumination include JP-A-61-41906, JP-A-4-301549, JP-A-4-343046, and JP-A-4-346011.
Now, as shown in FIG. 3, the recognition processing unit 45 sequentially moves the moving table 70 to a position suitable for the inspection by the table control signal 55 via the drive device 65 as necessary, and illuminates it via the illumination control signal 50. The switching device 60 switches the illumination. Furthermore, the recognition processing unit 45 sets a window in the inspection target range, converts the luminance distribution image into a code distribution (window-encodes for each pixel), recognizes the target three-dimensional shape from the code distribution pattern, and determines whether it is good or bad. It is also a control unit for performing processing operations. For example, when the inspection object 5 is an IC as shown in FIG. 9, the relationship between the projection light from the illuminator 10 and the solder fillet of the IC lead which is the inspection object 5 is shown in FIG. In FIG. 4, 6 shows the cross-sectional shape of the leads of the IC, and 7 also shows the cross-section of the solder fillet that electrically joins the leads and the lands 8 on the printed wiring board 9. FIG. 3 shows this series of processing steps when the inspection target is assumed to be the soldering of the IC leads. Although a plurality of leads of the IC are included in the screen of the television camera, an inspection window is sequentially set for each of them to judge whether the soldering is good or bad. The setting position of the inspection window is set in advance in such a manner that the coordinates of the land position obtained from the reference point on the printed wiring board are stored in the device as teaching information in advance and the inspection land is usually matched with the soldering land. A code signal for describing the angle of the target surface is generated using a plurality of luminance information for each pixel in the inspection window, and the three-dimensional shape of the target is grasped and the quality of the target is judged from this code distribution pattern. When the inspection object 5 enters the screen of the television camera 15, each video signal 20 is sampled and enters the land area recognition unit 90. Here, reflected light is respectively reflected by S1, S3, S5, with respect to incident light by 10-1, 10-3, 10-5 and 10-7 according to FIG.
And S7. The sum of the video signal levels from S1 to S7 on the printed wiring board around the inspection object in the threshold value calculation unit 91 is defined as S0, and this S0 is a temporary threshold value for separating the land and the resist. To do. The threshold value s is determined by adding the discriminant constant t set according to the type of substrate to the provisional threshold value s0. Usually the discriminant constant t is s
Set to 1/2 of 0. When the threshold value s is determined, the threshold value judging unit 92 inspects the video signal level in the range from A to B, which is wider than the conventional inspection range from C to D in FIG. The inspection method calculates the sum s0 of the video signal levels for each pixel from A and compares it with the threshold value s.
Then, the coordinate N1 at which the video signal level becomes higher than the threshold value s is recognized, and the process proceeds toward B. Next, the coordinate N2 whose video signal level becomes smaller than the threshold value s is recognized. FIG. 6 is a graph showing the variation of the video signal level from A to B in this step. By this operation, the land areas N1 to N recognized by the actual land areas P1 to P2 are detected.
It agrees with 2. In this way, by performing a series of operations in the threshold value judging section 92, N1 to N2 become the actual land range. Therefore, the land area obtained by the land area recognizing unit 90 can be passed to the code generating unit 35 and the code can be generated only in the land area.
【0008】[0008]
【発明の効果】以上述べたように、本発明により検査対
象範囲を厳密に認識することは、対象物の形状を正確に
認識するために重要なことであり、また安定して得られ
なければならない最低条件であるので、はんだ付けなど
光沢物の外観検査装置における性能の向上に効果があ
る。 なお検査対象範囲の認識について、図5では1方
向のみについて説明したが、必要に応じてこれと直角方
向の認識を行う場合、あるいは同一方向において、複数
箇所の認識を行う場合も本発明の原理内で可能である。As described above, strict recognition of the inspection object range by the present invention is important for accurately recognizing the shape of the object, and must be obtained stably. Since it is the minimum condition that does not occur, it is effective in improving the performance of the appearance inspection device for glossy objects such as soldering. In addition, the recognition of the inspection range has been described only for one direction in FIG. 5, but the principle of the present invention is also applicable when recognition is performed in a direction orthogonal to this direction or when recognition is performed at a plurality of locations in the same direction. It is possible within.
【図1】本発明の実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.
【図2】本発明の実施例であるランド領域認識部のブロ
ック図。FIG. 2 is a block diagram of a land area recognition unit that is an embodiment of the present invention.
【図3】本発明の実施例であるランド領域認識部の動作
流れ図。FIG. 3 is an operation flowchart of a land area recognition unit that is an embodiment of the present invention.
【図4】光学系の反射モデルを示す図。FIG. 4 is a diagram showing a reflection model of an optical system.
【図5】本発明によるランド領域の検査方法を示す図。FIG. 5 is a diagram showing a land area inspection method according to the present invention.
【図6】本発明による映像信号レベルとランドの関係を
示す図。FIG. 6 is a diagram showing a relationship between a video signal level and a land according to the present invention.
【図7】多段照明式外観検査装置における正常な検査領
域設定によるコード生成のモデル図。FIG. 7 is a model diagram of code generation by normal inspection area setting in the multi-stage illumination type visual inspection apparatus.
【図8】多段照明式外観検査装置における誤った検査領
域によるコード生成のモデル図。FIG. 8 is a model diagram of code generation by an erroneous inspection area in the multi-stage illumination type visual inspection apparatus.
【図9】ICリードの平面図。FIG. 9 is a plan view of an IC lead.
【図10】従来例のブロック図。FIG. 10 is a block diagram of a conventional example.
【図11】正しいウインドとランドの関係を示す図。FIG. 11 is a diagram showing a correct relationship between a window and a land.
【図12】誤差の有るウインドとランドの関係を示す
図。FIG. 12 is a diagram showing a relationship between a window having an error and a land.
5 検査対象(ICリードのはんだ接合部を含む) 6 ICリード 7 ランドとリードを接合するフィレット 8 プリント配線板上のはんだ付けランド 9 プリント配線板 10 照明器 11 検査ウインド領域 15 テレビカメラなど受光センサ 20 受光センサ出力 25 映像パターン記憶部 30 映像パターン出力 35 コード生成部 40 コード生成部出力(コードパターン) 45 認識処理部 50 照明制御信号 55 テーブル制御信号 60 照明切替え装置 65 テーブル駆動装置 70 移動テーブル 90 ランド領域認識部 91 しきいち値算出部 92 しきいち値判定部 5 Inspection target (including solder joint of IC lead) 6 IC lead 7 Fillet for joining land and lead 8 Soldering land on printed wiring board 9 Printed wiring board 10 Illuminator 11 Inspection window area 15 Light receiving sensor such as TV camera 20 light receiving sensor output 25 video pattern storage unit 30 video pattern output 35 code generation unit 40 code generation unit output (code pattern) 45 recognition processing unit 50 lighting control signal 55 table control signal 60 lighting switching device 65 table driving device 70 moving table 90 Land area recognition unit 91 Threshold value calculation unit 92 Threshold value determination unit
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G06T 7/00 H05K 3/34 512 B 7128−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G06T 7/00 H05K 3/34 512 B 7128-4E
Claims (2)
の照明光源と、該照明光源による前記検査対象からの反
射光を、検査対象を含む2次元領域における反射光輝度
分布として受光し電気信号として出力するための受光セ
ンサと、前記複数照明光源の発光位置を切換えて得られ
る複数の受光センサ出力信号パターンを記憶するための
記憶装置と、該複数信号パターンを入力とし、これを基
に検査対象を含む2次元領域各位置の角度コードの生成
を行うコード信号生成部と、該生成コードの検査領域に
おける分布状態を基に前記検査対象の立体的形状を認識
する認識処理装置とを有する外観形状検査装置における
コード生成する検査対象の認識方法であって、前記受光
センサ出力情報より、検査対象領域の検出に適したしき
い値の算出を行う機能を有することを特徴とした外観形
状検査装置における検査領域認識方法。1. A plurality of sets of illumination light sources having different projection angles to an inspection target, and reflected light from the inspection target by the illumination light sources are received as a reflected light luminance distribution in a two-dimensional area including the inspection target. A light receiving sensor for outputting as an electric signal, a storage device for storing a plurality of light receiving sensor output signal patterns obtained by switching the light emitting positions of the plurality of illumination light sources, and the plurality of signal patterns as input, A code signal generation unit that generates an angle code at each position of a two-dimensional region including the inspection target, and a recognition processing device that recognizes the three-dimensional shape of the inspection target based on the distribution state of the generated code in the inspection region. A method for recognizing an inspection target for code generation in an external appearance shape inspection device, which has a function of calculating a threshold value suitable for detection of an inspection target area from the output information of the light receiving sensor A method for recognizing an inspection area in an appearance shape inspection device characterized by having a function.
て、コード生成する検査対象領域の認識方法であって、
入力情報が請求項1のしきい値を参照して検査対象領域
を検出する機能を有することを特徴とする検査領域認識
方法。2. The appearance shape inspection apparatus according to claim 1, comprising a method of recognizing an inspection target area for code generation,
An inspection area recognition method, characterized in that the input information has a function of detecting an inspection area by referring to the threshold value of claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5196904A JPH0727531A (en) | 1993-07-14 | 1993-07-14 | Inspection region recognizing method for appearance shape inspecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5196904A JPH0727531A (en) | 1993-07-14 | 1993-07-14 | Inspection region recognizing method for appearance shape inspecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0727531A true JPH0727531A (en) | 1995-01-27 |
Family
ID=16365584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5196904A Pending JPH0727531A (en) | 1993-07-14 | 1993-07-14 | Inspection region recognizing method for appearance shape inspecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727531A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000013005A1 (en) * | 1998-08-27 | 2000-03-09 | Samsung Electronics Co., Ltd. | Illuminating and optical apparatus for inspecting soldering of printed circuit board |
US6930685B1 (en) | 1999-08-06 | 2005-08-16 | Canon Kabushiki Kaisha | Image processing method and apparatus |
JP2007026217A (en) * | 2005-07-19 | 2007-02-01 | Ckd Corp | Testing device and testing method |
EP3282248A1 (en) * | 2016-08-10 | 2018-02-14 | Omron Corporation | Inspection apparatus and quality control system for surface mounting line |
-
1993
- 1993-07-14 JP JP5196904A patent/JPH0727531A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000013005A1 (en) * | 1998-08-27 | 2000-03-09 | Samsung Electronics Co., Ltd. | Illuminating and optical apparatus for inspecting soldering of printed circuit board |
US6542236B1 (en) * | 1998-08-27 | 2003-04-01 | Samsung Electronics Co., Ltd. | Illuminating and optical apparatus for inspecting soldering of printed circuit board |
US6930685B1 (en) | 1999-08-06 | 2005-08-16 | Canon Kabushiki Kaisha | Image processing method and apparatus |
JP2007026217A (en) * | 2005-07-19 | 2007-02-01 | Ckd Corp | Testing device and testing method |
EP3282248A1 (en) * | 2016-08-10 | 2018-02-14 | Omron Corporation | Inspection apparatus and quality control system for surface mounting line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5032735A (en) | Method of and apparatus for inspecting printed circuit boards | |
JP2953736B2 (en) | Solder shape inspection method | |
JPH08210820A (en) | Method and device for recognizing part to be inspected in visual inspection device of parts-mounted board | |
JPH0727531A (en) | Inspection region recognizing method for appearance shape inspecting device | |
JPS61243303A (en) | Visual inspection system for mounted substrate | |
JPS59107202A (en) | Checking device of fitting position of minute parts | |
JPH02268260A (en) | Solder inspecting apparatus | |
JPS59192902A (en) | Position checking device for parts attached to substrate | |
JP2522174B2 (en) | Mounting board inspection equipment | |
JP3194499B2 (en) | Appearance shape inspection method and device | |
JPH0666528A (en) | Visual inspecting method and apparatus | |
JPH0989525A (en) | Position detecting method for lead shoulder and for lead end | |
JP2906454B2 (en) | Object position detection method | |
GB2364119A (en) | Circuit board testing | |
JP2532513B2 (en) | Object presence inspection method | |
JPH08110216A (en) | Objective face recognition processor for appearance inspecting apparatus | |
JPH07140086A (en) | Appearance shape inspection device | |
JPH05296724A (en) | Parts recognition method | |
JPH02219183A (en) | Recognizing device for position of object | |
JPH07190948A (en) | Apparatus inspection equipment | |
JPH04310851A (en) | Device for inspecting soldering appearance | |
JPH08159980A (en) | Object surface recognition processing system for external appearance inspecting apparatus | |
JPH02234053A (en) | Inspecting device for soldering | |
JP2819696B2 (en) | Soldering inspection equipment | |
JPH08159715A (en) | Inspection instrument for deviation of mounting position of electronic component |