JPH09106459A - Position deviation inspecting method for electronic parts - Google Patents

Position deviation inspecting method for electronic parts

Info

Publication number
JPH09106459A
JPH09106459A JP7264277A JP26427795A JPH09106459A JP H09106459 A JPH09106459 A JP H09106459A JP 7264277 A JP7264277 A JP 7264277A JP 26427795 A JP26427795 A JP 26427795A JP H09106459 A JPH09106459 A JP H09106459A
Authority
JP
Japan
Prior art keywords
color
image
inspection
chip parts
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7264277A
Other languages
Japanese (ja)
Inventor
Fumiaki Fukunaga
文昭 福永
Yoshikazu Sudou
芳数 須藤
Kiyoshi Monno
清 門野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP7264277A priority Critical patent/JPH09106459A/en
Publication of JPH09106459A publication Critical patent/JPH09106459A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve inspection accuracy by extracting a shape and a color related to inspection from the color picked-up images of electronic parts, discriminating the reliability of the measured data to normal data by fuzzy inference and inspecting its position deviation. SOLUTION: A CCD camera 10 the image of chip parts 3 positioned and fixed on a conductive pattern 2 of a wring board 1 just from the upside in color and sets an inspection window 14 slightly bigger than the chip parts 3 on the image pickup picture. Besides, an image processor 12 processes the color picked-up image of the chip parts 3 and extracts the shape and color of a main body section related to the inspection. Then, black-and-white inversion is performed to that color extracted image between the color of the chip parts 3 and the surrounding color, and a white image 3a of the chip parts 3 is extracted. Further, image feature amounts such as position and angle are measured from that white image 3a. Then, a host computer 13 discriminates the normality of the positions are angles of the chip parts 3 from the measured data of image feature amounts of position and angle, etc., by fuzzy inference to inspect its position deviation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配線基板上に位置
決め固定した電子部品、特にチップ部品の位置ずれ検査
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a positional deviation of an electronic component, particularly a chip component, which is positioned and fixed on a wiring board.

【0002】[0002]

【従来の技術】配線基板上にチップ部品(電子部品)を
位置決めして半田付け固定すると、部品の位置ずれの具
合を検査する必要があり、その検査手段を図3(a)〜
(g)を参照して次に示す。まず第1の手段は画像処理
方式によるもので、図3(a)に示すように、配線基板
(1)の導電パターン(2)上に位置決めして半田付け
固定したチップ部品(3)を真上から撮像するCCDカ
メラ(4)と、配線基板(1)上のチップ部品(3)に
斜め上方から正反射照明光を照射する照明用光源(5)
(5)とを具備する。
2. Description of the Related Art When a chip component (electronic component) is positioned on a wiring board and fixed by soldering, it is necessary to inspect the positional deviation of the component.
The following is given with reference to (g). First, the first means is based on an image processing method. As shown in FIG. 3A, the chip component (3) which is positioned and soldered and fixed on the conductive pattern (2) of the wiring board (1) is fixed. A CCD camera (4) that images from above and an illumination light source (5) that irradiates the chip component (3) on the wiring board (1) with specular reflection illumination light from diagonally above.
And (5).

【0003】上記構成において、まず配線基板(1)上
に位置決め固定したチップ部品(3)に光源(5)
(5)から正反射照明光を照射してCCDカメラ(4)
によりチップ部品(3)を撮像し、且つ、図3(b)
(c)に示すように、撮像画面のチップ部品(3)の正
規の搭載位置に検査ウィンドウ(6)を設定する。そう
すると、図示斜線部分に示すチップ部品(3)の本体部
分は照明光により反射して輝いているため、検査ウィン
ドウ(6)内の輝部の画素数(輝部面積)を計数する。
そして、予め照明条件等による誤差を見込んだしきい値
を設定しておき、図3(b)に示すように、検査ウィン
ドウ内の輝部の画素数がしきい値以上であれば、輝部全
体が検査ウィンドウ(6)内にあり、チップ部品(3)
は正規位置にあって位置ずれなしと判定する。一方、検
査ウィンドウ内の輝部の画素数がしきい値以下であれ
ば、図3(c)に示すように、輝部の一部が検査ウィン
ドウ(6)外に食み出しており、この時、チップ部品
(3)は傾斜、或いは平行位置ずれ等、異常位置にあっ
て位置ずれしていると判定する。
In the above structure, first, the light source (5) is attached to the chip part (3) which is positioned and fixed on the wiring board (1).
CCD camera (4) irradiating regular reflection illumination light from (5)
The chip component (3) is imaged by the method of FIG.
As shown in (c), the inspection window (6) is set at the regular mounting position of the chip component (3) on the imaging screen. Then, since the main body portion of the chip part (3) shown by the shaded portion in the drawing is reflected by the illumination light and is bright, the number of pixels (bright portion area) of the bright portion in the inspection window (6) is counted.
Then, a threshold value is set in consideration of an error due to illumination conditions and the like, and as shown in FIG. 3B, if the number of pixels of the bright part in the inspection window is equal to or larger than the threshold value, the entire bright part is determined. Is in the inspection window (6) and the chip part (3)
Indicates that there is no misregistration at the regular position. On the other hand, if the number of pixels in the bright portion within the inspection window is less than or equal to the threshold value, as shown in FIG. 3C, part of the bright portion protrudes outside the inspection window (6). At this time, it is determined that the chip component (3) is misaligned due to an abnormal position such as inclination or parallel misalignment.

【0004】次に、第2の検査手段は三次元計測方式に
よるもので、図3(d)に示すように、レーザ光源
(7)を有し、レーザ光(8)により上方からチップ部
品(3)を走査してその位置を測定し、基準位置と比較
して位置ずれを検査する。
Next, the second inspection means is based on a three-dimensional measurement method, and has a laser light source (7) as shown in FIG. 3) is scanned and its position is measured, and the positional deviation is inspected by comparing with the reference position.

【0005】又、第3の検査手段は三角測距方式による
もので、図3(e)に示すように、光学式変位センサ
(9)を有し、変位センサ(9)によりレーザ光を投光
して反射光を受光し、配線基板(1)の表面からチップ
部品(3)の上面までの高さ(Ho)を計測する。そし
て、図3(f)に示すように、基板上のXhYh座標位置に
おける高さの変位(H)を測定すると、基板レベル(H
a)とチップレベル(Hb)とで急峻に変化する。そこ
で、図3(g)に示すように、変位センサ(9)を走査
して螺旋状軌道(J)を描かせ、変位(H)の急峻な変
化点(E)の位置よりチップ部品(3)のエッジ(E)
を検出して位置ずれ有無を検査する。
The third inspection means is based on the triangulation distance measuring method, and as shown in FIG. 3 (e), it has an optical displacement sensor (9), and the displacement sensor (9) emits a laser beam. Light and reflected light are received, and the height (Ho) from the surface of the wiring board (1) to the upper surface of the chip component (3) is measured. Then, as shown in FIG. 3F, when the height displacement (H) at the XhYh coordinate position on the substrate is measured, the substrate level (H
There is a sharp change between a) and the chip level (Hb). Therefore, as shown in FIG. 3 (g), the displacement sensor (9) is scanned to draw a spiral trajectory (J), and the chip component (3) is moved from the position of the sharp change point (E) of the displacement (H). ) Edge (E)
Is detected to inspect whether or not there is a positional deviation.

【0006】[0006]

【発明が解決しようとする課題】解決しようとする課題
は、まず画像処理方式の場合、しきい値の誤差を広く見
込むと、微小の位置ずれ(例えば縦横平行0.3mm以下、
傾斜5゜以下)は、しきい値の誤差内に入って判定出来
ず、又、しきい値の誤差を狭く見込むと、照明条件等の
影響が加わって誤判定してしまうため、検査精度に限界
がある点である。又、三次元計測方式の場合、走査部機
構が複雑であるため、コストが高くなり(画像処理方式
に対して約1000万円程高い)、且つ、走査時間が長くな
って検査時間が画像処理方式に比し、5〜10倍も掛かる
という不具合がある。更に、三角測距方式の場合、配線
基板(1)の導電パターン(2)が銅箔であれば、判定
可能であるが、半田メッキであれば、レーザ光を乱反射
してしまい、チップ部品(3)のエッジ部分を誤検出し
て誤判定するという不具合がある。
The problem to be solved is that, in the case of the image processing system, when a wide range of threshold error is considered, a slight positional deviation (for example, vertical and horizontal parallel 0.3 mm or less,
If the inclination is 5 ° or less), it cannot be judged because it falls within the error of the threshold value, and if the error of the threshold value is narrowed, the influence of lighting conditions etc. will be added and the judgment will be erroneous. There is a limit. Also, in the case of the three-dimensional measurement method, the scanning mechanism is complicated, so the cost is high (about 10 million yen higher than the image processing method), and the scanning time is long and the inspection time is image processing. There is a problem that it takes 5 to 10 times as much as the method. Further, in the case of the triangulation method, the determination can be made if the conductive pattern (2) of the wiring board (1) is a copper foil, but if it is solder plating, the laser light will be diffusely reflected and the chip component ( There is a problem that the edge portion of 3) is erroneously detected and erroneously determined.

【0007】[0007]

【課題を解決するための手段】本発明は、配線基板上に
位置決め固定した電子部品をカラー撮像し、カラー撮像
画像から検査に係る形と色を抽出する工程と、上記色抽
出画像を画像処理して画像特徴量を計測し、その計測デ
ータの正常データに対する確信度をファジィ推論により
判別して電子部品の位置ずれを検査する工程とを含むこ
とを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, a step of color-imaging an electronic component positioned and fixed on a wiring board and extracting a shape and a color related to an inspection from a color picked-up image, and image-processing the color-extracted image. Then, the image feature amount is measured, the certainty factor of the measured data with respect to the normal data is determined by fuzzy inference, and the positional deviation of the electronic component is inspected.

【0008】[0008]

【発明の実施の形態】本発明に係る電子部品の位置ずれ
検査方法の実施の形態を図1〜図2を参照して以下に説
明する。まず図1(a)は本発明方法を実施するための
装置構成図で、図において(10)はCCDカメラ、(1
1)は照明用光源、(12)は画像処理装置、(13)はホ
ストコンピュータである。上記CCDカメラ(10)は配
線基板(1)の導電パターン(2)上に位置決め固定し
たチップ部品(3)を真上からカラー画像にて撮像し、
図1(b)(c)に示すように、撮像画面にチップ部品
(3)よりも大きめの検査ウィンドウ(14)を設定す
る。照明用光源(11)はチップ部品(3)に斜め上方か
ら正反射照明光を照射する。画像処理装置(12)はチッ
プ部品(3)のカラー撮像画像を画像処理し、検査に係
る本体部分の形と色(但し、抽出色を茶黒色又は黒色等
の部品色に設定しておく)を抽出する。そして、図1
(d)(e)に示すように、その色抽出画像をチップ部
品(3)の色とその周囲の色(例えば基板色は緑)とで
白黒反転してチップ部品(3)の白色画像(3a)を取り
出す。そして、その白色画像(3a)から位置、角度等の
画像特徴量を計測して計測データをホストコンピュータ
(13)へ送出する。ホストコンピュータ(13)は位置、
角度等の画像特徴量の計測データからファジィ推論によ
りチップ部品(3)の位置、角度の正常度を判別し、そ
の位置ずれを検査する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a position deviation inspection method for electronic parts according to the present invention will be described below with reference to FIGS. First, FIG. 1 (a) is an apparatus configuration diagram for carrying out the method of the present invention. In the figure, (10) is a CCD camera, and (1)
1) is a light source for illumination, (12) is an image processing device, and (13) is a host computer. The CCD camera (10) picks up a color image of the chip component (3) positioned and fixed on the conductive pattern (2) of the wiring board (1) from directly above,
As shown in FIGS. 1B and 1C, an inspection window (14) larger than the chip component (3) is set on the imaging screen. The illumination light source (11) irradiates the chip component (3) with specular reflection illumination light obliquely from above. The image processing device (12) image-processes the color picked-up image of the chip part (3), and the shape and color of the main body part related to the inspection (however, the extraction color is set to a part color such as brown or black). To extract. And FIG.
As shown in (d) and (e), the color-extracted image is inverted in black and white by the color of the chip component (3) and its surrounding color (for example, the substrate color is green), and the white image of the chip component (3) ( Take out 3a). Then, the image features such as position and angle are measured from the white image (3a), and the measurement data is sent to the host computer (13). The host computer (13) is located,
The position of the chip part (3) and the normality of the angle are determined by fuzzy inference from the measurement data of the image feature amount such as the angle, and the positional deviation is inspected.

【0009】上記構成に基づき本発明の動作を次に説明
する。まずチップ部品(3)を配線基板(1)上に位置
決めして半田付け固定すると、チップ部品(3)に光源
(11)(11)から正反射照明光を照射してCCDカメラ
(10)によりチップ部品(3)を真上から撮像する。そ
して、図1(b)(c)に示すように、撮像画面のチッ
プ部品(3)の正規の搭載位置に検査ウィンドウ(14)
を設定する。次に、画像処理装置(12)により図示斜線
部分に示すチップ部品(3)の検査に係る本体部分の形
と色を抽出すると、図1(d)(e)に示すように、そ
の色と周囲の色とを白黒反転してチップ部品(3)の白
色画像(3a)を取り出す。そして、その白色画像(3a)
から位置、角度の画像特徴量を計測し、その計測データ
をホストコンピュータ(13)へ送出する。そこで、上記
位置、角度の計測データからホストコンピュータ(13)
においてファジィ推論を行い、チップ部品(3)の位
置、角度の正常度を判別し、例えば図1(d)(e)の
各白色画像(3a)(3a)の位置ずれ有無を検査する。
The operation of the present invention based on the above configuration will be described below. First, the chip component (3) is positioned on the wiring board (1) and fixed by soldering. Then, the chip component (3) is irradiated with regular reflection illumination light from the light sources (11) and (11), and the CCD camera (10) is used. The chip component (3) is imaged from directly above. Then, as shown in FIGS. 1 (b) and 1 (c), the inspection window (14) is provided at the regular mounting position of the chip component (3) on the imaging screen.
Set. Next, when the shape and color of the main body portion related to the inspection of the chip part (3) shown in the shaded area in the figure are extracted by the image processing device (12), as shown in FIGS. A white image (3a) of the chip part (3) is taken out by reversing the surrounding color in black and white. And the white image (3a)
The image feature amount of the position and the angle is measured, and the measurement data is sent to the host computer (13). Therefore, from the measurement data of the above position and angle, the host computer (13)
In FIG. 1, fuzzy inference is performed to determine the normality of the position and angle of the chip component (3), and for example, the presence or absence of positional deviation of each white image (3a) (3a) of FIGS.

【0010】ここで、上記ファジィ推論を行なう際、確
率による判定手段により画像特徴量(位置、角度)を判
別する。例えば、位置(X)(Y)及び角度(Z)と、
人が判定した結果(正常、位置ずれの各蓄積データ)と
を組み合わせ、図2(a)(b)(c)に示すファジィ
の各メンバーシップ関数(Ma)(Mb)(Mc)及び判定確
率(C)をそれぞれ作成する。但し、(ZRa)(ZRb)
(ZRc)は位置(X)(Y)及び角度(Z)の各正常デ
ータのファジィ集合、(PSa)(PSb)(PSc)は位置
(X)(Y)及び角度(Z)の各位置ずれデータのファ
ジィ集合である。そこで、例えば、位置(X)(Y)及
び角度(Z)を計測すると、メンバーシップ関数(Ma)
において位置(X)の計測データの正常及び位置ずれ各
データに対する各確信度(Aa)(Ba)を検知する。同様
に、メンバーシップ関数(Mb)(Mc)においても位置
(Y)及び角度(Z)の各計測データの正常及び位置ず
れ各データに対する各確信度(Ab)(Bb)及び(Ac)
(Bc)をそれぞれ検知する。そうすると、確信度(Aa)
(Ab)(Ac)が大きい程、又、確信度(Ba)(Bb)(B
c)が小さい程、計測データは正常データに近付く。そ
こで、位置(X)(Y)及び角度(Z)の正常の各確信
度(Aa)(Ab)(Ac)を乗算した正常の全確率(A=Aa
×Ab×Ac)と、位置(X)(Y)及び角度(Z)の位置
ずれの各確信度(Ba)(Bb)(Bc)を乗算した位置ずれ
の全確率(B=Ba×Bb×Bc)とを算出し、それらを判定
確率(C)と比較する。そして、A>C>Bの時、チッ
プ部品(3)の位置は正常と判定し、それ以外の場合、
異常と判定してチップ部品(3)は位置ずれしていると
判別する。
Here, when performing the fuzzy inference, the image feature amount (position, angle) is discriminated by the probabilistic determination means. For example, position (X) (Y) and angle (Z),
The fuzzy membership functions (Ma) (Mb) (Mc) and judgment probabilities shown in FIGS. 2 (a) (b) (c) are combined with the results of judgments made by humans (normal and misregistration data). (C) is created respectively. However, (ZRa) (ZRb)
(ZRc) is a fuzzy set of normal data of position (X) (Y) and angle (Z), and (PSa) (PSb) (PSc) is misalignment of position (X) (Y) and angle (Z). It is a fuzzy set of data. Therefore, for example, if the position (X) (Y) and the angle (Z) are measured, the membership function (Ma)
At, the certainty factors (Aa) and (Ba) for the normal and misaligned data of the measurement data at the position (X) are detected. Similarly, in the membership functions (Mb) and (Mc), the confidence levels (Ab), (Bb), and (Ac) of the measurement data of the position (Y) and the angle (Z) for the normal and misaligned data
(Bc) is detected respectively. Then the certainty factor (Aa)
The larger (Ab) (Ac), the more certainty factor (Ba) (Bb) (B
The smaller c) is, the closer the measured data is to the normal data. Therefore, the total probability of normality (A = Aa) multiplied by the certainty factors (Aa) (Ab) (Ac) of normality at the position (X) (Y) and the angle (Z)
XAbxAc) multiplied by each confidence (Ba) (Bb) (Bc) of position (X) (Y) and angle (Z) position deviation, the total probability of position deviation (B = Ba x Bb x And Bc) and compare them with the decision probability (C). Then, when A>C> B, it is determined that the position of the chip component (3) is normal, and in other cases,
It is determined to be abnormal, and the chip component (3) is determined to be displaced.

【0011】[0011]

【発明の効果】本発明によれば、配線基板に位置決め固
定した電子部品の位置ずれを検査する際、電子部品のカ
ラー撮像画像から検査に係る形と色を抽出し、その色抽
出画像を画像処理して画像特徴量を計測し、その計測デ
ータの正常データに対する確信度をファジィ推論により
判別して電子部品の位置ずれを検査したから、検査精度
が大幅に向上し、又、従来装置に容易に付加して組み込
めるため、コスト上昇を低く抑制出来る。
According to the present invention, when inspecting a positional deviation of an electronic component positioned and fixed on a wiring board, a shape and a color relating to the inspection are extracted from a color picked-up image of the electronic component, and the color extracted image is imaged. Image accuracy is processed and the confidence of the measured data with respect to normal data is determined by fuzzy inference to check the positional deviation of electronic parts, which greatly improves the inspection accuracy and makes it easier for conventional devices. Since it can be added to and incorporated in, the cost increase can be suppressed to a low level.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明に係る電子部品の位置ずれ検査
方法を実施するための装置構成図である。(b)は本発
明に係る電子部品のカラー撮像画像で、正常位置にある
電子部品を示す図である。(c)は本発明に係る電子部
品のカラー撮像画像で、異常位置にある電子部品を示す
図である。(d)は本発明に係る電子部品の白黒反転撮
像画像で、正常位置にある電子部品を示す図である。
(e)は本発明に係る電子部品の白黒反転撮像画像で、
異常位置にある電子部品を示す図である。
FIG. 1A is an apparatus configuration diagram for carrying out an electronic component position shift inspection method according to the present invention. (B) is a color captured image of the electronic component according to the present invention, showing the electronic component in a normal position. (C) is a color picked-up image of the electronic component according to the present invention, showing the electronic component in an abnormal position. (D) is a black and white inverted image of the electronic component according to the present invention, showing the electronic component in a normal position.
(E) is a black and white inverted image of the electronic component according to the present invention,
It is a figure which shows the electronic component in an abnormal position.

【図2】(a)は本発明に係る電子部品の位置ずれ検査
方法のファジィ推論を行なうための位置Xのメンバーシ
ップ関数である。(b)は本発明に係る電子部品の位置
ずれ検査方法のファジィ推論を行なうための位置Yのメ
ンバーシップ関数である。(c)は本発明に係る電子部
品の位置ずれ検査方法のファジィ推論を行なうための角
度のメンバーシップ関数である。
FIG. 2A is a membership function of a position X for performing fuzzy inference in the method for inspecting the positional deviation of an electronic component according to the present invention. (B) is a membership function of the position Y for performing fuzzy inference in the method for inspecting the displacement of the electronic component according to the present invention. (C) is an angular membership function for performing fuzzy inference in the electronic component position shift inspection method according to the present invention.

【図3】(a)は従来の電子部品の位置ずれ検査方法の
一例を示す画像処理方式の装置構成図である。(b)は
図3(a)に示す電子部品の位置ずれ検査装置における
電子部品の撮像画像で、正常位置にある電子部品を示す
図である。(c)は図3(a)に示す電子部品の位置ず
れ検査方法における電子部品の撮像画像で、異常位置に
ある電子部品を示す図である。(d)は従来の電子部品
の位置ずれ検査方法の他の一例を示す三次元計測方式の
装置構成図である。(e)は従来の電子部品の位置ずれ
検査方法の他の一例を示す三角測距方式の装置構成図で
ある。(f)は図3(e)に示す三角測距方式の電子部
品の位置ずれ検査装置における縦横座標位置の変位を示
すグラフである。(g)は図3(e)に示す三角測距方
式の電子部品の位置ずれ検査装置におけるセンサ軌道を
示す平面図である。
FIG. 3A is a device configuration diagram of an image processing system showing an example of a conventional method of inspecting a positional deviation of an electronic component. FIG. 3B is a captured image of an electronic component in the electronic component position shift inspection device shown in FIG. 3A, showing the electronic component in a normal position. FIG. 3C is a captured image of the electronic component in the method for inspecting the positional deviation of the electronic component shown in FIG. 3A, showing the electronic component at an abnormal position. (D) is a three-dimensional measurement system configuration diagram showing another example of the conventional displacement inspection method for electronic components. (E) is a triangulation type device configuration diagram showing another example of the conventional method for inspecting positional deviation of electronic parts. FIG. 3F is a graph showing the displacement of the ordinate-horizontal coordinate positions in the positional deviation inspection device for electronic components of the triangulation type shown in FIG. FIG. 3G is a plan view showing a sensor trajectory in the position shift inspection apparatus for electronic components of the triangulation distance measuring method shown in FIG.

【符号の説明】[Explanation of symbols]

1 配線基板 3 電子部品(チップ部品) 10 CCDカメラ 12 画像処理装置 13 ホストコンピュータ 1 wiring board 3 electronic parts (chip parts) 10 CCD camera 12 image processing device 13 host computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 配線基板上に位置決め固定した電子部品
をカラー撮像し、カラー撮像画像から検査に係る形と色
を抽出する工程と、上記色抽出画像を画像処理して画像
特徴量を計測し、その計測データの正常データに対する
確信度をファジィ推論により判別して電子部品の位置ず
れを検査する工程とを含むことを特徴とする電子部品の
位置ずれ検査方法。
1. A step of color-imaging an electronic component positioned and fixed on a wiring board and extracting a shape and a color related to an inspection from the color imaged image, and image-processing the color extracted image to measure an image feature amount. And a step of inspecting the positional deviation of the electronic component by determining the certainty factor of the measured data with respect to the normal data by fuzzy inference, and inspecting the positional deviation of the electronic component.
JP7264277A 1995-10-12 1995-10-12 Position deviation inspecting method for electronic parts Pending JPH09106459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7264277A JPH09106459A (en) 1995-10-12 1995-10-12 Position deviation inspecting method for electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7264277A JPH09106459A (en) 1995-10-12 1995-10-12 Position deviation inspecting method for electronic parts

Publications (1)

Publication Number Publication Date
JPH09106459A true JPH09106459A (en) 1997-04-22

Family

ID=17400940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7264277A Pending JPH09106459A (en) 1995-10-12 1995-10-12 Position deviation inspecting method for electronic parts

Country Status (1)

Country Link
JP (1) JPH09106459A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125434A (en) * 2002-09-30 2004-04-22 Ngk Spark Plug Co Ltd Appearance examining method and device for electronic circuit component and method of manufacturing electronic circuit component
JP2010127815A (en) * 2008-11-28 2010-06-10 Toppan Printing Co Ltd Defect detection selection correction system
WO2013074222A1 (en) * 2011-11-14 2013-05-23 Microscan Systems, Inc. Part inspection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004125434A (en) * 2002-09-30 2004-04-22 Ngk Spark Plug Co Ltd Appearance examining method and device for electronic circuit component and method of manufacturing electronic circuit component
JP2010127815A (en) * 2008-11-28 2010-06-10 Toppan Printing Co Ltd Defect detection selection correction system
WO2013074222A1 (en) * 2011-11-14 2013-05-23 Microscan Systems, Inc. Part inspection system

Similar Documents

Publication Publication Date Title
EP0467149B1 (en) Method of and device for inspecting pattern of printed circuit board
JPH0572961B2 (en)
US5150423A (en) Method of and device for inspecting pattern of printed circuit board
US8345951B2 (en) Image binarizing method, image processing device, and computer program
JP2005121508A (en) Bump shape measuring device, its method, and manufacturing method of multilayer printed board
JP3164003B2 (en) Mounted parts inspection device
JPH08247736A (en) Mounted substrate inspecting device
JPH09106459A (en) Position deviation inspecting method for electronic parts
JPH11307567A (en) Manufacture of semiconductor device containing bump inspection process
JPH11111784A (en) Device for determining quality of bump height
JP5391172B2 (en) Foreign object inspection apparatus and alignment adjustment method
JPH08234226A (en) Image processor for production of liquid crystal substrate
JP2596158B2 (en) Component recognition device
JPH0749930B2 (en) Mounted board inspection device
JP2525261B2 (en) Mounted board visual inspection device
JP4357666B2 (en) Pattern inspection method and apparatus
JPH10247669A (en) Device and method for inspecting bonding wire
JPH06260794A (en) Method and equipment for recognizing position of electronic part
JP3067876B2 (en) Pattern inspection apparatus and pattern inspection method
JP3755370B2 (en) Solder fillet inspection method
JPH0367567B2 (en)
JP2601232B2 (en) IC lead displacement inspection equipment
JPH02219183A (en) Recognizing device for position of object
JPH1089920A (en) Position detection method and mounting method therefor, and method for inspecting semiconductor integrated circuit device
JPH0399208A (en) Inspection apparatus for mounting board

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010206