JPH07268606A - Hard coating film resistant to oxidation and wear - Google Patents

Hard coating film resistant to oxidation and wear

Info

Publication number
JPH07268606A
JPH07268606A JP5646394A JP5646394A JPH07268606A JP H07268606 A JPH07268606 A JP H07268606A JP 5646394 A JP5646394 A JP 5646394A JP 5646394 A JP5646394 A JP 5646394A JP H07268606 A JPH07268606 A JP H07268606A
Authority
JP
Japan
Prior art keywords
layer
film
tialn
tin
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5646394A
Other languages
Japanese (ja)
Inventor
Atsuo Kawana
淳雄 川名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5646394A priority Critical patent/JPH07268606A/en
Publication of JPH07268606A publication Critical patent/JPH07268606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the resistance of the coating film to wear and oxidation by forming the laminated coating film of TiN and TiAlN on the surface of the steel material for tools and dies or on the surface of a sintered hard alloy. CONSTITUTION:The laminated coating film of first to fourth layers is formed from the surface being in fromcontact with a metallic material toward the outer surface. The first and third layers are formed TiN and the second and fourth layers from TiAlN, and the Al content of the TiAlN is controlled to 40-60mol%. The thickness ratio of the first layer is controlled to 10-15%, that of the second layer to 65-80%, that of the third layer to 5-10% and that of the fourth layer to 5-10%. Although the film forming method is not specified, ion plating is preferably used since >=2 kinds of coating films are formed in the same device, and a highly adhesive coating film effective in improving the wear resistance can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐摩耗性に優れた硬質被
膜に関し、特に金属工具などの耐摩耗性および耐酸化性
を向上させた硬質被膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard coating having excellent wear resistance, and more particularly to a hard coating having improved wear resistance and oxidation resistance of metal tools and the like.

【0002】[0002]

【従来の技術】工具や金型などの鋼材もしくは超硬合金
材料の表面に、その材料の耐摩耗性を向上させるために
イオンプレーティング法などによりTiNの被膜を被覆
することは知られている。しかしながら、TiNをはじ
めとする金属窒化物は高温で酸化され易く、生成した脆
い酸化物層により、耐摩耗性が著しく劣化するという欠
点がある。このTiNの酸化の問題を改善した被膜とし
てTiAlN膜が提唱されている。例えばライボルトヘ
レウス社のW.D.ミュンツらによる研究(J.Va
c.Sci.Tecnol.,A4,2717(198
6))などでは、TiAlNが耐酸化性に優れていると
報告されている。
2. Description of the Related Art It is known to coat the surface of steel materials such as tools and molds or cemented carbide materials with a TiN film by an ion plating method or the like in order to improve the wear resistance of the materials. . However, metal nitrides such as TiN are easily oxidized at a high temperature, and the resulting brittle oxide layer has a drawback that the wear resistance is significantly deteriorated. A TiAlN film has been proposed as a film that has improved the problem of oxidation of TiN. For example, W. of Leibold Heraeus. D. Research by Munts et al. (J. Va
c. Sci. Tecnol. , A4, 2717 (198
6)) and the like report that TiAlN has excellent oxidation resistance.

【0003】しかし、上記TiAlN膜は、Alの添加
により耐酸化性は向上するが、Alの量が増えるに従い
被膜の硬度は上昇する反面、靱性の低下が起こり、工具
などへ適用した場合には後者の欠点により性能が低下す
るという問題がある。本発明者らの研究によれば、Ti
AlN膜は本質的にはTiN被膜中に一種の欠陥として
Alを添加しているため、欠陥の導入により被膜の硬度
は上昇するものの、被膜の靱性が劣化し、機械的特性は
TiNよりも劣っていた。
However, although the TiAlN film has improved oxidation resistance due to the addition of Al, the hardness of the film increases as the amount of Al increases, but the toughness decreases, and when applied to a tool or the like. There is a problem that performance is deteriorated due to the latter drawback. According to the research conducted by the present inventors, Ti
Since the AlN film essentially adds Al as a kind of defect in the TiN film, the hardness of the film increases due to the introduction of defects, but the toughness of the film deteriorates and the mechanical properties are inferior to those of TiN. Was there.

【0004】このようなAlの添加による靱性の低下
は、TiAlN膜中のAlの量が金属成分のモル%にて
10%を越えた領域で著しくなる。Alの量が10%以
下のTiAlN被膜では、TiNと同様の機械的特性を
示すが、このような低濃度のAl添加では耐酸化性の効
果はほとんど現れない。このようなAlの添加による靱
性の低下と耐酸化性の向上という相反する現象を補うた
め、Al濃度が連続的に変化した構造の膜などが提案さ
れている。例えば、特開平2−170965号公報では
濃度の傾斜した構造の被膜として、表面に近づくに従い
Al濃度が増し、最表面で最高のAl濃度となる被膜が
提案されている。
Such a decrease in toughness due to the addition of Al becomes remarkable in the region where the amount of Al in the TiAlN film exceeds 10% in terms of mol% of the metal component. A TiAlN coating film having an Al content of 10% or less exhibits mechanical properties similar to those of TiN, but the addition of such a low concentration of Al causes little effect on oxidation resistance. In order to compensate for the contradictory phenomena of reduction in toughness and improvement in oxidation resistance due to the addition of Al, a film having a structure in which the Al concentration is continuously changed has been proposed. For example, Japanese Patent Application Laid-Open No. 2-170965 proposes a film having a structure with a sloping concentration, in which the Al concentration increases toward the surface and the highest Al concentration is obtained on the outermost surface.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記Al濃度
の傾斜した構造の被膜でも機械的特性は十分ではなく、
工具などへ適用した場合には大きな効果は得られていな
い。したがって、本発明の目的は、金属工具の耐摩耗性
と耐酸化性を合わせ持つ硬質被膜を提供することにあ
る。
However, even the above-mentioned coating film having a graded Al concentration does not have sufficient mechanical properties.
When applied to tools, etc., no great effect has been obtained. Therefore, an object of the present invention is to provide a hard coating having both the wear resistance and the oxidation resistance of a metal tool.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、金属材料上に最近接部から表面に向かっ
て第1層から第4層まで形成された積層被膜であって、
第1層と第3層がTiNで、第2層と第4層がTiAl
Nであり、該TiAlNの中でAlが40〜65%モル
%を占め、該積層被膜の中で各層の厚み割合が第1層が
10〜15%、第2層が65〜80%、第3層が5〜1
0%、第4層が5〜10%に構成されていることを特徴
とする。
In order to achieve the above object, the present invention provides a laminated coating formed on a metal material from the closest part to the surface from the first layer to the fourth layer.
The first and third layers are TiN, the second and fourth layers are TiAl
N, Al accounts for 40 to 65% mol% in the TiAlN, and the thickness ratio of each layer in the laminated coating film is 10 to 15% for the first layer, 65 to 80% for the second layer, 3 layers are 5 to 1
0%, and the fourth layer is 5% to 10%.

【0007】[0007]

【作用】本発明に用いられる鋼系金属材料としては、例
えば鋼系金属材料や超硬合金などが挙げられる。鋼系金
属材料としては例えば構造用鋼、ばね鋼、軸受鋼、工具
鋼、ステンレス鋼等が挙げられ、また、超硬合金として
は例えばスローアウェイチップ、ドリル、エンドミル等
の切削工具に使用されるCo等をバインダーとしたWC
焼結体の超硬合金などを挙げることができる。
The steel-based metallic material used in the present invention includes, for example, steel-based metallic materials and cemented carbides. Examples of the steel-based metal material include structural steel, spring steel, bearing steel, tool steel, stainless steel, and the like, and cemented carbide is used, for example, in cutting tools such as indexable inserts, drills, and end mills. WC with Co as a binder
Examples include sintered cemented carbide.

【0008】これらの金属材料の上に形成する本発明の
4層膜は、第1層としてTiNをその上の第2層として
Alが40〜65モル%のTiAlN層を形成し、さら
にその上に第3層としてTiNを形成し、最表層として
第4層に再び40〜65モル%のTiAlN層を形成
し、該積層被膜中のそれぞれの層の厚みの割合が第1層
10%〜15%、第2層65%〜80%、第3層5%〜
10%および第4層5%〜10%であることが必要であ
る。
In the four-layer film of the present invention formed on these metallic materials, TiN is formed as the first layer, and a TiAlN layer having Al of 40 to 65 mol% is formed as the second layer, and further thereon. TiN is formed as the third layer, and a TiAlN layer of 40 to 65 mol% is again formed as the outermost layer in the fourth layer. The thickness ratio of each layer in the laminated coating is 10% to 15% of the first layer. %, Second layer 65% to 80%, third layer 5% to
It is necessary to be 10% and the fourth layer 5% to 10%.

【0009】本発明の積層被膜は、イオンプレーティン
グ法、CVD法、スパッタリング法などの公知の方法を
用いて作製して良いが、2ユニット以上の金属イオンを
同時に供給でき2種類以上の被膜の製膜が同一装置内で
可能であり、かつ耐摩耗性の向上に有効な強固な付着力
を示す被膜の作製が可能なイオンプレーティング法を用
いることが最も望ましい。したがってここでは、例とし
てイオンプレーティング法による被膜の形成について以
下に説明する。
The laminated coating film of the present invention may be produced by a known method such as an ion plating method, a CVD method, a sputtering method or the like, but two units or more of metal ions can be simultaneously supplied and two or more kinds of coating films can be formed. It is most desirable to use the ion plating method, which enables film formation in the same apparatus and enables the production of a film exhibiting a strong adhesive force effective for improving wear resistance. Therefore, here, the formation of the coating film by the ion plating method will be described below as an example.

【0010】一般にイオンプレーティング法で被膜を形
成する場合には、金属源を蒸発させ、蒸発した金属をイ
オン化して基材に供給する。本発明の被膜構造をイオン
プレーティング法で作製する場合の金属源としては金属
Tiおよび金属Alの2種の蒸発源を用いる必要がある
が、上記純金属の代わりにTi−Al合金を用いても良
い。これらの純金属や組成の異なる合金の蒸発源を単独
にあるいは複数個同時に使用することにより目的とする
比率でTiとAlの蒸気が供給される。
Generally, when forming a film by an ion plating method, a metal source is evaporated and the evaporated metal is ionized and supplied to a substrate. When the coating structure of the present invention is produced by the ion plating method, it is necessary to use two types of evaporation sources, metal Ti and metal Al, but a Ti-Al alloy is used instead of the pure metal. Is also good. Vapors of Ti and Al can be supplied at a target ratio by using the evaporation sources of these pure metals or alloys having different compositions either individually or simultaneously.

【0011】金属のイオン化の方法は特に制限されず、
イオンプレーティング装置に備わった公知の手法が採用
される。すなわち、金属の蒸発は抵抗加熱や電子銃加熱
などのどれでも良く、蒸発した金属のイオン化も公知の
アーク放電、グロー放電、高周波放電などのいずれでも
良い。
The method of ionizing the metal is not particularly limited,
A known method provided in the ion plating device is adopted. That is, the evaporation of the metal may be resistance heating, electron gun heating, or the like, and the evaporated metal may be ionized by known arc discharge, glow discharge, high-frequency discharge, or the like.

【0012】イオンプレーティング法で使用される反応
性ガスは、窒化物を生成させるための反応ガスであり、
窒素あるいはアンモニアまたはこれらの混合ガスまたは
これらを含む他の種類のガスとの混合ガスを用いる。上
記反応性ガスを反応容器中に導入し、上記の金属イオン
と同様の方法でイオン化し、金属材料に負のバイアス電
圧を印加し、上記方法によりTiとAlの組成比を制御
し、さらにTiNとTiAlNの製膜時間を変えること
によって、膜厚の割合を制御して本発明の積層被膜を製
膜する。
The reactive gas used in the ion plating method is a reactive gas for producing a nitride,
A mixed gas with nitrogen or ammonia, a mixed gas thereof, or another kind of gas including these is used. The reactive gas is introduced into the reaction vessel, ionized in the same manner as the above metal ions, a negative bias voltage is applied to the metal material, and the composition ratio of Ti and Al is controlled by the above method. By changing the film formation time of TiAlN and TiAlN, the ratio of the film thickness is controlled to form the laminated coating film of the present invention.

【0013】TiNは、B1型結晶構造の物質である
が、TiN中のTiの一部がAlに置換された置換型固
溶体であるTiAlNにおいて、金属成分のAlのモル
%が65%までは、TiNと同じB1型結晶構造とな
り、Al濃度が65%を越えると、結晶構造が変化し、
該積層被膜の靱性が極端に低下して好ましくない。
TiN is a substance having a B1 type crystal structure, but in TiAlN which is a substitutional solid solution in which a part of Ti in TiN is substituted with Al, up to 65% of the metal component Al is mol%. It has the same B1 type crystal structure as TiN, and when the Al concentration exceeds 65%, the crystal structure changes,
The toughness of the laminated coating is extremely reduced, which is not preferable.

【0014】TiAlNは酸化雰囲気にさらされると固
溶したAlにより被膜表面に酸化物層が形成され、保護
層の役割を果たす。そのため、切削工具などでは摩耗か
ら発生する熱による被膜の酸化劣化を防ぐ機能を持つ。
この特性はAl濃度が多いほど高くなるものであるか
ら、十分な耐酸化性を持たせるためにはAl濃度が40
モル%以上が好ましい。
When TiAlN is exposed to an oxidizing atmosphere, a solid solution of Al forms an oxide layer on the surface of the coating film, which serves as a protective layer. Therefore, cutting tools have a function of preventing oxidative deterioration of the coating due to heat generated by wear.
Since this characteristic increases as the Al concentration increases, the Al concentration is 40% in order to provide sufficient oxidation resistance.
It is preferably at least mol%.

【0015】また、TiAlNはTiNと同一の結晶構
造にあるとはいえ、Tiと原子径の異なるAlが置換固
溶すると、一種の欠陥が導入された状態となるため、T
iNに比して被膜硬度は上昇し、耐摩耗性は向上する
が、一方で靱性が低下し、TiAlNだけではTiNよ
り機械的特性は劣ることとなる。したがって本発明の積
層被膜構造では第1層のTiNで該金属材料との密着力
を向上させ、かつ靱性を改善する。第1層の作用により
第2層のTiAlNは硬質膜としての機能および耐酸化
膜としての機能を靱性を損なわずに発揮する。さらに第
3層のTiNと第4層のTiAlN層を薄く積層化する
ことによって膜表面の耐衝撃性を増し、膜の機械的特性
を向上させる役割を果たしている。
Further, although TiAlN has the same crystal structure as TiN, when Ti and Al having a different atomic diameter are substituted and solid-solved, a kind of defect is introduced.
Compared to iN, the film hardness increases and the wear resistance improves, but on the other hand, the toughness decreases, and TiAlN alone is inferior in mechanical properties to TiN. Therefore, in the laminated coating structure of the present invention, the first layer of TiN improves the adhesion with the metal material and improves the toughness. By the action of the first layer, the TiAlN of the second layer exerts the function as a hard film and the function as an oxidation resistant film without impairing the toughness. Further, the third layer of TiN and the fourth layer of TiAlN are thinly laminated to increase the impact resistance of the film surface and to improve the mechanical properties of the film.

【0016】この時、該積層被膜中のそれぞれの層の厚
みの割合が第1層10%〜15%、第2層65%〜80
%、第3層5%〜10%および第4層5%〜10%であ
ることが必要である。該積層被膜の膜厚は工具等に使用
される場合、通常2〜5μmであるが、仮に膜厚を4μ
mとすると、第1層のTiNは約0.6μm、第2層の
TiAlNは3μm、第3層および第4層は約0.4μ
m以下となる。第1層のTiNの厚みの割合が10%未
満すなわち第2層のTiAlNの膜厚の割合が80%よ
り厚くなると、TiAlNの脆性面が強調され、好まし
くない。逆に第1層の厚みの割合が15%を越えた場
合、すなわちTiAlN層の厚みの割合が65%未満に
なると、高硬度膜としての機械的特性および耐酸化特性
が十分でなく不都合である。
At this time, the thickness ratio of each layer in the laminated coating is 10% to 15% for the first layer and 65% to 80% for the second layer.
%, The third layer 5% to 10%, and the fourth layer 5% to 10%. The thickness of the laminated coating is usually 2 to 5 μm when it is used for a tool, but if the thickness is 4 μm,
m, TiN of the first layer is about 0.6 μm, TiAlN of the second layer is 3 μm, and the third and fourth layers are about 0.4 μm.
m or less. When the ratio of the thickness of TiN of the first layer is less than 10%, that is, when the ratio of the thickness of TiAlN of the second layer is more than 80%, the brittle surface of TiAlN is emphasized, which is not preferable. On the contrary, when the thickness ratio of the first layer exceeds 15%, that is, when the thickness ratio of the TiAlN layer is less than 65%, mechanical properties and oxidation resistance properties of the high hardness film are not sufficient, which is inconvenient. .

【0017】また、第3層と第4層の厚みの割合が5%
未満あるいは10%を越えると薄膜化して耐衝撃性を高
めた機能が損なわれる。
The ratio of the thickness of the third layer to the thickness of the fourth layer is 5%.
If it is less than 10% or more than 10%, the thin film is formed and the function of improving impact resistance is impaired.

【0018】[0018]

【実施例】【Example】

(実施例1)6mmφの高速度鋼(SKH51)製のド
リルを金属材料として用いた。TiNおよびTiAlN
被膜の形成はカソードアーク放電型イオンプレーティン
グ装置にて行った。イオンプレーティングでの蒸発源と
しては、TiターゲットおよびAl濃度50モル%のT
i−Al合金ターゲットを用いた。
(Example 1) A 6 mmφ high speed steel (SKH51) drill was used as a metal material. TiN and TiAlN
The coating was formed using a cathode arc discharge type ion plating device. As the evaporation source in the ion plating, a Ti target and T having an Al concentration of 50 mol% were used.
An i-Al alloy target was used.

【0019】金属材料基材のドリルを有機溶剤中で超音
波洗浄を行い、イオンプレーティング装置内の所定位置
にセットし、反応容器内を2×10-5Torrまで排気
した後、基板に−1000Vのバイアス電圧を印加し、
Tiカソードよりアーク放電を生起させた。この時のア
ーク放電電流は70Aであった。赤外放射温度計により
基板表面温度を監視しながら、アーク放電を約2分間続
け、Tiを蒸発、イオン化させ、基板表面のスパッタク
リーニングを行った。アーク放電巾最大500℃までド
リル表面温度の上昇が認められた。次に反応ガスとして
窒素ガスを導入し、圧力を3.0×102Torrを保
つようにしながら基板に−400Vのバイアス電圧を印
加し、Tiカソードよりアーク放電を生起させた。この
時のアーク放電電流は70Aであった。アーク放電は1
5分間続け第1層のTiNを成膜した。
The drill of the metal material base material is ultrasonically cleaned in an organic solvent, set in a predetermined position in the ion plating apparatus, and the inside of the reaction vessel is evacuated to 2 × 10 -5 Torr. Apply a bias voltage of 1000V,
Arc discharge was generated from the Ti cathode. The arc discharge current at this time was 70A. While monitoring the substrate surface temperature with an infrared radiation thermometer, arc discharge was continued for about 2 minutes to vaporize and ionize Ti, and the substrate surface was sputter cleaned. An increase in the surface temperature of the drill was recognized up to an arc discharge width of up to 500 ° C. Next, nitrogen gas was introduced as a reaction gas, a bias voltage of -400 V was applied to the substrate while maintaining the pressure at 3.0 × 10 2 Torr, and arc discharge was generated from the Ti cathode. The arc discharge current at this time was 70A. 1 arc discharge
The first layer of TiN was deposited for 5 minutes.

【0020】次に第2層のTiAlN層を被覆するた
め、Tiカソードのアーク放電を停止し、窒素ガス圧
力、バイアス電圧は変えずにTi−Alカソードにアー
ク放電を生起させた。この時のアーク放電電流は70A
であった。アーク放電は60分間続け、TiAlN被膜
の被覆を行った。
Next, in order to coat the TiAlN layer of the second layer, the arc discharge of the Ti cathode was stopped and the arc discharge was generated in the Ti-Al cathode without changing the nitrogen gas pressure and the bias voltage. The arc discharge current at this time is 70A
Met. The arc discharge was continued for 60 minutes to apply a TiAlN film.

【0021】次にTiカソードにアーク放電を5分間、
続いてTi−Alカソードに同じく5分間アーク放電を
生起させ、第3層のTiNと第4層のTiAlN層を成
膜した。
Next, arc discharge was applied to the Ti cathode for 5 minutes,
Subsequently, an arc discharge was similarly generated on the Ti-Al cathode for 5 minutes to form a third layer of TiN and a fourth layer of TiAlN.

【0022】以上のように作製した4層膜は、全膜厚と
しては約4μmで、各層の厚みの割合は、第1層:第2
層:第3層:第4層=15:75:5:5あった。
The four-layer film produced as described above has a total thickness of about 4 μm, and the ratio of the thickness of each layer is as follows: first layer: second layer
Layer: Third layer: Fourth layer = 15: 75: 5: 5.

【0023】この4層被膜のついたドリルについて切削
試験を実施した。切削試験は、被削材としてSCM44
0Cを使用し、回転数は1500rpm、送り速度は
0.15mm/rev.とし、20mmの深さまで切削
し、切削不能になるまでの穴の数で評価した。実施例1
のドリルでは、315回の切削が可能であった。
A cutting test was conducted on the drill having the four-layer coating. The cutting test uses SCM44 as the work material.
0C, the rotation speed is 1500 rpm, and the feed speed is 0.15 mm / rev. Was cut to a depth of 20 mm, and the number of holes until cutting became impossible was evaluated. Example 1
It was possible to cut 315 times.

【0024】(実施例2)実施例1と同様のドリルを用
い、同様の方法で各層の厚みの割合が第1層:第2層:
第3層:第4層=10:70:10:10である4層膜
を製膜した。このドリルでの切削回数は270回であっ
た。
(Embodiment 2) Using a drill similar to that of Embodiment 1, the ratio of the thickness of each layer is the same as that of the first layer: the second layer:
Third layer: Fourth layer = 10: 70: 10: 10 to form a four-layer film. The number of times of cutting with this drill was 270 times.

【0025】(実施例3)実施例1と同様のドリルを用
い、同様の方法で各層の厚みの割合が第1層:第2層:
第3層:第4層=10:80:5:5である4層膜を製
膜した。このドリルでの切削回数は285回であった。
(Embodiment 3) A drill similar to that of Embodiment 1 is used, and the thickness ratio of each layer is set in the same manner as in the first layer: second layer:
Third layer: Fourth layer = 10: 80: 5: 5 to form a four-layer film. The number of times of cutting with this drill was 285 times.

【0026】(実施例4)実施例1と同様のドリルを用
い、同様の方法で各層の厚みの割合が第1層:第2層:
第3層:第4層=15:70:10:5である4層膜を
製膜した。このドリルでの切削回数は260回であっ
た。
(Embodiment 4) A drill similar to that of Embodiment 1 is used, and the thickness ratio of each layer is set in the same manner as in the first layer: second layer:
Third layer: Fourth layer = 15: 70: 10: 5 to form a four-layer film. The number of times of cutting with this drill was 260 times.

【0027】(実施例5)実施例1と同様のドリルを用
い、同様の方法で各層の厚みの割合が第1層:第2層:
第3層:第4層=15:70:5:10である4層膜を
製膜した。このドリルでの切削回数は275回であっ
た。
(Embodiment 5) A drill similar to that of Embodiment 1 is used, and the ratio of the thickness of each layer is the same as the first layer: the second layer:
Third layer: Fourth layer = 15: 70: 5: 10 to form a four-layer film. The number of cuts with this drill was 275.

【0028】(実施例6)実施例1と同様のドリルを用
い、同様の方法で各層の厚みの割合が第1層:第2層:
第3層:第4層=15:60:10:10である4層膜
を製膜した。このドリルでの切削回数は290回であっ
た。
(Embodiment 6) A drill similar to that of Embodiment 1 is used, and the thickness ratio of each layer is set in the same manner as in the first layer: second layer:
Third layer: Fourth layer = 15: 60: 10: 10 to form a four-layer film. The number of cuttings with this drill was 290.

【0029】(実施例7)実施例1と同様のドリルを用
い、Ti−AlカソードをAl濃度がモル%で70%の
合金ターゲットを用いた他は同様の方法で各層の厚みの
割合が第1層:第2層:第3層:第4層=15:7:
5:5:5である4層膜を製膜した。このドリルでの切
削回数は191回であった。
(Embodiment 7) A drill similar to that of Embodiment 1 is used, and a Ti-Al cathode is replaced with an alloy target having an Al concentration of 70% and a mole ratio of 70%. 1st layer: 2nd layer: 3rd layer: 4th layer = 15: 7:
A 4-layer film of 5: 5: 5 was formed. The number of times of cutting with this drill was 191 times.

【0030】(実施例8)実施例1と同様のドリルを用
い、実施例7と同様の方法で各層の厚みの割合が第1
層:第2層:第3層:第4層=10:70:10:10
である4層膜を製膜した。このドリルでの切削回数は1
95回であった。
(Embodiment 8) A drill similar to that of Embodiment 1 is used, and the thickness ratio of each layer is the first in the same manner as in Embodiment 7.
Layer: Second layer: Third layer: Fourth layer = 10: 70: 10: 10
Was formed into a four-layer film. The number of cuts with this drill is 1
It was 95 times.

【0031】(実施例9)実施例1と同様のドリルを用
い、実施例7と同様の方法で各層の厚みの割合が第1
層:第2層:第3層:第4層=10:80:5:5であ
る4層膜を製膜した。このドリルでの切削回数は206
回であった。
(Embodiment 9) A drill similar to that of Embodiment 1 is used, and the thickness ratio of each layer is the first in the same manner as that of Embodiment 7.
Layer: Second layer: Third layer: Fourth layer = A four-layer film having a thickness of 10: 80: 5: 5 was formed. The number of cuttings with this drill is 206
It was once.

【0032】(実施例10)実施例1と同様のドリルを
用い、実施例7と同様の方法で各層の厚みの割合が第1
層:第2層:第3層:第4層=15:70:10:5で
ある4層膜を製膜した。このドリルでの切削回数は18
0回であった。
(Embodiment 10) A drill similar to that in Embodiment 1 is used, and the thickness ratio of each layer is the first in the same manner as in Embodiment 7.
Layer: second layer: third layer: fourth layer = 15: 70: 10: 5 to form a four-layer film. The number of cuttings with this drill is 18
It was 0 times.

【0033】(実施例11)実施例1と同様のドリルを
用い、実施例7と同様の方法で各層の厚みの割合が第1
層:第2層:第3層:第4層=15:70:5:10で
ある4層膜を製膜した。このドリルでの切削回数は21
3回であった。
(Embodiment 11) A drill similar to that in Embodiment 1 is used, and the thickness ratio of each layer is the first in the same manner as in Embodiment 7.
Layer: Second layer: Third layer: Fourth layer = 15: 70: 5: 10 A four-layer film was formed. The number of cuttings with this drill is 21
It was three times.

【0034】(実施例12)実施例1と同様のドリルを
用い、実施例7と同様の方法で各層の厚みの割合が第1
層:第2層:第3層:第4層=15:60:10:10
である4層膜を製膜した。このドリルでの切削回数は1
87回であった。
(Embodiment 12) A drill similar to that of Embodiment 1 is used, and the thickness ratio of each layer is the first in the same manner as in Embodiment 7.
Layer: Second layer: Third layer: Fourth layer = 15: 60: 10: 10
Was formed into a four-layer film. The number of cuts with this drill is 1
It was 87 times.

【0035】(比較例1)実施例1と同様のドリルを用
い、同様の方法で各層の厚みの割合が第1層:第2層:
第3層:第4層=50:30:10:10である4層膜
を製膜した。このドリルでの切削回数は90回であっ
た。
(Comparative Example 1) The same drill as in Example 1 was used, and the ratio of the thickness of each layer was the same as the first layer: the second layer:
Third layer: Fourth layer = 50: 30: 10: 10 to form a four-layer film. The number of times of cutting with this drill was 90 times.

【0036】(比較例2)実施例1と同様のドリルを用
い、実施例7と同様の方法で各層の厚みの割合が第1
層:第2層:第3層:第4層=50:30:10:10
である4層膜を製膜した。このドリルでの切削回数は6
5回であった。
(Comparative Example 2) A drill similar to that in Example 1 was used, and the thickness ratio of each layer was the first in the same manner as in Example 7.
Layer: Second layer: Third layer: Fourth layer = 50: 30: 10: 10
Was formed into a four-layer film. The number of cuts with this drill is 6
It was 5 times.

【0037】(比較例3)実施例1と同様のドリルを用
い、同様の方法で第3層と第4層を製膜せず、TiNを
20分間、TiAlNを50分間製膜し、TiAlN/
TiN2層膜を製膜した。第1層:第2層=30:70
である2層膜を製膜した。このドリルでの切削回数は3
5回であった。
(Comparative Example 3) The same drill as in Example 1 was used to form TiN for 20 minutes and TiAlN for 50 minutes without forming the third and fourth layers by the same method.
A TiN two-layer film was formed. First layer: Second layer = 30: 70
Was formed into a two-layer film. The number of cuts with this drill is 3
It was 5 times.

【0038】(比較例4)実施例1と同様のドリルを用
い、実施例7と同様の方法で第3層と第4層を製膜せ
ず、TiNを20分間、TiAlNを50分間製膜し、
TiAlN/TiN2層膜を製膜した。第1層:第2層
=30:70である2層膜を製膜した。このドリルでの
切削回数は14回であった。
(Comparative Example 4) The same drill as in Example 1 was used to form the third layer and the fourth layer in the same manner as in Example 7 without depositing TiN for 20 minutes and TiAlN for 50 minutes. Then
A TiAlN / TiN two-layer film was formed. A two-layer film in which the first layer: the second layer = 30: 70 was formed. The number of times of cutting with this drill was 14.

【0039】ここで、実施例1〜6および比較例1およ
び3におけるTiAlN膜のAl濃度を確認するため、
EPMAにより組成分析を行ったところ、金属成分のA
l濃度は、40〜45モル%の間にあった。
Here, in order to confirm the Al concentration of the TiAlN film in Examples 1 to 6 and Comparative Examples 1 and 3,
A composition analysis by EPMA showed that the metal component A
The l concentration was between 40 and 45 mol%.

【0040】また、実施例7〜12および比較例2およ
び4におけるTiAlN膜のAl濃度を確認するため、
EPMAにより組成分析を行ったところ、金属成分のA
l濃度は、60〜65モル%の間にあった。
Further, in order to confirm the Al concentration of the TiAlN film in Examples 7 to 12 and Comparative Examples 2 and 4,
A composition analysis by EPMA showed that the metal component A
The l concentration was between 60 and 65 mol%.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
積層被膜の靱性を低下させることなく、耐酸化性を付与
することができ、金属工具などの特性を格段に向上させ
ることができる。
As described above, according to the present invention,
Oxidation resistance can be imparted without lowering the toughness of the laminated coating, and the characteristics of the metal tool or the like can be significantly improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属材料上に最近接部から表面に向かっ
て第1層から第4層まで形成された積層被膜であって、
第1層と第3層がTiNで、第2層と第4層がTiAl
Nであり、該TiAlNの中でAlが40〜65モル%
を占め、該積層被膜の中で各層の厚み割合が第1層が1
0〜15%、第2層が65〜80%、第3層が5〜10
%、第4層が5〜10%に構成されていることを特徴と
する耐酸化、耐摩耗性硬質被膜。
1. A laminated coating formed from a first layer to a fourth layer on a metal material from the closest portion to the surface,
The first and third layers are TiN, the second and fourth layers are TiAl
N, and 40 to 65 mol% of Al in the TiAlN
And the thickness ratio of each layer in the laminated coating is 1 for the first layer.
0-15%, 2nd layer 65-80%, 3rd layer 5-10
%, The fourth layer is composed of 5 to 10%, an oxidation resistant and wear resistant hard coating.
JP5646394A 1994-03-28 1994-03-28 Hard coating film resistant to oxidation and wear Pending JPH07268606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5646394A JPH07268606A (en) 1994-03-28 1994-03-28 Hard coating film resistant to oxidation and wear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5646394A JPH07268606A (en) 1994-03-28 1994-03-28 Hard coating film resistant to oxidation and wear

Publications (1)

Publication Number Publication Date
JPH07268606A true JPH07268606A (en) 1995-10-17

Family

ID=13027804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5646394A Pending JPH07268606A (en) 1994-03-28 1994-03-28 Hard coating film resistant to oxidation and wear

Country Status (1)

Country Link
JP (1) JPH07268606A (en)

Similar Documents

Publication Publication Date Title
EP1347076B1 (en) PVD-Coated cutting tool insert
US6586122B2 (en) Multilayer-coated cutting tool
KR100674773B1 (en) Hard films, multilayer hard films, and production methods thereof
JP4112296B2 (en) Coated cutting tool and coating method thereof
JP3460287B2 (en) Surface coating member with excellent wear resistance
JP3454428B2 (en) Wear-resistant film-coated tools
JP3638332B2 (en) Coated hard alloy
JPH04297568A (en) Surface coated member excellent in wear resistance and formation of film
JP3712242B2 (en) Coated cutting tool / Coated wear resistant tool
JPH07188901A (en) Coated hard alloy
JP2002337005A (en) Abrasive-resistant coating coated tool
JP3572732B2 (en) Hard layer coated cutting tool
JP3712241B2 (en) Coated cutting tool / Coated wear resistant tool
JPH10317123A (en) Crystalline oriented hard coated member
JPH07268606A (en) Hard coating film resistant to oxidation and wear
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JP2867605B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JP3358696B2 (en) High strength coating
JPH06316756A (en) Corrosion and wear resistant coating film
JP3351054B2 (en) Hard coating with excellent oxidation and abrasion resistance
JP3337884B2 (en) Multilayer coating member
JP2913763B2 (en) Surface-coated hard members for cutting tools and wear-resistant tools
JPH08199341A (en) Coated hard alloy
JPH0421760A (en) Surface-coated hard member excellent in wear resistance
JPH0718416A (en) Oxidation and wear resistant hard coating film