JPH07267618A - 新規な炭素微粒子 - Google Patents

新規な炭素微粒子

Info

Publication number
JPH07267618A
JPH07267618A JP6076599A JP7659994A JPH07267618A JP H07267618 A JPH07267618 A JP H07267618A JP 6076599 A JP6076599 A JP 6076599A JP 7659994 A JP7659994 A JP 7659994A JP H07267618 A JPH07267618 A JP H07267618A
Authority
JP
Japan
Prior art keywords
carbon
particles
less
specific gravity
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6076599A
Other languages
English (en)
Inventor
Kenichi Yoshie
建一 吉江
Shigeaki Kasuya
重明 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP6076599A priority Critical patent/JPH07267618A/ja
Publication of JPH07267618A publication Critical patent/JPH07267618A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

(57)【要約】 【目的】 液相置換法によって測定された真比重の値が
1.0g/ccから1.7g/ccである、微細孔を有する殆ど黒鉛構
造を有しない新規な炭素微粒子を提供する。 【構成】 透過型電子顕微鏡で観察される投影粒子の算
術平均径が30nmから500nmであり、液体置換法による真
比重の値が1.0から1.7g/ccであり、窒素吸着法で測定れ
る比表面積が200から2000m2/gであり、かつ、X線回折
パターンにおいて、子面間隔d値が10から25Åであるピ
ークを有することを特徴とする炭素粒子。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、新規な炭素粒子に関す
るものである。より詳しくは、二次電池、電気二重層型
キャパシター、触媒担体、ガス吸着材、クロマト分離
剤、脱色剤、脱臭材、導電性付与材、着色材、補強材、
セラミックス製造用還元材、など幅広い用途に好適な新
規な殆ど黒鉛構造を有しない炭素粒子に関するものであ
る。
【0002】
【従来の技術】炭素粒子としては、気相から生成する燃
焼火炎のすすやこれを工業的に制御して生産されるカー
ボンブラック、および、石炭や重質油などを高温下還元
雰囲気で加熱処理して得られるコークス等を粉砕したも
の、あるいは粉状活性炭、更には、液相のピッチメソフ
ェーズを加熱炭化して得られる、メソカーボンマイクロ
ビーズなどがある。
【0003】これらの殆どは、黒鉛の昇華点と言われる
3800K以下の温度で生成し、多かれ少なかれ黒鉛構造、
即ち有る程度の環数の縮合六員環構造を有している。こ
れは、原料が加熱されていく過程で、脱水素や脱酸素に
よって、縮合六員環構造が生長し、いわゆる多環芳香族
が前駆体として形成され、安定相である黒鉛を生成する
方向に反応が進んでいくことによると考えられる。
【0004】一方、3800K以上の高温下で炭素を蒸発さ
せ、再析出させることによって、C60などの球殻状炭素
クラスター即ちフラーレンが生成することが、近年明ら
かになった(Kratschmer, W., Lamb, L.D., Fostiropoul
os, K.,and Huffmann, D.R.; Nature,347,354-358(199
0)) 。即ち、黒鉛棒を電極として、100torr程度の希ガ
ス雰囲気下で放電させて、黒鉛を蒸発させ、この時生成
するすすにフラーレンが存在する。つまりガス状の炭素
から凝縮して固体炭素を形成するとき、安定相といわれ
る黒鉛にはならず、フラーレンが生成するのである。
【0005】この時、フラーレンと同時に、フラーレン
以外の炭素が溶剤不溶分として共存することは知られて
いる。例えば、Scanlon, J.C. と Ebert, L.B.はJourna
l ofPhysical Chemistry 97巻 7138ページから7140ペー
ジ1993年に、このフラーレン抽出後の残さの炭素をX線
回折で調べた結果を示している。その結果によれば、フ
ラーレン抽出残さは、ベンゼン環構造を含み、その(00
2)、(100)、(101)、(004)、(110)、(112)各面の反射が見られ
るとされている。
【0006】この黒鉛電極法では、電極に数nm径の中空
繊維’カーボンナノチューブ’が生成堆積する事も知ら
れている。一方、'Nature';355,333-335(1992)におい
て、Thomas Lenoskyらは、5員環と7員環をふくむ負曲
面炭素が理論的には存在し得るとして計算によって、そ
の構造を示している。それによれば、この炭素は、15Å
程度の周期構造を有し、かつゼオライト状の細孔構造を
有している可能性が有るとのことである。また真比重は
1.16g/cc程度になるとの予測も示されている。
【0007】
【発明が解決しようとする課題】しかしながら、この負
曲面炭素は、従来の炭素とは異なる特殊な物性を有する
ことは大いに期待されているが、いまだ発見されていな
い。
【0008】
【課題を解決するための手段】本発明者等は、負曲面炭
素乃至その構造の一部を含むような、黒鉛やフラーレン
以外の準安定な炭素微粒子がガス状炭素を適当な条件下
において適当な冷却速度下で凝縮させると生成可能では
ないかと考え、検討を進めてきた。その結果、熱プラズ
マによって炭素粒子を一旦蒸発させその後固体炭素を再
析出させるという方法での生成物の中で、生成条件によ
っては従来知られていなかった特異な炭素粒子が得られ
ることを発見し、本発明に到達した。
【0009】即ち本発明は、殆ど黒鉛構造を有しない新
規な炭素微粒子の提供を目的としたものであり、更に
は、負曲面炭素乃至その構造の一部を含むような、黒鉛
やフラーレン以外の準安定な炭素微粒子の提供を目的と
したものである。しかして本発明の要旨は、透過型電子
顕微鏡で観察される投影粒子の算術平均径が30nmから50
0nmであり、液体置換法による真比重の値が1.0から1.7g
/ccであり、かつ窒素吸着法で測定される比表面積が200
から2000m2/gであることを特徴とする炭素粒子に存す
る。
【0010】以下、本発明をより詳細に説明する。本発
明の炭素粒子は、その主構成元素が炭素であり、それ以
外の元素が10モル%以下、好ましくは 5モル%以下、更
に好ましくは 1モル%以下であるようなものを指す。
この粒子は、その平均径が30から500nmであって、多く
はその平均径が50から300nmの範囲にあり、真比重は小
さく1.0から1.7g/ccであって、多くは1.4から1.7g/ccの
範囲にあり、更に微細孔を有するためその比表面積が20
0から2000m2/gであって、その多くは200から600m2/gの
ものである。
【0011】比表面積は窒素吸着法によって測定され
る。これらの内更に特異的なものは、X線回折において
格子面間隔d値が10から25Å相当にピークを有してい
る。ここで格子面間隔d値は次式で表される。
【0012】
【数1】d=λ/2sinθ λ:X線 波長 θ:ブラッグ角
【0013】X線回折の測定値を平滑化して得られる曲
線を微分して極大値を検出し、この時のブラッグ角をピ
ーク位置とした。ピーク位置については、通常3回の測
定で測定時の雑音由来と考えられるものはピークとして
確定せず、本質的なピークと見なせるものだけを選び確
定した。ピーク強度は、バックグラウンドにランダム配
向成分があるので、これを除いて算出した。具体的に
は、上述の平滑化したX線回折曲線を多重ピーク分離法
に従ってピーク分離を行うと共にベースラインを決め、
このベースラインと実測強度のピーク位置での差をピー
ク強度とした。
【0014】なお、X線回折の測定は理学電機(株)RI
NT 1000を用い、上記のデーター解析は付属の応用ソフ
トウエアを用いて行った。上記の特徴に加え、10Å以下
の細孔容量が300Å以下の細孔容量の10%以上70%以下
であるようなものも見いだされている。この時、多くの
ものは20%以上50%以下である。
【0015】この細孔容量は窒素吸着法において、Kran
ston-Inkley法及びDubinin法によって算出されるもので
ある。本発明の粒子は前述の通り低い真比重値を有す
る。通常カーボンブラックでは真比重は1.75g/cc以上で
あり、活性炭でも1.8g/ccを越える。活性炭の製法とし
て、原料の炭素粒子の細孔容量を増すため、水蒸気や二
酸化炭素で部分的にガス化して(賦活)、細孔を生成さ
せることは通常行われるがこの時、ガス化する部分は反
応性の高い、構造の乱れた部分で有ると言われおり、結
果として原料炭素の黒鉛構造を残すかたちになり、真比
重値は元の粒子より高くなり、2.0g/ccを越える場合が
よく見受けられる。
【0016】しかし、今回発見された粒子は、賦活操作
を行っていないにも関わらず微細孔を有し、しかも乱れ
た構造(乃至負曲面炭素構造)を有するという極めて特
異な物性を具備していると言える。しかも、今回発見し
た粒子のなかにはX線回折によって15Å程度の周期構造
を有するものが見いだされており、それらが10Å以下の
細孔を含みかつその真比重が異常に小さいことを考慮す
ると、理論的に予測されている負曲面炭素構造を全面的
にではないにしろ、含有していることは充分有り得ると
考える。上述の理論予測では、負曲面炭素の生成エネル
ギーはC60よりむしろ小さいことが示されており、生成
のプロセスさえ選べば充分に工業的に生成可能であると
考えられる。
【0017】我々の発見した炭素は、黒鉛構造はあって
も僅かである。これは、ガス状炭素から、固体炭素が凝
縮する際の冷却速度が速いため、安定相である黒鉛が充
分に発達しない内に固化し、いわゆる準安定相の形で取
り出されたためと考えられる。 上記の炭素粒子は、た
とえば適当な条件下において、高周波熱プラズマ中で炭
素粒子を蒸発させこれを再析出させ、この生成物を二硫
化炭素などの溶剤で可溶分を除去後、真空乾燥する事に
よって得られる。
【0018】この製法について以下に説明を加える。本
発明の粒子の生成プロセスは炭素を蒸発させ、再析出さ
せる過程が含まれていれば特に限定されないが、工業的
には連続的にかつ大量に原料を処理できる熱プラズマプ
ロセスは好ましいものの一つである。また、黒鉛電極放
電や固体炭素の高周波加熱による蒸発、レーザーによる
炭素ターゲットの蒸発あるいは条件によっては芳香族炭
化水素などの燃焼、熱分解などでもガス状炭素が生成で
きるので利用可能である。
【0019】本発明の粒子を生成させるための熱プラズ
マの作動ガスはAr,He,Xe,Neなどの希ガスが好ましく、H
2、O2など反応性ガスは生成粒子の中に黒鉛構造を形成
したり、物性に影響を及ぼすため好ましくない。熱プラ
ズマ内の圧力は200torr以上であるほうが原料炭素の蒸
発にとって好ましく、また、熱プラズマを維持し充分な
原料炭素を蒸発させられるだけの高周波電源入力パワー
が必要であり、たとえば発振周波数が4MHzにおいては5K
W以上の入力が好ましい。導入する原料濃度は、原料の
蒸発後の粒子再析出ができるだけ非平衡状態で行われる
ようにある程度の過飽和度が達成されるべく高濃度であ
ることが望ましく、また原料濃度の上限は、蒸発潜熱と
プラズマガスの熱容量及びプラズマ最小維持電力によっ
ておのずと定まる。原料の炭素粒子は炭素含有量の多い
ものが好ましい。また粒子の大きさは100μmを越える大
きさであると、生成物中には黒鉛構造が残存する。そこ
で特に、炭素含有量の多いカーボンブラックを気流中に
分散させたものが好ましい。
【0020】本発明の粒子は基本的に有機溶媒に不溶で
ある。従って、上記の熱プラズマ生成物から有機溶剤に
可溶な成分を除去しなければならない。そこで、二硫化
炭素或いは、ベンゼン、トルエン、キシレン等の芳香族
炭化水素、クロロベンゼン等のハロゲン化芳香族炭化水
素、キノリン、ピリジン、などによって非極性有機物
を、ジエチルエーテル等のエーテル類、アセトン等のケ
トン類、エタノール、メタノール等のアルコール類、ク
ロロホルム等のハロゲン化炭化水素類、等によって多環
芳香族などを除去することが行われる。この工程は、抽
出溶剤によってソックスレー法などで行う事ができる。
【0021】当然のことながら、抽出溶剤のフラーレン
などの有機物の溶解度が小さいと充分に有機物の除去が
できたとはいい難く、従って、この工程では二硫化炭素
やキノリン、ピリジン等溶解度の高いものが特に好適で
ある。この様な溶剤を用いる場合、特に溶剤の沸点が高
い場合は、乾燥による溶剤除去工程においては、温度を
高く、圧力を低く、時間を長く設定することは当然のこ
ととして行われる。
【0022】この工程の代わりに、あるいは加えて、Ar
,He,Xe,Ne等希ガスないし窒素ガス中で400℃以上1800℃
以下、より好ましくは600℃以上1500℃以下の温度で熱
処理を行い、有機物成分を昇華除去する事も有効な方法
である。より具体的には、1500℃以下の場合はシリコニ
ット炉によって、また1500℃以上1800℃以下の場合に
は、ケラマックス炉ないしタンマン炉によって高温を
得、この炉内に黒鉛坩堝に原料粉を入れ、10から1000ml
/minの流量で上記ガスを導入し、通常10分から30分程度
処理を行う。なお、これらのガス流量、処理時間は、原
料の仕込み量、坩堝の形状、温度によって異なるが、残
存有機物の量の有無は、Arなどの不活性ガス中で、800
℃までの加熱減量を測定する事によって知る事ができる
ので、適切な条件を選ぶ事が試行錯誤によって可能であ
る。
【0023】これらの生成物を600℃以上1500℃以下で
水蒸気、二酸化炭素それぞれの単独ガスあるいは混合し
たガス(賦活ガス)等と通常、常圧下で接触させて、新
たに細孔を設けることは可能であり、本特許の請求範囲
の物質を得ることは可能である。この時、この賦活ガス
は、窒素或いはAr,He,Xe,Ne等の希ガスで10%程度まで
の適当な濃度に希釈して用いることも可能である。
【0024】あるいは、水酸化カリウム等のアルカリ水
溶液を含浸させたのち加熱することによって新たに細孔
を設けても同様に本特許請求範囲の物質を得ることがで
きる。その他の賦活方法として燐酸を含浸させて加熱す
る方法でも同様である。
【0025】
【作用】上記の新規な炭素粒子は、液相置換法によって
測定された真比重の値が1.0g/ccから1.7g/ccである微細
孔を有する殆ど黒鉛構造を有しない粒子である。この様
な特徴によって、この粒子は二次電池、電気二重層型キ
ャパシター、触媒担体、ガス吸着材、脱色剤、脱臭材、
導電性付与材、着色材、補強材、セラミックス製造用還
元材、など幅広い用途に適要でき、多大な工業的価値を
有しているといえる。
【0026】
【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を越えない限り、下記実施例
により限定されるものでは無い。 実施例1 図1に示す熱プラズマ発生装置において入力パワーはD
Cアーク1に5KW、高周波アーク2に24KW(4MHz)とし
た。反応装置は予め0.1torrまで油回転ポンプにて真空
引きし、かつ系内への空気リーク量が0.1cc/minである
ことを確認した後、プラズマガスを導入した。プラズマ
圧力は、760torrとした。プラズマガスとしてはArを用
い、DCアーク用にガス導入口3から4Nl/min、高周波
用として、旋回流でArを26Nl/minガス導入口4から、半
径方向にArを12Nl/min及びHeを14Nl/minを予混合して、
ガス導入口6からそれぞれ導入した。
【0027】炭素質原料としては、カーボンブラック
(三菱化成(株)製#4000B)をフィーダー(図1中の1
1)から10Nl/minのAr気流(図1中の5から導入)に同
伴し、分散機(図1中の10)において2mmφの細管か
ら下流の金属板に衝突分散後、重力分級器(図1中の1
7)で100μmを越える粒子を除去し0.45g/minでプラズ
マ装置内に導入した。
【0028】このガス中に存在する浮遊粒子の粒径をJI
S K-0302-1989に基づいて測定したところ、10μm未満の
粒子が75%含まれることが分かった。生成物は下流のチ
ャンバー(図1中の12)壁付着分及び更に下流に設置
したフィルター(図1中の13)で捕集分を回収した。
この生成物中の有機質(主としてフラーレン類)を除く
ため二硫化炭素にてソックスレー抽出し、抽出残さの固
形分を1torrの圧力下、150℃で10時間真空乾燥して目的
生成物を得た。
【0029】得られた生成物の構造を、Cu K-α線によ
るX線回折で調べたところ、図2に示すように、黒鉛の
002反射(2θが約26度)は少なく、また、2θが 6度
付近(格子面間隔d値が約15Å)にブロードなピークが
認められた。窒素吸着法で測定した比表面積は330m2/g
であった。この時、10Å以下の細孔容量は300Å以下の
細孔容量の43%であって、約0.09cc/gであった。
【0030】透過型電子顕微鏡でこの粒子を観察したと
ころ、図3に示すように、50nmから200nmの粒径の粒子
が凝集しておりその投影粒子の算術平均径は100nmであ
ることが分かった。n-ブチルアルコールを用いた、液体
置換法による真比重測定を行ったところこの粒子は約1.
49g/ccの真比重であることが分かった。
【0031】なお、真比重測定にはセイシン企業(株)
製オートトゥルーデンサーMAT-5000を用いた。更に、ア
ルミナ製真空容器内にこの粒子を入れて0.1torr以下に
まで脱気後、1500℃において30分加熱した際発生するガ
スの量と種類を調べて、この粒子に含まれる、酸素、水
素の量を調べたところ、いずれも 0.1モル%以下である
ことが分かった。
【0032】実施例2 実施例1と同様の装置と同様の原料を用いて、原料の供
給速度を0.19g/min、プラズマ圧力を500torrとした他は
実施例と同様の実験を行い、生成物を得た。これを回収
して、実施例1と同様にソックスレー抽出、真空乾燥を
行って目的生成物を得た。
【0033】得られた生成物の構造を、Cu K-α線によ
るX線回折で調べたところ、図4に示すように、黒鉛の
002反射(2θが約26度)は少なく、また、2θが 6度
付近(格子面間隔dが約15Å)にブロードなピークが認
められた。窒素吸着法で測定した比表面積は300m2/gで
あった。この時、10Å以下の細孔容量は 300Å以下の細
孔容量の約36%であり約0.09cc/gであった。
【0034】透過型電子顕微鏡でこの粒子を観察したと
ころ、50nmから200nmの粒径の粒子が凝集していること
が分かり、その投影粒子の算術平均径は80nmであった。
n-ブチルアルコールを用いた、液体置換法による真比重
測定を行ったところこの粒子は約1.55g/ccの真比重であ
ることが分かった。 比較例1 ライオンアクゾ社製Ketjen Black ECは透過型電子顕微
鏡で観察される投影粒子の算術平均径が約36nmであり、
比表面積は960m2/gである。しかし真比重は 2.0 g/ccで
あった。またCu K-α線によるX線回折では、2θが20
度以下の低角側には全くピークが認められなかった(図
5)。
【0035】
【発明の効果】本発明の新規炭素粒子は、電気二重層キ
ャパシターや二次電池などの電極材料あるいは触媒担
体、ガス吸着材など幅広い用途に応用でき、多大な工業
的利益を提供するものである。
【図面の簡単な説明】
【図1】本発明実施例1,2に用いたハイブリッドプラ
ズマ反応装置の模式図である。
【図2】実施例1で得られた生成物のX線回折図であ
る。
【図3】実施例1で得られた生成物の粒子構造を示した
写真である。
【図4】実施例2で得られた生成物のX線回折図であ
る。
【図5】比較例1で得られた生成物のX線回折図であ
る。
【符号の説明】
1…DCアーク用電源、2…高周波アーク用コイル、
3、4、5、6、7…ガス導入口、8…冷却水導入管、
9…冷却水排水管、10…分散機、11…粒子供給機 12…チャンバー、13…バッグフィルター、14、1
5…バルブ、16…オイルロータリーポンプ、17…重
力分級機

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 透過型電子顕微鏡で観察される投影粒子
    の算術平均径が30nmから500nmであり、液体置換法によ
    る真比重の値が1.0から1.7g/ccであり、かつ窒素吸着法
    で測定される比表面積が200から2000m2/gであることを
    特徴とする炭素粒子。
  2. 【請求項2】 請求項1の炭素粒子であって、X線回折
    パターンにおいて、格子面間隔d値が10から25Åである
    ピークを有することを特徴とする炭素粒子。
  3. 【請求項3】 請求項2の炭素粒子であって、X線回折
    で定義される黒鉛の(002)面間距離d002のピーク強度
    が格子面間隔d値が10から25Å相当に現れるピーク強度
    以下であることを特徴とする炭素粒子。
  4. 【請求項4】 請求項3の炭素粒子であって、10Å以下
    の細孔容量が300Å以下の細孔容量の10%以上70%以下
    であることを特徴とする炭素粒子。
JP6076599A 1994-03-23 1994-03-23 新規な炭素微粒子 Pending JPH07267618A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6076599A JPH07267618A (ja) 1994-03-23 1994-03-23 新規な炭素微粒子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6076599A JPH07267618A (ja) 1994-03-23 1994-03-23 新規な炭素微粒子

Publications (1)

Publication Number Publication Date
JPH07267618A true JPH07267618A (ja) 1995-10-17

Family

ID=13609792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6076599A Pending JPH07267618A (ja) 1994-03-23 1994-03-23 新規な炭素微粒子

Country Status (1)

Country Link
JP (1) JPH07267618A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324604A (ja) * 2005-05-20 2006-11-30 Frontier Carbon Corp 電気二重層キャパシタ用電極
WO2009072393A1 (ja) 2007-12-03 2009-06-11 National Institute Of Advanced Industrial Science And Technology リグニンを原料とする炭素微粒子及びその製造方法
US7663468B2 (en) 2003-01-17 2010-02-16 Tdk Corporation Conductive member and manufacturing method thereof, and electric device and manufacturing method thereof
JP2010208940A (ja) * 2003-01-14 2010-09-24 Kansai Coke & Chem Co Ltd 電気二重層キャパシタ用多孔質炭素の製造方法、該製造方法により得られた電気二重層キャパシタ用多孔質炭素、及び、該電気二重層キャパシタ用多孔質炭素を用いた電気二重層キャパシタ
WO2011055549A1 (ja) * 2009-11-06 2011-05-12 学校法人 芝浦工業大学 誘電材料及びこれを用いた電気化学素子
WO2014115721A1 (ja) * 2013-01-25 2014-07-31 住友ベークライト株式会社 負極材料、負極活物質、負極およびアルカリ金属イオン二次電池
US8986838B2 (en) 2009-01-22 2015-03-24 National Institute Of Advanced Industrial Science And Technology Hollow carbon microparticle and method for producing same
WO2020054833A1 (ja) 2018-09-14 2020-03-19 株式会社日本触媒 炭素材料含有材料の製造方法、炭素材料含有材料、および可溶性有機無機複合体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010208940A (ja) * 2003-01-14 2010-09-24 Kansai Coke & Chem Co Ltd 電気二重層キャパシタ用多孔質炭素の製造方法、該製造方法により得られた電気二重層キャパシタ用多孔質炭素、及び、該電気二重層キャパシタ用多孔質炭素を用いた電気二重層キャパシタ
US7663468B2 (en) 2003-01-17 2010-02-16 Tdk Corporation Conductive member and manufacturing method thereof, and electric device and manufacturing method thereof
JP2006324604A (ja) * 2005-05-20 2006-11-30 Frontier Carbon Corp 電気二重層キャパシタ用電極
WO2009072393A1 (ja) 2007-12-03 2009-06-11 National Institute Of Advanced Industrial Science And Technology リグニンを原料とする炭素微粒子及びその製造方法
US20100304141A1 (en) * 2007-12-03 2010-12-02 National Institute Of Advanced Industrial Science And Technology Carbon microparticle having lignin as raw material and preparation method therefor
EP2218683A4 (en) * 2007-12-03 2013-11-06 Nat Inst Of Advanced Ind Scien CARBON MICROPARTICLES OBTAINED FROM LIGNIN AS RAW MATERIAL AND METHOD OF MAKING THE SAME
US9321649B2 (en) 2007-12-03 2016-04-26 National Institute Of Advanced Industrial Science And Technology Carbon microparticle having lignin as raw material and preparation method therefor
US8986838B2 (en) 2009-01-22 2015-03-24 National Institute Of Advanced Industrial Science And Technology Hollow carbon microparticle and method for producing same
WO2011055549A1 (ja) * 2009-11-06 2011-05-12 学校法人 芝浦工業大学 誘電材料及びこれを用いた電気化学素子
WO2014115721A1 (ja) * 2013-01-25 2014-07-31 住友ベークライト株式会社 負極材料、負極活物質、負極およびアルカリ金属イオン二次電池
WO2020054833A1 (ja) 2018-09-14 2020-03-19 株式会社日本触媒 炭素材料含有材料の製造方法、炭素材料含有材料、および可溶性有機無機複合体

Similar Documents

Publication Publication Date Title
JP3561273B2 (ja) フラーレンを製造する方法
US20240010499A1 (en) Apparatus and method for plasma synthesis of graphitic products including graphene
Maciá-Agulló et al. Influence of carbon fibres crystallinities on their chemical activation by KOH and NaOH
Nieto-Márquez et al. Carbon nanospheres: synthesis, physicochemical properties and applications
EP2431325B1 (en) Process for producing carbon nanotubes
US20090285747A1 (en) Micro-domain graphitic materials and method for producing same
Daulbayev et al. Bio-waste-derived few-layered graphene/SrTiO3/PAN as efficient photocatalytic system for water splitting
JP2008510733A (ja) 機能性カーボン材料
Dyjak et al. Hierarchical, nanoporous graphenic carbon materials through an instant, self-sustaining magnesiothermic reduction
KR100519418B1 (ko) 신규한 구조와 물성을 보유한 탄소 미세 입자
CA2345143A1 (en) Carbon media for storage of hydrogen
EP1017622B1 (en) Micro-domain graphitic materials and method for producing the same
JP5716155B2 (ja) ナノカーボン製造用粉末及び金属内包フラーレンの生成方法
JPH07267618A (ja) 新規な炭素微粒子
Harbec et al. Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch
Keller et al. Carbon nanotube formation in situ during carbonization in shaped bulk solid cobalt nanoparticle compositions
Rejitha et al. Role of catalyst on the formation of resorcinol-furfural based carbon aerogels and its physical properties
Doherty et al. Solid-state synthesis of multiwalled carbon nanotubes
Zhang et al. Formation and Raman spectroscopy of single wall carbon nanotubes synthesized by CO2 continuous laser vaporization
Ahmed et al. Influence of the pH on the Morphology of Sol–Gel‐Derived Nanostructured SiC
JP2004269298A (ja) フラーレンの製造方法及びその製造装置
JP2003306835A (ja) 気相成長炭素繊維及びその製造方法
Kakade et al. Near-complete phase transfer of single-wall carbon nanotubes by covalent functionalization
JP3383685B2 (ja) 極細炭素チューブ及び炭素超微粒子の製造方法
RU2756759C1 (ru) СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТОВ КАРБИДОВ НИОБИЯ И ТАНТАЛА В УГЛЕРОДНОЙ МАТРИЦЕ - NbC/C И TaC/C