JPH07258789A - Steel excellent in high temperature strength and its production - Google Patents

Steel excellent in high temperature strength and its production

Info

Publication number
JPH07258789A
JPH07258789A JP4883394A JP4883394A JPH07258789A JP H07258789 A JPH07258789 A JP H07258789A JP 4883394 A JP4883394 A JP 4883394A JP 4883394 A JP4883394 A JP 4883394A JP H07258789 A JPH07258789 A JP H07258789A
Authority
JP
Japan
Prior art keywords
steel
solid solution
temperature strength
high temperature
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4883394A
Other languages
Japanese (ja)
Inventor
Hidesato Mabuchi
秀里 間渕
Shuji Aihara
周二 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4883394A priority Critical patent/JPH07258789A/en
Publication of JPH07258789A publication Critical patent/JPH07258789A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steel capable of reducing the content of rare metals and dealing with various needs by introducing a new heat treating method into a steel having a specified compsn. contg. Nb and Mo and allowing specified amounts of Nb and Mo to exist in a solid solution state. CONSTITUTION:A slab having a compsn. contg., by weight, 0.04 to 0.25% C, 0.03 to 0.60% Si, 0.30 to 2.0% Mn, <=0.025% P, <=0.015% S and 0.001 to 0.10% Al and contg. one or more kinds among 0.01 to 0.10% Nb and 0.30 to 1.01% Mo is used. The steel is produced while the slab is heated to 1100 to 1350 deg.C, and immediately quenched after the completion of rolling at 1000 deg.C to the Ar3 point or above, or acceleratedly cooled. Then, the steel excellent in high temp. strength in which one or more kinds of 0.007 to 0.07% Nb and 0.15 to 0.50% solid solution Mo are present in a solid solution state can be obtd. Moreover, the steel may be incorporated with one or more kinds of 0.05 to 1.0% Cu and 0.05 to 1/.5% Ni and/or <=10.0% Cr and/or 0.005 to 0.10% V and/or 0.005 to 0.03% Ti and/or 0.0003 to 0.002% B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建築、土木、海洋構造物
等の分野において各種構造物の耐火性に優れた鋼材及び
ボイラー、圧力容器等の分野において各種構造物の高温
強度又はクリープ強度に優れた鋼材の製造方法に関す
る。尚、当該鋼材としては、JIS G3103、JI
S G3109、JISG3120、JIS G410
9、JIS G4110等の鋼材及び新日鉄技法No.3
48,p55(1993)の如く新しく開発され、将来
規格化されるであろう建築用耐火鋼材があげられる。
FIELD OF THE INVENTION The present invention relates to high-temperature strength or creep strength of various structures in the fields of steel, boilers, pressure vessels, etc., which are excellent in fire resistance of various structures in the fields of construction, civil engineering, marine structures, etc. The present invention relates to an excellent steel material manufacturing method. Incidentally, as the steel material, JIS G3103, JI
S G3109, JIS G3120, JIS G410
9, steel materials such as JIS G4110 and Nippon Steel Technique No. Three
48, p55 (1993) is a newly developed refractory steel material for construction that will be standardized in the future.

【0002】[0002]

【従来の技術】周知の如く前記せる鋼材は圧延まま又は
熱処理(焼準し、焼入れ)に引き続く焼戻しで製造され
ている。又、近年のTMCP技術の進歩に伴い熱処理の
一部はTMCPに置き換えられる場合も見られる。従っ
て、鋼材に必要とされる化学成分は板厚及び熱処理法に
よって定まり、大きく変更することは不可能であった。
一方、TMCPの採用により焼準しの省略、焼入れの直
接焼入れ化等の省プロセス面ではその目標を達成した
が、省資源という観点からはその場合でも溶接性の改善
等に効果のある程度の微量しか化学成分は削減できなか
ったというのが実状であった。従って、地球環境問題の
顕在化(エコマティリアルの要求)により発生した、希
少金属の大幅削減を中心とする更なる省資源ニーズに対
しては応えられていない。
2. Description of the Related Art As is well known, the above-mentioned steel material is manufactured as it is by rolling or by heat treatment (normalization, quenching) and subsequent tempering. Further, with the recent progress of TMCP technology, a part of heat treatment may be replaced with TMCP. Therefore, the chemical composition required for the steel material is determined by the plate thickness and the heat treatment method, and cannot be largely changed.
On the other hand, by adopting TMCP, we have achieved the target in terms of process saving such as omission of normalization and direct quenching of quenching, but from the viewpoint of resource saving, even in that case, a small amount of a small amount effective for improving weldability etc. However, the reality was that the chemical components could not be reduced. Therefore, it is not possible to meet the further resource saving needs centered on the significant reduction of rare metals caused by the manifestation of global environmental problems (requirement of ecological).

【0003】例えば特公平4−50362号公報は耐火
性の優れた建築用低降伏比鋼材の製造方法に関するもの
であるが、鋼板を製造する段階で析出物を造り析出強化
を最大限に利用することを基本思想としている。これに
対し、本発明は鋼板製造段階では析出物をできるだけ造
らず、固溶Nb又は固溶Moとして鋼中に固溶状態で存
在させることを基本思想として、火事が発生して鋼材が
高温状態に曝された時に固溶Nb又は固溶Moの析出物
を初めて生成することによって少量の希少金属即ちNb
又はMoを活用して高温強度を極めて有効に向上するも
のである。
For example, Japanese Examined Patent Publication No. 4-50362 relates to a method of manufacturing a low yield ratio steel material for construction having excellent fire resistance, but in the step of manufacturing a steel sheet, a precipitate is formed to make maximum use of precipitation strengthening. That is the basic idea. On the other hand, in the present invention, the basic idea is that precipitates are not formed as much as possible in the steel sheet manufacturing stage, and are present in the steel in the form of solid solution Nb or solid solution Mo in the solid solution state. The formation of precipitates of solid solution Nb or solid solution Mo for the first time when exposed to
Alternatively, Mo is used to improve the high temperature strength extremely effectively.

【0004】又、特開平2−163341号公報は耐火
強度の優れた構造用鋼材及びその製造方法に関するもの
であるが、V添加又はMoとVの複合添加によって高温
での変形時に移動を開始した転位にこれら炭化物が析出
することを基本思想としている。従って、固溶、析出が
極めて容易に行われるVを主対象とし、固溶Nbや固溶
Moを高温強度の向上に積極的に活用する思想は全くな
い。従って、その製造法は圧延終了後に空冷、加速冷
却、焼準しのいずれでも高温強度に及ぼす効果は変わら
ず、固溶Nbや固溶Moを増加しようとする思想は認め
られない。又Nbの限定理由から明らかなように、鋼板
を製造する段階で安定な炭窒化物を形成して鋼の耐火強
度を向上させている。
Further, Japanese Patent Application Laid-Open No. 2-163341 relates to a structural steel material having excellent fire resistance and a method for manufacturing the structural steel material. The addition of V or the combined addition of Mo and V started the movement at the time of deformation at high temperature. The basic idea is to precipitate these carbides at dislocations. Therefore, there is no idea to use mainly solid solution Nb or solid solution Mo to improve the high temperature strength, mainly for V, where solid solution and precipitation are extremely easily performed. Therefore, in the manufacturing method, the effect on the high temperature strength does not change by air cooling, accelerated cooling, and normalizing after the completion of rolling, and the idea of increasing solid solution Nb or solid solution Mo is not recognized. Further, as is apparent from the reason why Nb is limited, stable carbonitrides are formed at the stage of manufacturing a steel sheet to improve the fire resistance strength of the steel.

【0005】これに対し、本発明は鋼板製造段階では析
出物をできるだけ造らず、固溶Nb又は固溶Moを鋼中
に固溶状態で存在させることにより高温強度を上昇する
ことを基本思想としているため、その製造方法も直接焼
入れしたまま又は加速冷却したままで鋼材を製造するこ
とに限定してこれら希少金属の固溶量を確保して、鋼材
が高温に曝される時に初めて析出物を生成することによ
って少量の希少金属即ちNb又はMoを活用して高温強
度を極めて有効に向上するものである。
On the other hand, the basic idea of the present invention is to increase the high temperature strength by not forming precipitates in the steel sheet manufacturing stage as much as possible and allowing solid solution Nb or solid solution Mo to exist in the steel in a solid solution state. Therefore, the production method is limited to producing steel with direct quenching or with accelerated cooling to secure the solid solution amount of these rare metals, and precipitates are not formed until the steel is exposed to high temperature. By producing a small amount of a rare metal, that is, Nb or Mo, the high temperature strength is effectively improved.

【0006】更に、特開昭58−217661号公報は
耐熱鋼に関するものであるが、Mo又はNbは炭窒化物
を生成して、高温強度の向上、焼戻し軟化特性の改善、
焼戻し脆性の改善を基本思想としている。従って、固溶
Nb又は固溶Moを制御しようとする思想は全くなく、
その熱処理は一般的な焼入れ後に焼戻しを行っている。
これに対して、本発明は固溶Nb又は固溶Moを鋼中に
固溶状態で存在させることにより高温強度を効果的に向
上させるため、圧延終了後の熱処理を直接焼入れしたま
ま又は加速冷却したままに限定することを基本思想とし
ている。
Further, JP-A-58-217661 relates to heat-resistant steel. Mo or Nb forms carbonitrides to improve high temperature strength and temper softening characteristics.
The basic idea is to improve temper brittleness. Therefore, there is no idea to control the solid solution Nb or the solid solution Mo,
As for the heat treatment, tempering is performed after general quenching.
On the other hand, the present invention effectively improves the high temperature strength by allowing solid solution Nb or solid solution Mo to exist in the steel in a solid solution state. Therefore, the heat treatment after the rolling is directly quenched or accelerated cooling. The basic idea is to limit it as it is.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、熱処
理に対する発想の転換による新熱処理法の導入による希
少金属の使用を大幅に削減可能な省資源ニーズに対応す
る高温強度に優れた鋼材及びその製造方法を提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a steel material excellent in high temperature strength, which can greatly reduce the use of rare metals by introducing a new heat treatment method by changing the way of thinking for heat treatment and which can meet the resource saving needs. It is to provide the manufacturing method.

【0008】[0008]

【課題を解決するための手段】本発明は熱間圧延終了
後、直ちに焼入れしたまま又は加速冷却したまま鋼を製
造し又は低温焼戻しを必要によって施すことにより希少
金属使用の大幅削減を可能とする高温強度に優れた鋼材
及びその製造方法である。即ち、本発明の要旨は次の通
りである。 (1)重量比で、C:0.04〜0.25%、Si:
0.03〜0.60%、Mn:0.30〜2.0%、P
≦0.025%、S≦0.015%、Al:0.001
〜0.10%を含有し、Nb:0.01〜0.10%、
Mo:0.30〜1.10%の一種又は二種を含有する
鋼において固溶Nb:0.007〜0.07%、固溶M
o:0.15〜0.50%の一種又は二種を鋼中に固溶
状態で存在することを特徴とする高温強度の優れた鋼
材。 (2)重量比で、Cu:0.05〜1.0%、Ni:
0.05〜1.5%の一種又は二種及び/又はCr≦1
0.0%及び/又はV:0.005〜0.10%及び/
又はTi:0.005〜0.03%及び/又はB:0.
0003〜0.002%を含有することを特徴とする前
記(1)記載の高温強度に優れた鋼材。
The present invention makes it possible to significantly reduce the use of rare metals by producing steel while quenching or accelerating cooling immediately after completion of hot rolling or by performing low temperature tempering as necessary. A steel material excellent in high-temperature strength and a manufacturing method thereof. That is, the gist of the present invention is as follows. (1) By weight ratio, C: 0.04 to 0.25%, Si:
0.03-0.60%, Mn: 0.30-2.0%, P
≦ 0.025%, S ≦ 0.015%, Al: 0.001
.About.0.10%, Nb: 0.01 to 0.10%,
Mo: 0.30 to 1.10% in steel containing one or two kinds of solid solution Nb: 0.007 to 0.07%, solid solution M
o: A steel material having excellent high-temperature strength, characterized in that 0.15 to 0.50% of one or two kinds are present in the steel in a solid solution state. (2) By weight ratio, Cu: 0.05 to 1.0%, Ni:
0.05 to 1.5% of one or two and / or Cr ≦ 1
0.0% and / or V: 0.005 to 0.10% and / or
Or Ti: 0.005 to 0.03% and / or B: 0.
A steel material excellent in high temperature strength as described in (1) above, which contains 0003 to 0.002%.

【0009】(3)重量比で、C:0.04〜0.25
%、Si:0.03〜0.60%、Mn:0.30〜
2.0%、P≦0.025%、S≦0.015%、A
l:0.001〜0.10%を含有し、Nb:0.01
〜0.10%、Mo:0.30〜1.10%の一種又は
二種を含有する鋼片を1100〜1350℃に加熱後、
1000℃〜Ar3 点以上で圧延終了後、直ちに焼入れ
したまま又は加速冷却したままで鋼を製造することを特
徴とする高温強度に優れた鋼材の製造方法。 (4)重量比でCu:0.05〜1.0%、Ni:0.
05〜1.5%の一種又は二種及び/又はCr≦10.
0%及び/又はV:0.005〜0.10%及び/又は
Ti:0.005〜0.03%及び/又はB:0.00
03〜0.002%を含有することを特徴とする前記
(3)記載の高温強度に優れた鋼材の製造方法。 (5)150〜450℃の温度範囲で焼戻しを施すこと
を特徴とする前記(3)又は(4)記載の高温強度に優
れた鋼材の製造方法。
(3) By weight ratio, C: 0.04 to 0.25
%, Si: 0.03 to 0.60%, Mn: 0.30
2.0%, P ≦ 0.025%, S ≦ 0.015%, A
1: 0.001 to 0.10%, Nb: 0.01
~ 0.10%, Mo: 0.30 to 1.10%, after heating a steel slab containing one or two kinds to 1100 to 1350 ° C,
A method for producing a steel material having excellent high-temperature strength, which comprises producing steel immediately after quenching at 1000 ° C. to Ar 3 points or higher and immediately after quenching or with accelerated cooling. (4) Cu: 0.05-1.0% and Ni: 0.
05 to 1.5% of one or two and / or Cr ≦ 10.
0% and / or V: 0.005 to 0.10% and / or Ti: 0.005 to 0.03% and / or B: 0.00
03-0.002% is contained, The manufacturing method of the steel material excellent in high temperature strength of said (3) characterized by the above-mentioned. (5) The method for producing a steel material excellent in high temperature strength according to the above (3) or (4), characterized by performing tempering in a temperature range of 150 to 450 ° C.

【0010】[0010]

【作用】本発明者は鋼材の高温強度に及ぼす熱処理法と
化学成分の影響に関して仔細に調査したところ、化学成
分の種類によっては鋼中における存在状態と高温強度ひ
いてはクリープ強度との間に密接な関係があることを見
い出した。即ち、Nb,Mo等の強い窒化物を形成する
希少金属は高温に供する前の鋼材に過飽和に固溶してい
ると、鋼材が火事又は高温での操業等の高温状態に曝さ
れる時に過飽和に固溶したNb,Moが析出物を生成
し、この高温析出強化により高温強度(クリープ強度)
が著しく改善することを知見した。
The present inventor has made a detailed investigation on the influence of the heat treatment method and the chemical composition on the high temperature strength of the steel material. As a result, depending on the type of the chemical composition, the existence state in the steel and the high temperature strength and hence the creep strength are closely related. I found a relationship. That is, if a rare metal that forms a strong nitride such as Nb or Mo is solidly supersaturated in the steel material before being subjected to high temperature, it will be supersaturated when the steel material is exposed to a high temperature condition such as a fire or an operation at a high temperature. Nb and Mo which are solid-solved in the solution form precipitates, and this high temperature precipitation strengthening causes high temperature strength (creep strength).
Have been found to significantly improve.

【0011】その結果、これら希少金属を固溶する温度
以上に鋼材を加熱して熱間圧延終了後、直ちに焼入れし
たまま又は加速冷却したままで鋼材を製造することによ
り希少金属を鋼中に過飽和に固溶させることによって、
希少金属の使用量を大幅に削減した高温強度に優れた鋼
材及びその製造方法を発明するに至った。更に、形状矯
正や残留応力緩和の観点から必要に応じて低温焼戻しを
行っても鋼中に過飽和に固溶した希少金属量が変化しな
い範囲であれば同様の効果が得られることも当然のこと
ながら判明した。
As a result, the steel is heated to a temperature above the temperature at which these rare metals form a solid solution, and after hot rolling is completed, the steel is immediately quenched or accelerated cooled to produce the steel, thereby supersaturating the rare metals in the steel. By making a solid solution in
The inventors have invented a steel material excellent in high-temperature strength in which the amount of rare metals used is greatly reduced, and a manufacturing method thereof. Furthermore, from the viewpoints of shape correction and residual stress relaxation, it is of course possible to obtain the same effect as long as the amount of the rare metal dissolved in supersaturated solid solution in the steel does not change even if low-temperature tempering is performed if necessary. While turned out.

【0012】以下に本発明を詳細に説明する。Cは、
0.04%未満では強度を満足せず、0.25%超では
低温靭性、溶接性を損なうために0.04〜0.25%
と限定した。Siは、脱酸上0.03%以上必要で、
0.60%超では低温靭性、溶接性を損なうために0.
03〜0.60%と限定した。尚、焼戻し脆性を問題と
する時にはSiを0.03〜0.10%とすることが好
ましい。Mnは、強度上0.30%以上必要で、2.0
%超では低温靭性、溶接性を損なうために0.30〜
2.0%と限定した。尚、焼戻し脆性を問題とする時に
はMnを0.30〜0.60%とすることが望ましい。
The present invention will be described in detail below. C is
If it is less than 0.04%, the strength is not satisfied, and if it exceeds 0.25%, low temperature toughness and weldability are impaired, so 0.04 to 0.25%.
Limited. Si must be 0.03% or more on deoxidation,
If it exceeds 0.60%, the low temperature toughness and the weldability are impaired, so that
It was limited to 03 to 0.60%. When temper brittleness is a problem, Si is preferably 0.03 to 0.10%. Mn needs to be 0.30% or more in terms of strength, and is 2.0
%, If it exceeds 0.3%, the low temperature toughness and weldability are impaired.
Limited to 2.0%. When temper brittleness is a problem, Mn is preferably 0.30 to 0.60%.

【0013】P,S等の不純物は低ければ低いほど好ま
しく、Pは0.025%以下、Sは0.015%以下に
制約される。更に、構造物の形状から耐ラメラーテア性
が要求される場合にはSは0.003%以下に管理さ
れ、CaやREMを用いたMnSの形態制御も必要とな
る。Alは、脱酸上重要な元素であるが、Si又はTi
によっても脱酸が行われるので、その下限は0.001
%以上あればよく、0.10%超では溶接性、介在物に
よる清浄度が損なわれるので0.001〜0.10%に
制約される。
The lower the impurities such as P and S, the more preferable. P is limited to 0.025% or less and S is limited to 0.015% or less. Furthermore, when the lamellar tear resistance is required due to the shape of the structure, S is controlled to 0.003% or less, and morphology control of MnS using Ca or REM is also necessary. Al is an important element for deoxidation, but Si or Ti
Deoxidation is also carried out, the lower limit is 0.001
% Or more, and if it exceeds 0.10%, the weldability and the cleanliness due to inclusions are impaired, so 0.001 to 0.10% is restricted.

【0014】Nbは、熱間圧延終了後直ちに焼入れたま
ま又は加速冷却したままで固溶Nb量を0.007%以
上確保するために0.01%以上とし、0.10%超で
は低温靭性、溶接性を損なうために0.01〜0.10
%と限定した。Moは、熱間圧延終了後直ちに焼入れた
まま又は加速冷却したままで固溶Mo量を0.15%以
上確保するために0.30%以上とし、1.10%超で
は低温靭性、溶接性を損なうために0.30〜1.10
%と限定した。
Nb is set to 0.01% or more in order to secure a solid solution Nb amount of 0.007% or more immediately after hot rolling or with accelerated cooling, and if it exceeds 0.10%, low temperature toughness is obtained. , 0.01 to 0.10 to impair the weldability
Limited to%. Mo is set to 0.30% or more in order to secure a solid solution Mo amount of 0.15% or more immediately after the hot rolling is finished, while being quenched or accelerated cooled. If it exceeds 1.10%, low temperature toughness and weldability are obtained. 0.30 to 1.10 to damage
Limited to%.

【0015】固溶Nbは、0.07%を超えると低温靭
性、溶接性を損ない、0.007%未満では必要な高温
強度の向上が得られないために、0.007〜0.07
%と限定した。固溶Moは、0.50%超では低温靭
性、溶接性を損ない、0.15%未満では必要な高温強
度の向上が得られないために、0.15〜0.50%と
限定した。Cuは、低温靭性向上、強度確保のために
0.05%以上添加され、1.0%超では熱間脆性を助
長するために0.05〜1.0%と限定した。
If the solid solution Nb exceeds 0.07%, the low temperature toughness and weldability are impaired, and if it is less than 0.007%, the required improvement in high temperature strength cannot be obtained, so 0.007 to 0.07.
Limited to%. If the solid solution Mo exceeds 0.50%, the low-temperature toughness and weldability are impaired, and if it is less than 0.15%, the required high-temperature strength cannot be obtained, so the content is limited to 0.15 to 0.50%. Cu is added in an amount of 0.05% or more in order to improve low temperature toughness and ensure strength, and if it exceeds 1.0%, it is limited to 0.05 to 1.0% to promote hot embrittlement.

【0016】Niは、低温靭性向上、強度確保のために
0.05%以上添加され、1.5%超ではその効果が飽
和するために0.05〜1.5%と限定した。Crは、
高温強度上重要な元素で化学反応容器用の鋼材には1.
25%、2.25%、3%、9%を目標に添加され、1
0.0%以下と限定した。一般的に、耐火鋼材等では強
度上0.05%以上添加され、1.0%超では溶接性を
損なうために0.05〜1.0%とすることが好まし
い。Vは、強度向上のために0.005%以上添加さ
れ、0.10%超では溶接性、低温靭性を損なうために
0.005〜0.10%と限定した。
Ni is added in an amount of 0.05% or more in order to improve the low temperature toughness and secure the strength. If it exceeds 1.5%, the effect is saturated, so Ni is limited to 0.05 to 1.5%. Cr is
It is an important element for high temperature strength. 1.
25%, 2.25%, 3%, 9% were added as targets, and 1
It was limited to 0.0% or less. Generally, 0.05% or more is added to the refractory steel or the like in terms of strength, and if it exceeds 1.0%, the weldability is impaired, so the content is preferably 0.05 to 1.0%. V is added in an amount of 0.005% or more for improving the strength, and if it exceeds 0.10%, it is limited to 0.005 to 0.10% to impair the weldability and the low temperature toughness.

【0017】Tiは、鋳造時の割れ防止、継手靭性向上
のために0.005%以上添加され、0.03%超では
溶接性、低温靭性を損なうために0.005〜0.03
%と限定した。Bは、強度上0.0003%以上添加さ
れ、0.002%超の添加は溶接性、低温靭性を損なう
ために0.0003〜0.002%と限定した。耐ラメ
ラーテア性等からCa又はREMを添加する場合にはC
a:0.001〜0.008%、REM:0.001〜
0.005%が好ましい。
Ti is added in an amount of 0.005% or more to prevent cracking during casting and to improve joint toughness. If it exceeds 0.03%, it deteriorates weldability and low temperature toughness, and 0.005 to 0.03 is added.
Limited to%. B is added in an amount of 0.0003% or more in terms of strength, and the addition of more than 0.002% impairs weldability and low-temperature toughness, and is therefore limited to 0.0003 to 0.002%. In the case of adding Ca or REM from the viewpoint of lamella tear resistance, etc., C
a: 0.001 to 0.008%, REM: 0.001 to
0.005% is preferable.

【0018】加熱温度は鋼に添加されたNb,Moを固
溶するために1100℃以上とし、1350℃超ではス
ケール等操業上の問題が種々発生するために1100〜
1350℃に限定した。熱間圧延終了温度は1000℃
超では結晶粒が粗大化して低温靭性を損ない、Ar3
未満では圧延中にNb,Moの炭窒化物が析出して必要
な固溶Nb又は固溶Moの確保ができないために100
0℃〜Ar3 点に限定した。尚、制御圧延を実施すると
加工誘起析出が起こるため、固溶Nb又は固溶Mo、特
に固溶Nbの減少を防止するには1000〜850℃の
圧延終了温度が好ましい。
The heating temperature is set to 1100 ° C. or higher in order to form a solid solution of Nb and Mo added to steel, and if it exceeds 1350 ° C., various problems such as scale may occur in operation, and therefore 1100 to 100 ° C.
Limited to 1350 ° C. End temperature of hot rolling is 1000 ℃
If it exceeds the above value, the crystal grains become coarse and the low temperature toughness is impaired. If it is less than the Ar 3 point, carbonitrides of Nb and Mo are precipitated during rolling, and necessary solid solution Nb or solid solution Mo cannot be secured.
It was limited to 0 ° C to Ar 3 points. Note that, when controlled rolling is performed, work-induced precipitation occurs, so a rolling end temperature of 1000 to 850 ° C. is preferable in order to prevent a decrease in solid solution Nb or solid solution Mo, particularly solid solution Nb.

【0019】焼入れは固溶Nb、固溶Moを確保するた
めに圧延終了後直ちに行う直接焼入れまま又は、最近開
発されたTMCP技術による加速冷却に限定する。加速
冷却は30〜1℃/秒の冷却速度で圧延後直ちに450
℃以下の任意の温度まで冷却したままとすることが望ま
しい。板厚にも依存するが、冷却速度は30℃/秒以上
では直接焼入れの冷速と変わらず、1℃/秒未満では空
冷の冷速と変わらないため、30〜1℃/秒と冷却速度
を制約した。又、450℃超では析出物が発生し易いた
め450℃以下まで加速冷却することにした。
Quenching is limited to direct quenching performed immediately after the completion of rolling to secure solid solution Nb and solid solution Mo, or accelerated cooling by the recently developed TMCP technique. Accelerated cooling is performed immediately after rolling at a cooling rate of 30 to 1 ° C / sec.
It is desirable to keep cooling to any temperature below ℃. Although it depends on the plate thickness, the cooling rate does not change from the cooling rate of direct quenching at 30 ° C / sec or more and does not change from the cooling rate of air cooling at less than 1 ° C / sec. Therefore, the cooling rate is 30 to 1 ° C / sec. Constrained. Further, if the temperature exceeds 450 ° C., precipitates are likely to be generated, so it was decided to accelerate cooling to 450 ° C. or less.

【0020】焼戻しは原則的に実施するより実施しない
方が望ましいが、形状矯正や残留応力緩和の観点からど
うしても必要な場合には、その昇温過程における固溶N
bや固溶Moの炭窒化物の析出が少ない150〜450
℃の低温焼戻しに限定する。焼戻し時間は短いほど好ま
しく2時間以上では析出物が生成するため、2時間以下
が好ましい。
It is desirable not to carry out tempering in principle, but if it is absolutely necessary from the viewpoint of shape correction and residual stress relaxation, solid solution N in the temperature rising process is required.
150 to 450 with little precipitation of carbonitrides of b and solid solution Mo
Limited to low temperature tempering at ℃. The shorter the tempering time is, the more preferable it is for 2 hours or more.

【0021】[0021]

【実施例】表1化学成分、表2に実施結果を示す。発明
例の鋼A〜鋼E及び比較例の鋼Fについて1250℃加
熱後、熱間圧延を850℃又は800℃で終了した。鋼
A〜鋼Eの発明例及び比較例の鋼Fは圧延終了後、直ち
に焼入れ(DQ又はTMCP)を実施した。尚、発明例
の鋼Cはプレス矯正後の残留応力緩和のため450℃低
温焼戻しを実施した。一方、鋼A、鋼C、鋼Eの比較例
は圧延終了後空冷した後、焼入れ又は焼準しを実施し
た。
[Examples] The chemical components are shown in Table 1 and the results are shown in Table 2. The steels A to E of the invention examples and the steel F of the comparative examples were heated at 1250 ° C., and then hot rolling was terminated at 850 ° C. or 800 ° C. Steel F of the invention examples of Steel A to Steel E and Comparative Example was immediately quenched (DQ or TMCP) after completion of rolling. Steel C of the invention example was tempered at a low temperature of 450 ° C. to relax the residual stress after press straightening. On the other hand, in Comparative Examples of Steel A, Steel C, and Steel E, quenching or normalization was performed after air cooling after the completion of rolling.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】本発明の熱処理を行っている発明例として
の鋼A〜鋼Eの固溶Mo又は固溶Nbは本発明の範囲内
となっている。一方、本発明の熱処理を行っていない比
較例としての鋼A、鋼C、鋼Eの固溶Mo又は固溶Nb
は本発明の範囲外となっている。尚、本発明の熱処理を
実施しているが化学成分が本発明の範囲外のため、鋼F
の固溶Mo又は固溶Nbは本発明の範囲外となってい
る。表2から、固溶Mo又は固溶Nbが本発明の範囲内
の発明例では600℃における高温強度が比較例に比べ
て明らかに大きくなっている。従って、本発明は省プロ
セスだけでなく高温強度の向上が可能となり、同一の高
温強度を目標とすれば大幅に希少金属の削減が可能とな
る。
The solid solution Mo or solid solution Nb of steels A to E as the invention examples in which the heat treatment of the present invention is carried out is within the scope of the present invention. On the other hand, solid solution Mo or solid solution Nb of steel A, steel C, and steel E as comparative examples not subjected to the heat treatment of the present invention
Is outside the scope of the present invention. Although the heat treatment of the present invention is carried out, the chemical composition is outside the scope of the present invention.
The solid solution Mo or solid solution Nb is outside the scope of the present invention. From Table 2, the high temperature strength at 600 ° C. is clearly higher in the invention examples in which the solid solution Mo or the solid solution Nb is within the scope of the present invention as compared with the comparative example. Therefore, according to the present invention, not only the process saving but also the high temperature strength can be improved, and if the same high temperature strength is targeted, it is possible to significantly reduce the rare metals.

【0025】[0025]

【発明の効果】本発明は新熱処理法、即ち希少金属を固
溶する温度以上に鋼材を加熱して熱間圧延終了後、直ち
に焼入れしたまま又は加速冷却したままで鋼材を製造す
ることにより希少金属を鋼中に過飽和に固溶することに
よって、希少金属の使用量を大幅に削減した高温強度に
優れた鋼材の製造方法と同時に省プロセスをも可能とす
る方法を提供するものである。これにより、地球環境問
題への省資源ニーズと同時に高温強度に優れた鋼材の合
理的な製造方法を可能として、産業界はもとより人類全
体が享受できる利益は多大なものがあると思料される。
INDUSTRIAL APPLICABILITY The present invention uses a new heat treatment method, that is, by heating a steel material to a temperature at which a rare metal is solid-solved or above and finishing hot rolling, immediately producing a steel material with quenching or accelerated cooling. By providing a supersaturated solid solution of a metal in steel, the present invention provides a method for manufacturing a steel material excellent in high temperature strength in which the amount of a rare metal used is greatly reduced, and at the same time, a method capable of saving a process. This enables a rational manufacturing method of steel materials excellent in high temperature strength at the same time as resource saving needs for global environmental problems, and it is thought that there are enormous benefits not only to industry but also to humanity as a whole.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC :0.04〜0.25%、 Si:0.03〜0.60%、 Mn:0.30〜2.0%、 P ≦0.025%、 S ≦0.015%、 Al:0.001〜0.10%を含有し、 Nb:0.01〜0.10%、 Mo:0.30〜1.10%の一種又は二種を含有する
鋼において 固溶Nb:0.007〜0.07%、 固溶Mo:0.15〜0.50%の一種又は二種を鋼中
に固溶状態で存在することを特徴とする高温強度の優れ
た鋼材。
1. C: 0.04 to 0.25% by weight, Si: 0.03 to 0.60%, Mn: 0.30 to 2.0%, P ≤ 0.025%, S ≤ 0.015%, Al: 0.001 to 0.10% contained, Nb: 0.01 to 0.10%, Mo: 0.30 to 1.10% in steel containing one or two kinds. Solid solution Nb: 0.007 to 0.07%, solid solution Mo: 0.15 to 0.50% of one or two kinds are present in the steel in a solid solution state, which is excellent in high temperature strength. Steel material.
【請求項2】 重量比でCu:0.05〜1.0%、N
i:0.05〜1.5%の一種又は二種及び/又はCr
≦10.0%及び/又はV:0.005〜0.10%及
び/又はTi:0.005〜0.03%及び/又はB:
0.0003〜0.002%を含有することを特徴とす
る請求項1記載の高温強度に優れた鋼材。
2. A weight ratio of Cu: 0.05 to 1.0%, N
i: 0.05 to 1.5% of one or two and / or Cr
≦ 10.0% and / or V: 0.005 to 0.10% and / or Ti: 0.005 to 0.03% and / or B:
The steel material excellent in high-temperature strength according to claim 1, wherein the steel material contains 0.0003 to 0.002%.
【請求項3】 重量比でC :0.04〜0.25%、 Si:0.03〜0.60%、 Mn:0.30〜2.0%、 P ≦0.025%、 S ≦0.015%、 Al:0.001〜0.10%を含有し、 Nb:0.01〜0.10%、 Mo:0.30〜1.10%の一種又は二種を含有する
鋼片を1100〜1350℃に加熱後、1000℃〜A
3 点以上で圧延終了後、直ちに焼入れしたまま又は加
速冷却したままで鋼を製造することを特徴とする高温強
度に優れた鋼材の製造方法。
3. By weight ratio, C: 0.04 to 0.25%, Si: 0.03 to 0.60%, Mn: 0.30 to 2.0%, P ≤ 0.025%, S ≤ Steel slab containing 0.015%, Al: 0.001 to 0.10%, Nb: 0.01 to 0.10%, Mo: 0.30 to 1.10%. After heating to 1100 to 1350 ° C, 1000 ° C to A
A method for producing a steel material excellent in high-temperature strength, which comprises producing steel immediately after quenching or accelerated cooling after completion of rolling at r 3 points or more.
【請求項4】 重量比でCu:0.05〜1.0%、N
i:0.05〜1.5%の一種又は二種及び/又はCr
≦10.0%及び/又はV:0.005〜0.10%及
び/又はTi:0.005〜0.03%及び/又はB:
0.0003〜0.002%を含有することを特徴とす
る請求項3記載の高温強度に優れた鋼材の製造方法。
4. Cu: 0.05-1.0% by weight ratio, N
i: 0.05 to 1.5% of one or two and / or Cr
≦ 10.0% and / or V: 0.005 to 0.10% and / or Ti: 0.005 to 0.03% and / or B:
The method for producing a steel material excellent in high-temperature strength according to claim 3, wherein the steel material contains 0.0003 to 0.002%.
【請求項5】 150〜450℃の温度範囲で焼戻しを
施すことを特徴とする請求項3又は4記載の高温強度に
優れた鋼材の製造方法。
5. The method for producing a steel material excellent in high temperature strength according to claim 3 or 4, wherein tempering is performed in a temperature range of 150 to 450 ° C.
JP4883394A 1994-03-18 1994-03-18 Steel excellent in high temperature strength and its production Withdrawn JPH07258789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4883394A JPH07258789A (en) 1994-03-18 1994-03-18 Steel excellent in high temperature strength and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4883394A JPH07258789A (en) 1994-03-18 1994-03-18 Steel excellent in high temperature strength and its production

Publications (1)

Publication Number Publication Date
JPH07258789A true JPH07258789A (en) 1995-10-09

Family

ID=12814250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4883394A Withdrawn JPH07258789A (en) 1994-03-18 1994-03-18 Steel excellent in high temperature strength and its production

Country Status (1)

Country Link
JP (1) JPH07258789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094563A (en) * 2017-11-24 2019-06-20 Jfeスチール株式会社 Steel material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094563A (en) * 2017-11-24 2019-06-20 Jfeスチール株式会社 Steel material

Similar Documents

Publication Publication Date Title
US4075041A (en) Combined mechanical and thermal processing method for production of seamless steel pipe
JPH07197125A (en) Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance
JPH10273756A (en) Cold tool made of casting, and its production
JPH06220536A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH09170046A (en) Martensitic non-heat treated steel with high strength and high toughness and its production
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH10306315A (en) Production of non-heat treated high tensile-strength steel excellent in low temperature toughness
JPH07258789A (en) Steel excellent in high temperature strength and its production
CN111647803A (en) Copper-containing high-strength steel and preparation method thereof
JP2581267B2 (en) Method for producing high strength, high ductility 13Cr stainless steel
JPH07242944A (en) Production of sour resistant high strength steel plate having excellent low temperature toughness
JPH06116639A (en) Production of ultrahigh tensile strength steel having stress corrosion cracking resistance
JPH09287027A (en) Production of high strength, high toughness and seamless steel pipe
EP0630985B1 (en) Steel for making very large pipe molds
JPH1136017A (en) Manufacture of high strength non-heat treated steel for seamless steel tube
CN109112394B (en) Quenched and tempered X60Q pipeline steel with low yield ratio and preparation method thereof
JPH06145786A (en) Production of wide flange shape minimal in difference in mechancal property in plate thickness direction
KR960005222B1 (en) Making method of high nitrogen austenite stainless cold steel sheet
JPH1192860A (en) Steel having ultrafine ferritic structure
JPH0718331A (en) Manufacture of 13 chromium stainless steel bent tube
CN109576594A (en) A kind of hot rolling magnetic yoke steel and its manufacturing method
JPH08337815A (en) Production of chromium-molybdenum steel excellent in strength and toughness
JPH0445227A (en) Production of steel product with low yield ratio
JPH079027B2 (en) Forming method of low alloy steel for high temperature

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605